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ON TESTING THE EQUALITY OF THE COEFFICIENTS
OF VARIATION IN TWO INVERSE GAUSSIAN
POPULATIONS

ByungJiiNn CHor! AND KEEYOUNG Kim?

ABSTRACT

This paper deals with testing the equality of the coefficients of varia-
tion in two inverse Gaussian populations. The likelihood ratio, Lagrange-
multiplier and Wald tests are presented. Monte-Carlo simulations are per-
formed to compare the powers of these tests. In a simulation study, the likeli-
hood ratio test appears to be consistently more powerful than the Lagrange-
multiplier and Wald tests when sample size is small. The powers of all the
tests tend to be similar when sample size increases.
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1. INTRODUCTION

The inverse Gaussian (IG) distribution with a location parameter y and a
scale parameter A, abbreviated G (u, A), has potentially useful applications in a
wide variety of fields such as biology, ecology, environmental studies, engineering,
management science, reliability, etc., because of the versatility and flexibility in
modeling skewed data. For a comprehensive discussion on the IG distribution,
see Chhikara and Folks (1989) and references therein. Theoretically, the IG dis-
tribution is well-known as a first passage time distribution in Brownian motion
with positive drift. Tweedie (1957a, 1957b) established many important statisti-
cal properties of the IG distribution, similar to those of the normal distribution.
The probability density of the IG distribution is of the form

A \? Ao — )
Fmsp,\) = (W) exp{ - ;ﬂf } z>0, 4>0, A>0  (1.1)
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The mean, variance and coefficient of variation of the IG distribution are given
by p, 43/ and (/)2 respectively. By denoting v = (u1/A)1/2, the coefficients
of skewness and kurtosis of the distribution are 3 and 152 + 3.

The coefficient of variation which does not depend on the units of measure-
ments is an important parameter of describing populations widely used in many
fields because 1ts usefulness in examining the consistency or uniformity of results
from different experiments involving the same character. A lot of work has been
done on testing hypotheses concerning location parameters and scale parameters
by Chhikara (1975), Chhikara and Folks (1989) and Davis (1980), whereas there
seems to be little literature on deriving tests for the coeflicients of variation. In
this paper, we are interested in testing the equality of the coefficients of variation
in two inverse Gaussian populations.

In single IG population, Hsieh (1990) considered testing Hp : ¢ > ¢o against
H, : ¢ < ¢g, where ¢ = \/p is the shape parameter and ¢y is a fixed constant.
The derived likelihood ratio test is based on the statistic W = 1/(XV), where
X and V are maximum likelihood estimators of yu and 1/\. Since the coeffi-
cient of variation is a monotone function of ¢, Hsieh (1990) indicated that the
test can be applied to the coefficient of variation. To develop a likelihood ratio
test for the equality of two coefficients of variation, one may use the approach
considered by Hsieh (1990). However, in this case, the derived test involves alge-
braically unsolvable equations and thus the standard numerical routine such as
the Newton-Raphson method is required to solve the non-linear likelihood equa-
tions. Such a routine is in want of the complex Hessian matrix that contains the
second derivatives of the log-likelihood. Thus, instead of using Hsieh’s approach
to derive tests for the coefficients of variation, we consider a different approach,
which provides a more efficient method of solving the equations numerically.

In Section 2, we present the likelihood ratio (LR), Lagrange-multiplier (LM)
and Wald tests for the equality of the coefficients of variation in two inverse
Gaussian populations. To compare the powers of the tests, a simulation study is
performed for selected sample sizes and alternatives in Section 3. Finally, brief
conclusions are provided in Section 4.

2. TESTS FOR THE EQUALITY OF TwO COEFFICIENTS OF VARIATION

Assume that there are two independent populations where the i** popula-
tion follows an inverse Gaussian distribution, IG(ui, pi/v2), mi > 0, v > 0,
i = 1,2, where y; and 7; is unknown mean and coefficient of variation. Let
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Xi1, Xi2, . - -, Xin represent a random sample of size n drawn from the i** inverse
Gaussian population. One inference that we wish to consider is to test the null
hypothesis Hy : y1 = v9 =+, -y unspecified, against H, : v1 # v2. Now, we derive
the likelihood ratio, Lagrange-multiplier and Wald tests for the null hypothesis
in this section.

