• 제목/요약/키워드: linear robust control

검색결과 689건 처리시간 0.025초

강인 포화 제어기의 LMI 최적 설계를 이용한 구조물의 능동 진동 제어 (Active Vibration Control of Structure Using LMI Optimization Design of Robust Saturation Controller)

  • 박영진;문석준;임채욱
    • 한국소음진동공학회논문집
    • /
    • 제16권3호
    • /
    • pp.298-306
    • /
    • 2006
  • In our previous paper, we developed a robust saturation controller for the linear time-invariant (LTI) system involving both actuator's saturation and structured real parameter uncertainties. This controller can only guarantee the closed-loop robust stability of the system in the presence of actuator's saturation. But we cannot analytically make any comment on control performance of this controller. In this paper, we suggest a method to use linear matrix inequality (LMI) optimization problem which can analytically explain control performance of this robust saturation controller only in nominal system. The availability of design method using LMI optimization problem for this robust saturation controller is verified through a numerical example for the building with an active mass damper (AMD) system.

구조적 파라미터 불확실성을 갖는 안정한 선형계에 대한 강인 포화 제어기 (Robust Saturation Controller for the Stable LTI System with Structured Real Parameter Uncertainties)

  • 임채욱;박영진;문석준;박윤식
    • 제어로봇시스템학회논문지
    • /
    • 제12권6호
    • /
    • pp.517-523
    • /
    • 2006
  • This paper is focused on a robust saturation controller for the stable linear time-invariant (LTI) system involving both actuator's saturation and structured real parameter uncertainties. Based on affine quadratic stability and multi-convexity concept, a robust saturation controller is newly proposed and the linear matrix inequality (LMI)-based sufficient existence conditions for this controller are presented. The controller suggested in this paper can analytically prescribe the lower and upper bounds of parameter uncertainties, and guarantee the closed-loop robust stability of the system in the presence of actuator's saturation. Through numerical simulations, it is confirmed that the proposed robust saturation controller is robustly stable with respect to parameter uncertainties over the prescribed range defined by the lower and upper bounds.

구조화된 불확실성이 있는 시스템의 강인한 극배치 제어 (Robust Pole Placement for Structured Uncertain Systems)

  • 이준화
    • 제어로봇시스템학회논문지
    • /
    • 제5권1호
    • /
    • pp.11-15
    • /
    • 1999
  • In this paper, a robust pole placement controller for time invariant linear systems with polytopic uncertainties is presented. The proposed controller is a fixed order output feedback controller which stabilizes the uncertain systems and satisfies the constraints on the closed-loop pole location. The proposed controller can be obtained by minimizing a certain nonlinear object function subject to linear matrix inequality constraints. An algorithm for solving the nonlinear optimization problem is also proposed.

  • PDF

Robust integral tracking control of Magnetic Levitating System via feedback linearization

  • Wonkee Son;Kim, Yongjun;Park, Jinyoung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.48.2-48
    • /
    • 2001
  • This paper deals with robust integral tracking control problem based on Lyapunov method via FL(Feedback Linearization) in order to solve a reference tracking problem of nonlinear system with parameter uncertainties. To overcome a restrictive matching condition the uncertainties is characterized in a suitable form. The design procedure which combine FL and LMIs(Linear Matrix Inequalities) based on Lyapunov method to achieve the robust performance and stability is developed. Finally, the performance of proposed controller is demonstrated via simulation of a linear reference tracking problem in the MLS(Magnetic levitating System).

  • PDF

정합조건을 만족하지 않는 선형 시스템에 대한 슬라이딩 모드 제어 (Sliding Mode Control for Linear System with Mismatched Uncertainties)

  • 성재봉;권성하;박승규;정은태
    • 제어로봇시스템학회논문지
    • /
    • 제7권3호
    • /
    • pp.193-197
    • /
    • 2001
  • This paper presents a design method of sliding model control (SMC) for single input linear systems with mismatched uncertainties. We define a virtual state based on the controllable canonical form of the nominal system. And we defined a sliding surface for the augmented system with a virtual state. This sliding surface makes it possible to use the SMC technique with various types of controllers. In this paper, we construct a controller that combines SMC with robust controller. We design a robust controller for the system with mismatched uncertainties using a form of linear matrix inequality(LMI). We make a virtual state from this robust control input and the states of the nominal system. And we design a sliding model controller that stabilizes the overall closed-loop system.

  • PDF

LMI 최적화를 이용한 2축 정밀 스테이지의 강인제어 (Robust Control of Two-axes Precise Stage Using LMI Optimization)

  • 김영식;박흥석;김인수
    • 한국생산제조학회지
    • /
    • 제22권5호
    • /
    • pp.845-851
    • /
    • 2013
  • In this paper, a robust optimization approach is applied to the two-axes stage using a piezoelectric actuator for precise motion tracking. Robust control is based on LQG/LTR (linear quadratic Gaussian control with loop transfer recovery) control. Further, an LMI (linear matrix inequality) is used to find the optimal parameter in the loop transfer recovery step, instead of a trial and error method. A decoupler in the shape of FIR filter is added to reduce the coupling effect between the motions of the two axes, and hence, the feedback control loop is designed independently for each axis motion. The experimental result shows that the proposed control scheme can be applied effectively for motion control of the two-axes stage.

