• Title/Summary/Keyword: line memory

Search Result 451, Processing Time 0.039 seconds

Energy-Efficient Last-Level Cache Management for PCM Memory Systems

  • Bahn, Hyokyung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.188-193
    • /
    • 2022
  • The energy efficiency of memory systems is an important task in designing future computer systems as memory capacity continues to increase to accommodate the growing big data. In this article, we present an energy-efficient last-level cache management policy for future mobile systems. The proposed policy makes use of low-power PCM (phase-change memory) as the main memory medium, and reduces the amount of data written to PCM, thereby saving memory energy consumptions. To do so, the policy keeps track of the modified cache lines within each cache block, and replaces the last-level cache block that incurs the smallest PCM writing upon cache replacement requests. Also, the policy considers the access bit of cache blocks along with the cache line modifications in order not to degrade the cache hit ratio. Simulation experiments using SPEC benchmarks show that the proposed policy reduces the power consumption of PCM memory by 22.7% on average without degrading performances.

A CLASS OF NONMONOTONE SPECTRAL MEMORY GRADIENT METHOD

  • Yu, Zhensheng;Zang, Jinsong;Liu, Jingzhao
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.63-70
    • /
    • 2010
  • In this paper, we develop a nonmonotone spectral memory gradient method for unconstrained optimization, where the spectral stepsize and a class of memory gradient direction are combined efficiently. The global convergence is obtained by using a nonmonotone line search strategy and the numerical tests are also given to show the efficiency of the proposed algorithm.

The Effects of Cache Memory on the System Bus Traffic (캐쉬 메모리가 버스 트래픽에 끼치는 영향)

  • 조용훈;김정선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.1
    • /
    • pp.224-240
    • /
    • 1996
  • It is common sense for at least one or more levels of cache memory to be used in these day's computer systems. In this paper, the impact of the internal cache memory organization on the performance of the computer is investigated by using a simulator program, which is wirtten by authors and run on SUN SPARC workstation, with several real execution, with several real execution trace files. 280 cache organizations have been simulated using n-way set associative mapping and LRU(Least Recently Used) replacement algorithm with write allocation policy. As a result, 16-way setassociative cache is the best configuration, and when we select 256KB cache memory and 64 byte line size, the bus traffic ratio was decreased compared to that of the noncache system so that a single bus could support almost 7 processors without any delay and degradationof high ratio(hit ratio was 99.21%). The smaller the line size we choose, the little lower hit ratio we can get, but the more processors can be supported by a single bus(maximum 18 processors). Therefore, using a proper cache memory organization can make a single bus structure be able to support multiple processors without any performance degradation.

  • PDF

Study of Bit Line Sense Amplifier for MRAM (MRAM의 Bit Line Sense Amplifier에 대한 연구)

  • 홍승균;김인모;유혜승;김수원;송상훈
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.10
    • /
    • pp.63-67
    • /
    • 2003
  • This paper proposes a new BLSA(Bit Line Sense Amplifier) for MRAM. Current BLSA employs a latch-type circuit to amplify a signal from the selected memory cell. The proposed BLSA simplifies the circuit by amplifying the signal using cross-coupled PMOS transistors. It shows the same operation speedas the latch-type BLSA in simulation and occupies only 85% of the area taken by the latch-type BLSA.

A High Density Memory Device for Next Generation Low-Voltage and High-Speed Operations (차세대 저 전압, 고속 동작 요구에 대응하는 대용량 메모리의 개발)

  • 윤홍일;이현석;유형식;천기철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.3-5
    • /
    • 2000
  • 1.8V,4Gb DDR SDRAM설계 및 제작을 수행하였다. DRAM동작 시 발생하는 Bit Line간 CouplingNoise를 보상하기 위한 Twisted Open Bit Line 구조를 제안하였다. Low Voltage Operation으로 인한 Bit Line Sense Amplifier 의 동작 저하를 보상하기 위한 BL S/A Pre-Sensing 방식 및 Reference Bit Line Voltage Calibration 구조를 제안하였다. Chip면적 증가로 인한 동작속도 감소의 보상을 위해 Repeater Driver 구조를 Core 및 Periphery Circuit에 적용하여 동작 대비 Chip 면적의 증가를 최소화 하도록 하였다.