2.1. Likelihood ratio test

The likelihood function for the restricted situation of equal 7;’s based on
random samples is

Lo(p1, p12,7) = v ™M (p1p2) ¥ ex { 2722 Z } (2.1)

where c is a constant, (27) " []2_, [ Xi;3/ ?. Routine calculations lead to the
following set of likelihood equations for y; and +:

log L
Olog Ly _ = ZZ =0, (2.2)
ary i=1 j=1
dlog Ly _n 1 Xn: (Xi; — Ni)2 + 1 i Xij = i
O L4 2’)’ p:z = Xij 72#1‘ = Xij
=0, i=1,2 (2.3)

Simplifying these equations gives
w =Y Xpipi— XX =0, i=1,2 (2.4)

and
= Z m Z U — i) (2.5)

where X; = Y% | Xj;/n and Xp; = n/ Z?leigl. Solving (2.4) and (2.5)
simultaneously gives the restricted maximum likelihood estimators of 1, s and
7. By the theorem of Choi and Kim (2001), it can be found that the largest
root of f(u1) = 2(Cy + )ud — (C1 + Co — 2)X 143 — 6X1M1 + 2X1 = 0 becomes
the restricted maximum likelihood estimator, fi1, of 1, where C; = X;V; and
Vi=1/Xpg;—1/X;, 1 =1,2. The restricted maximum likelihood estimators for
tt2 and 2 are given by iy = i1 X2/ (201 — X1) and 72 = B1/Xg1— X1/t On
the other hand, the unrestricted maximum likelihood estimators, [, fi2, 31 and
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72, are easily obtained as iy = X1, fia = Xo, 71 = (X1V1)1/? and 7, = (XV5)1/2,

respectively.
The maximum likelihood under Hy, denoted by Ly, is given by
1\*" "
Lol inT) =<3 ) (i) e (2.6
and the maximum likelihood under H,, denoted by L,, is given by
Calfins o) = e () e (27)
aMlaM2,71;72 =C ‘/1‘/2 € . .
Thus, letting A be a likelihood ratio, we obtain the following LR test statistic
;*);2 ?2
Trr=-2logA=n<log| = +lo (-;——)} 2.8
. & { g<H1V1> S\ (28)

Since T g is the chi-square distributed with one degree of freedom under the null
hypothesis, Hy is rejected in favor of H, if Trg > x3(a) for a significance level
a, where x?(a) is the upper 100a-percentile of the chi-square with one degree of
freedom.

2.2. Lagrange-multiplier test

The Lagrange-multiplier test, which is also known as the score test, is based
on score functions evaluated at the restricted maximum likelihood estimators.
Let 8 be the parameter vector, 6 be the restricted maximum likelihood estimator
of 8, g(0@) be the score vector and I(@) be the information matrix. Then the
LM test is based on the statistic Tp = gt(5)1—1(5)g(’6), where g(6) and 1(5)
are the values of g(8) and I(8) evaluated at 8. It is well-known that if the null
hypothesis is true, Tpas is asymptotically distributed as the chi-square with r
degrees of freedom, where r is the number of restrictions (Rao, 1973).

In our case, the parameters and the corresponding restricted maximum likeli-
hood estimators are given by 8 = (v1,vz, u1, u2)t and 8 = (3,7, fi1, fi2)*, respec-
tively. The score vector g(8) = (dlog L/dy,, dlog L/0ya, dlog L/du1, dlog L/duz)*
takes elements such that

log L 1 o~ (X — wi)?
OlogL _ _n 3 Xy —m) 19 (2.9)
i Mo Mk Xy
and
BlogL n 1 - (Xij - /J,i)2 1 - Xij — s .
= — + + , 1=1,2, (2.10)
Opi 2p; 2’71-2#?; Xij ’qui; Xij
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where L is the unrestricted likelihood function. The information matrix 1(8) is
of the form

