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ABSTRACT

Experimenters often want to test whether a specific treatment is really better than the others. Ia
such a problem we derive the likelihood ratio test and compare the result with other multiple comparisons
procedures. A nonparametric procedure based on ranks is also considered. Pitman efficiency of the
rank-sum procedure relative to the likelihood ratio test is computed.

1. INTRODUCTION

In comparing k treatments, experimenters are often interested in identifying the best treatment. For
such a purpose, several multiple comparisons procedures and selection procedures are available.

The so-called all-pairwise multiple comparisons (MCA) procedures can be used to get the over-all
picture about the pairwise comparisons of treatments (see, for example, Miller (1981)). The parameters
of interest in MCA procedures are #,— 4, for all 1<i<j<k where 8,, ', §» denote the treatment
effects.

When a specific treatment can be regarded as a control, the so-called multiple comparisons procedures
with a control (MCC) can be used for the simultaneous comparisons of treatments with a control. The
well-.known MCC procedures are those by Dunnett (1955, 1964) and by Steel (1959) among others.
The parameters of interest in MCC procedures are 8:— 8, for i=2, ..., k where 6 denotes the effect
of the control and &, -:-, #» are the treatment effects.

Recently Hsu (1984) showed that the MCA procedures can be improved when the interest is in the
comparison with the UNKNOWN best treatment. He devised the so-called multiple comparisons pro-
cedure with the best (MCB), and the parameters of interest in this procedure are §;—max 4; for i:=

J*T
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1, -, k.

This paper considers a situation when the experimenter wants to test whether a specific treatment
is really better than others. In practice, experimenters often have some prior knowledge regarding the
treatments to be compared, and they often have a candidate for the best treatment prior to the experi-
ment.

In such a case, the problem can be formulated as a testing problem for the following hypotheses:

Hy: 6,<max 6: vs H,: 6,>max 8. (1.p

25isk 2<i<h

where g, denotes the effect of a specific treatment which is designated as a candidate for the best treat-
ment prior to the experiment, and 82, ‘-, §x are the effects of other treatments.

Section 2 derives the likelihood ratio test (LRT) for the hypotheses (1.1) under the normal model,
and compares the resuit with other multiple comparisons procedures. The aspect of sample size determi-
nation is also considered to control the power.

Section 3 considers a nonparametric procedure based on ranks, and compares with other nonpara-
metric multiple comparisons procedures. Pitman efficiency of the rank-sum procedure in Section 3
relative to the procedure in Section 2 is also computed.

Section 4 applies the results in previous sections to a real data set, and conclusions are drawn,

2. LIKELIHOOD RATIO TEST
Cosider the usual one-way model
Xii=0:i+¢ei;, 7=1, =, ni;1=1, =, k 2.1)

where ¢:;’s are independent and identically distributed normal random variables with mean O and
common unknown variance o* Denoting treatment 1 as a specific treatment that is believed to be the
best, we would like to test

Hy: 6i<max 8: vs H,: 6> max 8; (2.2)

2<ish 25i<h

To derive the likelihood ratio test, let

L(g, o0 =(2r") " exp -2 B (xu—6.)2/25] @.3)

i=1 j=1

]

denote the likelihood function where N = Z‘.l n:. Since

n; A ng _
X—i= jE Xij/ni(izl, .y, k) and &= _21 2] (Xx‘j——Xi)z/N
=1 i=1 j=
are the maximum likelihood estimators of @.(i=1, -, k) and o?, respectively, the maximum of the
likelihood over the whole parameter space is given by
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mgx L(g, az;!)—_— (2”&2)—N/2 e—~N/2 (2.4)

where
2={(6, =, 84 6*):—0< ;<o i=1, -, k, a>>0}.

To find the maximum likelihood over the null parameter space, let [2], [3], ..., [£] denote the
unknown indices such that #z<8;5<- <@ are the ordered 8, &, -+, §,. Then the null para-
meter space w can be written as

w:{(ﬁl, they 0&, 0‘2) :01S0[,.1, o‘z>0}.

