Browse > Article
http://dx.doi.org/10.5229/JECST.2016.7.2.170

A New Way to Prepare MoO3/C as Anode of Lithium ion Battery for Enhancing the Electrochemical Performance at Room Temperature  

Yu, Zhian (School of physical and mathematical sciences, Nanjing Tech University)
Jiang, Hongying (School of physical and mathematical sciences, Nanjing Tech University)
Gu, Dawei (School of physical and mathematical sciences, Nanjing Tech University)
Li, Jishu (College of Chemistry and Molecular Engineering, Nanjing Tech University)
Wang, Lei (School of physical and mathematical sciences, Nanjing Tech University)
Shen, Linjiang (School of physical and mathematical sciences, Nanjing Tech University)
Publication Information
Journal of Electrochemical Science and Technology / v.7, no.2, 2016 , pp. 170-178 More about this Journal
Abstract
Composited molybdenum oxide and amorphous carbon (MoO3/C) as anode material for lithium ion batteries has been successfully synthesized by calcining polyaniline (PANI) doped with ammonium heptamolybdate tetrahydrate (AMo). The as prepared electrode material was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and field emission scanning electron microscopy (FE-SEM). The electrochemical performance of the anode was investigated by galvanostatic charge/discharge, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The MoO3/C shows higher specific capacity, better cyclic performance and rate performance than pristine MoO3 at room temperature. The electrochemical of MoO3/C properties at various temperatures were also investigated. At elevated temperature, MoO3/C exhibited higher specific capacity but suffered rapidly declines. While at low temperature, the electrochemical performance was mainly limited by the low kinetics of lithium ion diffusion and the high charge transfer resistance.
Keywords
Lithium Ion Battery; Molybdenum trioxide; Anode material; Nanocomposite; Specific capacity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Fong, U. von Sacken and J. R. Dahn, J. Electrochem. Soc., 1990, 137, 2009-2013.   DOI