2n _n 0
7 o Vit -
0 = 0 -
1(8) = L n(+2) T2 (2.11)
s 2933 °
0o " n(y3 +2)
Y212 27%#%

Replacing u; by i, v; by 7, in (2.9) and (2.10), we obtain g(8) with elements

dlog L 1 ( Xy — i)
O—g — tl_, —— Z ( 1] :ul) , 'L — 172, (212)
i | =y TV Xy
Hi =
Opi | yi=y 2m 52;73 et Mz = Xy
Mi=li;
-0, i=12 (2.13)

By using I(8) evaluated at 8 and letting s; = (9log L/0%i)lyi=%, w=pi» © = 1,2,
the LM test statistic, after algebraic calculations, is simplified as
(3 +2)(s% + 53)

Tiv = . (2.14)
4n

If the null hypothesis is true, then T, ps is asymptotically distributed as the
chi-square with one degree of freedom. Thus the null hypothesis is rejected if
Trar > x3(a), where x?(«) is the upper 100a-percentile of the chi-square with
one degree of freedom.

2.3. Wald test

The Wald test is based on asking whether the vector of restrictions, evaluated
at the unrestricted maximum likelihood estimators, is close enough to a zero
vector when the restrictions hold. Suppose that the null hypothesis is of the form
Hy : h(0) = (h1(0),...,h,(8))t = 0, where 0 is the parameter vector with size p.
Let H(@) be the p xr matrix with elements 0h;(8)/06;,i =1,...,p, i =1,...,r,
and /(@) be the p x p information matrix. Then the Wald test is based on the
statistic Ty = h*(0)[H(8)I~*(6)H(8)]"'h(6), where h(8), I"1(8) and H(6)
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are the values of h(8), I71(8) and H(@), evaluated at the unrestricted maximum
likelihood estimator 8. Asymptotically, Tw is the chi-square distributed with r
degrees of freedom under the null hypothesis (Wald, 1943).

In our case, the parameters and the corresponding unrestricted maximum like-
lihood estimators are given by 6 = (u1, A1, u2, A2)? and 8 = (X1, 1/Vi, X2, 1/Va)t,
respectively. The null hypothesis Hy : 71 = 72 can be expressed as the form of
h(0) = (u1/A1)"/? ~ (2/X2)"/%. The information matrix I(8) takes the form of

A

2o 0 o0

Hy n

0 3V 0

I(0)= 1 (2.15)
o 0 ™
Ha n
0 0 0 5\—%-

and H(0) = (1/vEih, —u1 /AN, —1/vAizhe, /iiz//4X3)t. By using h(8),

H (5) and _1(5) evaluated at 8, we yield the Wald test statistic as

n{X Vi + XoV, - 2(711/1721/2)%}
Tw = — — — — . 2.16
W X112+ X1W) + XoVa(2 + XoV3) (2.16)

If the null hypothesis is true, then Ty is also asymptotically distributed as the chi-
square with one degree of freedom. The null hypothesis is rejected if Ty > x?(a),
where X%(a) is the upper 100a-percentile of the chi-square with one degree of
freedom.

3. PowER COMPARISON OF THE TESTS

To compare the powers of the tests presented in Section 2, Monte-Carlo sim-
ulations were conducted by generating 10,000 random samples of size n = 30, 50,
70, 100 from IG(u1, u1/72) and I1G(ua, pa/v3) using the algorithm of Michael et
al. (1976). Selected values of puy, pg, 1 and v, are gy =5, pg = 10, vy = 1 and
v = 0.5, 0.75, 1.25, 1.5, 2.0, 2.5. Table 3.1 displays the simulation results for
the likelihood ratio, Lagrange-multiplier and Wald tests. The entries appeared
in the table are simulated powers for significance level 5% measured by counting
the number of falling into the rejection region out of 10,000 random samples.

