• Title/Summary/Keyword: likelihood ratio statistics

Search Result 185, Processing Time 0.018 seconds

Tests of Hypotheses in Multiple Samples based on Penalized Disparities

  • Park, Chanseok;Ayanendranath Basu;Ian R. Harris
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.3
    • /
    • pp.347-366
    • /
    • 2001
  • Robust analogues of the likelihood ratio test are considered for testing of hypotheses involving multiple discrete distributions. The test statistics are generalizations of the Hellinger deviance test of Simpson(1989) and disparity tests of Lindsay(1994), obtained by looking at a 'penalized' version of the distances; harris and Basu (1994) suggest that the penalty be based on reweighting the empty cells. The results show that often the tests based on the ordinary and penalized distances enjoy better robustness properties than the likelihood ratio test. Also, the tests based on the penalized distances are improvements over those based on the ordinary distances in that they are much closer to the likelihood ratio tests at the null and their convergence to the x$^2$ distribution appears to be dramatically faster; extensive simulation results show that the improvement in performance of the tests due to the penalty is often substantial in small samples.

  • PDF

Closeness of Lindley distribution to Weibull and gamma distributions

  • Raqab, Mohammad Z.;Al-Jarallah, Reem A.;Al-Mutairi, Dhaifallah K.
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.2
    • /
    • pp.129-142
    • /
    • 2017
  • In this paper we consider the problem of the model selection/discrimination among three different positively skewed lifetime distributions. Lindley, Weibull, and gamma distributions have been used to effectively analyze positively skewed lifetime data. This paper assesses how much closer the Lindley distribution gets to Weibull and gamma distributions. We consider three techniques that involve the likelihood ratio test, asymptotic likelihood ratio test, and minimum Kolmogorov distance as optimality criteria to diagnose the appropriate fitting model among the three distributions for a given data set. Monte Carlo simulation study is performed for computing the probability of correct selection based on the considered optimality criteria among these families of distributions for various choices of sample sizes and shape parameters. It is observed that overall, the Lindley distribution is closer to Weibull distribution in the sense of likelihood ratio and Kolmogorov criteria. A real data set is presented and analyzed for illustrative purposes.

ON TESTING THE EQUALITY OF THE COEFFICIENTS OF VARIATION IN TWO INVERSE GAUSSIAN POPULATIONS

  • Choi, Byung-Jin;Kim, Kee-Young
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.2
    • /
    • pp.93-101
    • /
    • 2003
  • This paper deals with testing the equality of the coefficients of variation in two inverse Gaussian populations. The likelihood ratio, Lagrange-multiplier and Wald tests are presented. Monte-Carlo simulations are performed to compare the powers of these tests. In a simulation study, the likelihood ratio test appears to be consistently more powerful than the Lagrange-multiplier and Wald tests when sample size is small. The powers of all the tests tend to be similar when sample size increases.

Envelope empirical likelihood ratio for the difference of two location parameters with constraints of symmetry

  • Kim, Kyoung-Mi;Zhou, Mai
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.51-73
    • /
    • 2002
  • Empirical likelihood ratio method is a new technique in nonparametric inference developed by A. Owen (1988, 2001). Sometimes empirical likelihood has difficulties to define itself. As such a case in point, we discuss the way to define a modified empirical likelihood for the location of symmetry using well-known points of symmetry as a side conditions. The side condition of symmetry is defined through a finite subset of the infinite set of constraints. The modified empirical likelihood under symmetry studied in this paper is to construct a constrained parameter space $\theta+$ of distributions imposing known symmetry as side information. We show that the usual asymptotic theory (Wilks theorem) still hold for the empirical likelihood ratio on the constrained parameter space and the asymptotic distribution of the empirical NPMLE of difference of two symmetric points is obtained.

  • PDF

Non-identifiability and testability of missing mechanisms in incomplete two-way contingency tables

  • Park, Yousung;Oh, Seung Mo;Kwon, Tae Yeon
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.3
    • /
    • pp.307-314
    • /
    • 2021
  • We showed that any missing mechanism is reproduced by EMAR or MNAR with equal fit for observed likelihood if there are non-negative solutions of maximum likelihood equations. This is a generalization of Molenberghs et al. (2008) and Jeon et al. (2019). Nonetheless, as MCAR becomes a nested model of MNAR, a natural question is whether or not MNAR and MCAR are testable by using the well-known three statistics, LR (Likelihood ratio), Wald, and Score test statistics. Through simulation studies, we compared these three statistics. We investigated to what extent the boundary solution affect tesing MCAR against MNAR, which is the only testable pair of missing mechanisms based on observed likelihood. We showed that all three statistics are useful as long as the boundary proximity is far from 1.

Likelihood Ratio Criterion for Testing Sphericity from a Multivariate Normal Sample with 2-step Monotone Missing Data Pattern

  • Choi, Byung-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.2
    • /
    • pp.473-481
    • /
    • 2005
  • The testing problem for sphericity structure of the covariance matrix in a multivariate normal distribution is introduced when there is a sample with 2-step monotone missing data pattern. The maximum likelihood method is described to estimate the parameters on the basis of the sample. Using these estimates, the likelihood ratio criterion for testing sphericity is derived.

Likelihood based inference for the ratio of parameters in two Maxwell distributions (두 개의 맥스웰분포의 모수비에 대한 우도함수 추론)

  • Kang, Sang-Gil;Lee, Jeong-Hee;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.1
    • /
    • pp.89-98
    • /
    • 2012
  • In this paper, the ratio of parameters in two independent Maxwell distributions is parameter of interest. We proposed test statistics, which converge to standard normal distribution, based on likelihood function. The exact distribution for testing the ratio is hard to obtain. We proposed the signed log-likelihood ratio statistic and the modified signed log-likelihood ratio statistic for testing the ratio. Through simulation, we show that the modified signed log-likelihood ratio statistic converges faster than signed log-likelihood ratio statistic to standard normal distribution. We compare two statistics in terms of type I error and power. We give an example using real data.

The Bahadur Efficiency of the Power-Divergence Statistics Conditional on Margins for Testing homogeneity with Equal Sample Size

  • Kang, Seung-Ho
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.4
    • /
    • pp.453-465
    • /
    • 1997
  • The family of power-divergence statistics conditional on margins is considered for testing homogeneity of .tau. multinomial populations with equal sample size and the exact Bahadur slope is obtained. It is shown that the likelihood ratio test conditional on margins is the most Bahadur efficient among the family of power-divergence statistics.

  • PDF

Suppression and Collapsibility for Log-linear Models

  • Sun, Hong-Chong
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.3
    • /
    • pp.519-527
    • /
    • 2004
  • Relationship between the partial likelihood ratio statistics for logisitic models and the partial goodness-of-fit statistics for corresponding log-linear models is discussed. This paper shows how definitions of suppression in logistic model can be adapted for log-linear model and how they are related to confounding in terms of collapsibility for categorical data. Several $2{times}2{times}2$ contingency tables are illustrated.

Testing Whether a Specific Treatment is Better Than the Others

  • Kim, Woo-Chul;Na, Jong-Hwa;Han, Kyung-Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.15 no.2
    • /
    • pp.38-49
    • /
    • 1987
  • Experimenters often want to test whether a specific treatment is really better than the others. In such a problem we derive the likelihood ratio test and compare the result with other multiple comparisons procedures. A nonparametric procedure based on ranks is also considered. Pitman efficiency of the rank-sum procedure relative to the likelihood ratio test is computed.

  • PDF