선형화 오차에 강인한 확장칼만필터 (An Extended Kalman Filter Robust to Linearization Error)

  • 혼형수;이장규;박찬국
    • 제어로봇시스템학회논문지
    • /
    • 제12권2호
    • /
    • pp.93-100
    • /
    • 2006
  • In this paper, a new-type Extended Kalman Filter (EKF) is proposed as a robust nonlinear filter for a stochastic nonlinear system. The original EKF is widely used for various nonlinear system applications. But it is fragile to its estimation errors because they give rise to linearization errors that affect the system mode1 as the modeling errors. The linearization errors are nonlinear functions of the estimation errors therefore it is very difficult to obtain the accurate error covariance of the EKF using the linear form. The inaccurately estimated error covariance hinders the EKF from being a sub-optimal estimator. The proposed filter tries to obtain the upper bound of the error covariance tolerating the uncertainty of the error covariance instead of trying to obtain the accurate one. It treats the linearization errors as uncertain modeling errors that can be handled by the robust linear filtering. In order to be more robust to the estimation errors than the original EKF, the proposed filter minimizes the upper bound like the robust linear filter that is applied to the linear model with uncertainty. The in-flight alignment problem of the inertial navigation system with GPS position measurements is a good example that the proposed robust filter is applicable to. The simulation results show the efficiency of the proposed filter in the robustness to initial estimation errors of the filter.

퍼지 모델 기반 피드백 선형화 제어 시스템의 강인 안정성 해석과 설계 (Robust Stability Analysis and Design of Fuzzy Model Based Feedback Linearization Control Systems)

  • 박창우;이종배;김영욱;성하경
    • 전자공학회논문지CI
    • /
    • 제41권3호
    • /
    • pp.79-90
    • /
    • 2004
  • 본 논문에서는 퍼지 피드백 선형화 제어 시스템에 대한 체계적인 강인 안정성 해석과 제어기 설계방법을 제안한다. 제어 대상인 비선형 시스템을 모델링 하는데 있어서 Takagi-Sugeno 퍼지 모델 기법을 이용하고, 이때 발생할 수 있는 모델 불확실성과 외란을 고려한다. 모델링을 통해서 얻어진 폐루프 시스템에 대한 안정성 판별은 Diagonal Norm based Linear Differential Inclusions 으로의 구조 변환을 이용하여 강인 안정성 해석을 하였으며, 퍼지 피드백 선형화 제어 시스템을 안정화시키는 제어기의 이득을 얻기 위하여 LMI 최적화 계산법을 기반으로 한 수치 해석법을 제시하였다. 제안된 방법의 효과를 확인하기 위해서 강인 안정성 해석 및 제어 설계에 대한 모의실험을 수행한다.

정합조건을 만족하지 않는 선형 시스템에 대한 슬라이딩 모드 제어 (Sliding Mode Control for Linear System with Mismatched Uncertainties)

  • 성재봉;권성하;박승규;정은태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.25-25
    • /
    • 2000
  • This paper presents a design method of sliding mode control (SMC) for single input linear systems with mismatched uncertainties. We define a virtual state based on the controllable canonical form of the nominal system. And we define a sliding surface for the augmented system with a virtual state. This sliding surface makes it possible to use SMC technique with various types of controllers. In this paper, we construct a controller that combines SMC with robust controller. We design a robust controller for the system with only mismatched uncertainties using a form of linear matrix inequality (LMI). We make a virtual state from this robust control input and the states of the nominal system. And we design a sliding mode controller that stabilizes the overall closed-loop system.

  • PDF

파라메타 불확실성을 갖는 선형시스템에 대한 강한 신뢰 $H_\infty$제어 (Robust and Reliable $H_\infty$ Control for Linear Systems with Parameter Uncertainty)

  • 서창준;김병국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.498-503
    • /
    • 1993
  • In this paper, a robust and reliable H$_{\infty}$ control problem is considered for linear uncertain systems with time-varying norm-bounded uncertainty in the state matrix, which performs well despite of actuator outages. Using linear static state feedback and the quadratic stabilization with H$_{\infty}$-norm bound, a robust and reliable H$_{\infty}$ controller is obtained that stabilizes the plant and guarantees an H$_{\infty}$-norm bound constraint on disturbance attenuation for all admissible uncertainties and normal state as well as faulty state of actuators. It provides a sufficient condition for robust and reliable stabilization with H$_{\infty}$-norm bound. Reliability is guaranteed provided actuator outages only occur within a prespecified subset of actuators.tors.

  • PDF