The test Trg, as shown in Table 3.1, is consistently more powerful than Ty s
and Tyw. The power of Tp, s is observed to be lower than 77 g and higher than Ty .
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TABLE 3.1 Simulated powers of the likelihood ratio, Lagrange-multiplier and Wald tests for
significance level 5%, based on 10,000 random samples

n =30 n =50
YooY Ter T Tw Tor Tiv  Tw
1 050 0911 0.900 0.895 0.989 0.988 0.988
1 0.75 0.269 0.243 0.227 0.411 0.395 0.383
1 1.25 0.161 0.135 0.112 0.233 0.217 0.201
1 1.50 0.373 0.328 0.277 0.569 0.543 0.514
1 2.00 0.731 0.682 0.595 0.921 0.910 0.892
1 250 0886 0.853 0.748 0.983 0979 0.975

n =70 n =100
oY Ter  TrLm Tw Tor Tim Tw
1 050 0999 0.999 0.999 1.000 1.000 1.000
1 0.75 0.532 0.518 0.511 0.679 0.672 0.668
1 1.25 0311 0.297 0.282 0.412 0401 0.390
1 1.50 0.713 0.698 0.682 0.856 0.849 0.842
1 2.00 0.979 0977 0.973 0.997 0.996 0.996
1 250 0.998 0.998 0.998 1.000 1.000 1.000

TABLE 3.2 Type I error rates of the likelihood ratio, Lagrange-multiplier and Wald tests

n =30 n = 50 n=70 n =100
y Tip Tom Tw Ter Tom Tw Ter Tov Tw Tir Tim Tw
0.25 0.059 0.050 0.054 0.050 0.047 0.048 0.052 0.049 0.051 0.051 0.049 0.050
0.50 0.056 0.047 0.047 0.057 0.052 0.053 0.050 0.047 0.048 0.052 0.050 0.050
1.00 0.056 0.048 0.040 0.056 0.050 0.045 0.052 0.048 0.046 0.052 0.050 0.048
1.50 0.056 0.040 0.027 0.053 0.043 0.034 0.052 0.046 0.040 0.053 0.047 0.042

Tw appears to be least powerful in most cases. All the tests have low rejection
rates less than 50% for (y1,v2) = (1, 0.75), (1, 1.25), (1, 1.5) when n = 30, for
(71,72) = (1, 0.75), (1, 1.25) when n = 50, and for (y1,72) = (1, 1.25) when
n = 70,100. However, their rejection rates are more than 50% except for these
cases. As the value of v, is larger or smaller than that of +;, the powers of
the tests show a tendency to increase rapidly for all sample sizes as displayed
in Figure 3.1. Also, with increasing sample size, the rejection rates of all the
tests increase for a fixed value of (;1,72). In conclusion, when n = 30,50, Trr
performs better than Try, and Tw, and Trps works better than Ty. However,

there is no difference in the powers of Ty g, Try and Ty when sample size is
large (n = 70, 100).
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To compute the type I error rates of Trr, Tra and Ty, we simulate 10,000
random samples of size n = 30, 50, 70, 100 from IG (1, 1/72) and IG (2, 2/72) for
v = 0.25,0.5,1.0,1.5. The nominal error rate is o« = 0.05 and the type I error
rate of each test is obtained by counting the number of times that the computed
value of the statistic corresponding to each test is greater than x3(0.05) = 3.84
out 10,000 random samples. Table 3.2 shows the summarized simulation results.
Although Ty has somewhat smaller type I error than the nominal 0.05, especially
for n < 50 and v = 1.5, the error rates of all the tests show considerably close to

the nominal 0.05.
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FIGURE 3.1 Plot of simulated powers of the likelihood ratio, Lagrange-multiplier and Wald tests
for significance level 5%

4. CONCLUSION

In this paper, we presented the likelihood ratio, Lagrange-multiplier and Wald
tests for the equality of the coefficients of variation in two inverse Gaussian pop-
ulations. The simulation results report that the likelihood ratio test has the
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highest rejection rate among all the tests, especially when sample size is small
(n < 50). However, the powers of all the tests tend to be similar as sample size
increases. Thus, in practice, the use of the likelihood ratio test is recommended
to achieve the high power gain over the Lagrange-multiplier and Wald tests when
sample size is small.

In this study, a situation where sample size is unequal could not be considered
because it was difficult to reveal the existence of the unique maximum likelihood
estimator of u; satisfying a cubic equation for u;. We leave it as a future research
of interest.
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