2 A. D. W. Todd, P. P. Ferguson, M. D. Fleischauer and J. R. Dahn, Int. J. Energy Res., 2010, 34, 535-555.   DOI
3 C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins and Y. Cui, Nat. Nanotechnol., 2008, 3, 31-35.   DOI
4 J. Graetz, C. C. Ahn, R. Yazami and B. Fultz, J. Electrochem. Soc., 2004, 151, A698-A702.   DOI
5 D. Ge, H. Geng, J. Wang, J. Zheng, Y. Pan, X. Cao and H. Gu, Nanoscale, 2014, 6, 9689-9694.   DOI
6 J. Liu, H. Xia, D. Xue and L. Lu, J. Am. Chem. Soc., 2009, 131, 12086-12087.   DOI
7 W. Zeng, F. Zheng, R. Li, Y. Zhan, Y. Li and J. Liu, Nanoscale, 2012, 4, 2760-2765.   DOI
8 Q. Wang, J. Sun, Q. Wang, D. Zhang, L. Xing and X. Xue, J. Mater. Chem. A., 2015, 3, 5083-5091.   DOI
9 V. Aravindan, Y.-S. Lee, S. Madhavi, Adv. Energy Mater., 2015, 5, 140225.
10 J. Zhang and A. Yu, Sci. Bull., 2015, 60, 823-838.   DOI
11 Y. S. Jung, S. Lee, D. Ahn, A. C. Dillon and S.-H. Lee, J. Power Sources., 2009, 188, 286-291.   DOI
12 Z. Wang, S. Madhavi and X. W. (David) Lou, J. Phys. Chem. C., 2012, 116, 12508-12513.   DOI
13 W. Li, F. Cheng, Z. Tao and J. Chen, J. Phys. Chem. B., 2006, 110, 119-124.   DOI
14 P. Meduri, E. Clark, J. H. Kim, E. Dayalan, G. U. Sumanasekera and M. K. Sunkara, Nano Lett., 2012, 12(4), 1784-1788.   DOI
15 D. Hanlon, C. Backes, T. M. Higgins, M. Hughes, A. O’Neill, P. King, N. McEvoy, G. S. Duesberg, B. M. Sanchez, H. Pettersson, V. Nicolosi and J. N. Coleman, Chem. Mater., 2014, 26(4), 1751-1763.   DOI
16 H. Zhang, L. Gao and Y. Gong, Electrochem. Commun., 2015, 52, 67-70.   DOI
17 F. Jiang, W. Li, R. Zou, Q. Liu, K. Xu, L. An and J. Hu, Nano Energy, 2014, 7, 72-79.   DOI
18 S. H. Choi and Y. C. Kang, ChemSusChem, 2014, 7, 523-528.   DOI
19 L. Noerochim, J.-Z. Wang, D. Wexler, Z. Chao and H.- K. Liu, J. Power Sources, 2013, 228, 198-205.   DOI
20 G. D. Park, J. H. Kim, Y. J. Choi and Y. C. Kang, Electrochim. Acta, 2015, 173, 581-587.   DOI
21 F. Ma, A. Yuan, J. Xu and P. Hu, ACS Appl. Mater. Interfaces, 2015, 7, 15531-15541.   DOI
22 C. Feng, H. Gao, C. Zhang, Z. Guo and H. Liu, Electrochim. Acta, 2013, 93, 101-106.   DOI
23 M. F. Hassan, Z. P. Guo, Z. Chen and H. K. Liu, J. Power Sources, 2010, 195, 2372-2376.   DOI
24 Q. Xia, H. Zhao, Z. Du, J. Wang, T. Zhang, J. Wang and P. Lv, J. Power Sources, 2013, 226, 107-111.   DOI
25 Q. Chang, J. Li, D. Gu, P. Yin, H. Jiang and L. Shen , J. Macromol. Sci. Part B, 2015, 54(4), 381-392.   DOI
26 P. Anilkumar, and M. Jayakannan, Langmuir, 2006, 22(13), 5952-5957.   DOI
27 G. Æiriæ-Marjanoviæ, I. Holclajtner-Antunoviæ, S. Mentus, D. Bajuk-Bogdanoviæ, D. Ješiæ, D. Manojloviæ, Snežana Trifunoviæ and Jaroslav Stejskal, Synth. Met., 2010, 160, 1463-1473.   DOI
28 X. Xia, Q. Hao, W. Lei, W. Wang, H. Wang and X. Wang, J. Mater. Chem., 2012, 22, 8314-8320.   DOI
29 P. M. Ette, P. Gurunathan and K. Ramesha, J. Power Sources, 2015, 278, 630-638.   DOI
30 V. Gomez-Serrano, J. Pastor-Villegas, A. Perez-Florindo, C. Duran-Valle and C. Valenzuela-Calahorro, J. Anal. Appl. Pyrolysis, 1996, 36, 71-80.   DOI
31 Y. Dong, R. Ma, M. Hu, H. Cheng, J.-M. Lee, Y. Y. Li and A. Zapien, J. Power Sources, 2014, 261, 184-187.   DOI
32 A. Yu, N. Kumagai, Z. Liu and J. Y. Lee, Solid State Ionics, 1998, 106, 11-18.   DOI
33 P. G. Dickens and G. J. Reynolds, Solid State Ionics, 1981, 5, 331-334.   DOI
34 V. Aravindan, J. Gnanaraj, S. Madhavi and H.-K. Liu, Chem. Eur. J., 2011, 17, 14326-14346.   DOI
35 J. Ni, G. Wang, J. Yang, D. Gao, J. Chen, L. Gao and Y. Li, J. Power Sources, 2014, 247, 90-94.   DOI
36 K. Zhao, F. Liu, C. Niu, W. Xu, Y. Dong, L. Zhang, S. Xie, M. Yan, Q. Wei, D. Zhao and L. Mai, Adv. Sci., 2015, 2(12), 1500154.   DOI
37 B. Tian, J. Œwiatowska, V. Maurice, C. Pereira-Nabais, A. Seyeux and P. Marcus, J. Phys. Chem. C., 2015, 119(2), 919-925.   DOI
38 S. S. Zhang, K. Xu and T. R. Jow, J. Power Sources, 2003, 115, 137-140.   DOI
39 X. Wang, H. Hao, J. Liu, T. Huang and A. Yu, Electrochim. Acta, 2011, 56, 4065-4069.   DOI