  • PDF

A Consistent Quality Bit Rate Control for the Line-Based Compression

  • Ham, Jung-Sik;Kim, Ho-Young;Lee, Seong-Won
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.5
    • /
    • pp.310-318
    • /
    • 2016
  • Emerging technologies such as the Internet of Things (IoT) and the Advanced Driver Assistant System (ADAS) often have image transmission functions with tough constraints, like low power and/or low delay, which require that they adopt line-based, low memory compression methods instead of existing frame-based image compression standards. Bit rate control in the conventional frame-based compression systems requires a lot of hardware resources when the scope of handled data falls at the frame level. On the other hand, attempts to reduce the heavy hardware resource requirement by focusing on line-level processing yield uneven image quality through the frame. In this paper, we propose a bit rate control that maintains consistency in image quality through the frame and improves the legibility of text regions. To find the line characteristics, the proposed bit rate control tests each line for ease of compression and the existence of text. Experiments on the proposed bit rate control show peak signal-to-noise ratios (PSNRs) similar to those of conventional bit rate controls, but with the use of significantly fewer hardware resources.

Design of a Variable-Mode Sync Generator for Implementing Digital Filters in Image Processing (이미지처리에서 디지털 필터를 구현하기 위한 가변모드 동기 발생기의 설계)

  • Semin Jung;Si-Yeon Han;Bongsoon Kang
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.273-279
    • /
    • 2023
  • The use of line memory is essential for image filtering in image processing hardware. After input data is stored in line memory, filtering is performed after synchronization to use the stored data. A sync generator is used for synchronization, and in the case of a conventional sync generator, the input sync signal is delayed by one row of the input image. If a signal delayed by two rows is required, it is necessary to connect two modules. This approach increases the size of the hardware and cannot be designed efficiently. In this paper, we propose a sync generator that generates multiple types of delayed signals by adding a finite state machine. The hardware design was coded in Verilog HDL, and performance is verified by applying it to image processing hardware using field programmable gate array board.

New nonvolatile unit memory cell and proposal peripheral circuit using the polymer material (폴리머 재료를 이용한 새로운 비휘발성 단위 메모리 셀과 주변회로 제안)

  • Kim, Jung-Ha;Lee, Sang-Sun
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.825-828
    • /
    • 2005
  • In this paper, we propose a new nonvolatile unit memory cell and proposal peripheral circuit using the polymer material. Memory that relies on bistable behavior- having tow states associated with different resistances at the same applied voltage - has attracted much interest because of its nonvolatile properties. Such memory may also have other merits, including simplicity of structure and manufacturing, and the small size of memory cells. We have plotted the load line graphs for the use of a polymer memory character, hence we have designed in the band-gap reference shape of a write/erase drive, and then designed in the 2-stage differential amplifier shape of a sense amplifier in the consideration of a low current characteristic of a polymer memory cell. The simulation result shows that is has high gain about 80dB by sensing the very small current.

  • PDF

Design of low-power OTP memory IP and its measurement (저전력 OTP Memory IP 설계 및 측정)

  • Kim, Jung-Ho;Jang, Ji-Hye;Jin, Liyan;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.11
    • /
    • pp.2541-2547
    • /
    • 2010
  • In this paper, we propose a design technique which replaces logic transistors of 1.2V with medium-voltage transistors of 3.3V having small off-leakage current in repetitive block circuits where speed is not an issue, to implement a low-power eFuse OTP memory IP in the stand-by state. In addition, we use dual-port eFuse cells reducing operational current dissipation by reducing capacitances parasitic to RWL (Read word-line) and BL (Bit-line) in the read mode. Furthermore, we propose an equivalent circuit for simulating program power injected to an eFuse from a program voltage. The layout size of the designed 512-bit eFuse OTP memory IP with a 90nm CMOS image sensor process is $342{\mu}m{\times}236{\mu}m$. It is confirmed by measurement experiments on 42 samples with a program voltage of 5V that we get a good result having 97.6 percent of program yield. Also, the minimal operational supply voltage is measured well to be 0.9V.

Deign of Small-Area Differential Paired eFuse OTP Memory for Power ICs (Power IC용 저면적 Differential Paired eFuse OTP 메모리 설계)

  • Park, Heon;Lee, Seung-Hoon;Jin, Kyo-Hong;Ha, Pan-Bong;Kim, Young-Hee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.2
    • /
    • pp.107-115
    • /
    • 2015
  • In this paper, a small-area 32-bit differential paired eFuse OTP memory for power ICs is designed. In case of smaller number of rows than that of columns for the OTP memory cell array, a scheme for the cell array reducing the number of SL driver circuits requiring their larger layout areas by routing the SL (source line) lines supplying programming currents for eFuse links in the row direction instead of the column direction as well as a core circuit is proposed. In addition, to solve a failure of being blown for non-blown eFuse links by the electro-migration phenomenon, a regulated voltage of V2V ($=2V{\pm}0.2V$) is used to a RWL (read word line) driver circuit and a BL (bit line) pull-up driver circuit. The layout size of the designed 32-bit eFuse OTP memory is $228.525{\mu}m{\times}105.435{\mu}m$, which is confirmed to be 20.7% smaller than that of the counterpart using the conventional cell array routing, namely $197.485{\mu}m{\times}153.715{\mu}m$.