It is obvious from (2.3) that we need to minimize
L) _ &k
2n(x—0:)=m( 2:—61)* + 2 ny{ Z1— 61a)? (2.5)
1 2

subject to  #:<#;x in order to find the maximum likelihood over the null parameter space w. Then,
it is not difficult to show that, for fixed [2], ..., [#], (2.5) is minimized at the following & values:

(Case I) If Fwm=4, then 6i=#, fu=fiy and Gu=xm (=2, -, k—1).
(Casell) ¥ Zm<ii, then &i=fum=(mii+nmiwm)/(m+nmn) and
Bla=ia (=2, ~, k—1).
Therefore, for fixed [2], ..., [£], the minimum of (2.5) over w is given by

T M k)

(fi—Fm)? T (51> Tm).
W+ May

Thus the maximum likelihood estimate (m. /. e ) of ¢ under w is given by

¢5=6* +min {(—2%— (z—%)* I (£:>%))/N, (2.6)
2<i<k m+ n; .

and the maximum likelihood over w is given by

max L(8, ¢*x)=(2r55)""" e™"2. 2.7
w
It follows from (2.4), (2.6) and (2.7) that the likelihood ratio test rejects Ho when
o nin;

(o1—1;) 1 (&6 >x5) >(dé)?
2<isk M1+ M;
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where a positive constant 4 is chosen to satisfy the given level. Thus rejection region of the likelihood
ratio test is given as follows:

X, >max( X: +de/ )

(2.8)
25i<k

b

i

(Xs—X)*/(N—k) isthe pooled sample variance.
1

Mo

where S?=

¥

il

15

The rejection probability of the likelihood ratio test is given by

Paa{X1>max(X +dS “‘+—" )}

2<i<h

which is easily seen to be non-decreasing in #, and non-increasing in 8, -+, 6a
mum type | error probability of the likelihood ratio test is attained when 6,
fix-1y= — oo. Thus the maximum type 1 error probability is given by

. Therefore, the maxi-
=6 and Giz= - =

max Pga{X1>max(X;+dS\/ 1,1 )}

e 2<isk 1 ni
:PO:=9[,‘], A X1>X+dS v % +71—)
1 L&)

Since ( Xi—Xw)/SV % nlm has a t-distribution with ( N — & ) degrees of freedom when 6, = 8,4,

the likelihood ratio test of level a is given by the rejection region (2.8) with d =fo.(N—k)
a -quantile of the ¢-distribution with (N — &) degrees of freedom.

Summarizing the discussions so far, we can state that the level « likelihood ratio test of Ho vs M, in
(2.2) rejects Ho when

the upper

X1>max(X+ta(N k)S +*)

2%xis

2.9

Next, we consider the aspect of determining the sample size » to control the power of the likelihood
ratio test in the case of balanced one-way model with common sample size 7. Since the power function

of the likelihood ratio test in (2.9) is non-decreasing in 4, and non-increasing in 8, -+, 8., the
following result is easily obtained: For

2(8)={(8, -, 6, 0);—max§,<éqs},

259<k

inf P,a(Xx>max Xi+talv) SV2/n)

[EXITE) 2<i<h

= [ [0 x4+ Vne—VZw ta(1))dO(2)d Qu(w) (2.10)
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where Q.(w) is the cdf of S/a, and v=k(n—1).
For selected values of %, n, & and &, the minimum power in (2.10) has been computed.
Figure 1 shows the power charts for £ = 6, @ =0.05,0.01 and & =0.50, 0.75, 1.00, 1.25. In these

computations, Gauss-Hermite and Gauss-Laguerre quadratures were used to evaluate the inner integral
and the outside integral, respectively.

44 @; 8 =050

®); & =075

«©; & = 1.00

21 @; &=125
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Figure 1-1. Power chartfor @ =0.05and k=6
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Figure 1-2. Power chartfor @ =0.01and k=6

Using the ordinary method to construct confidence set from a test, we can derive a useful lower

confidence bound on 6 —max 6: from the likelihood ratio test. Since the likelihood ratio test
25isk

in (2.9)is of level a, we have
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Pq—rqu_o{X1>maX(X + i, SV +— )}<a

2<i<k

where fta=t.(N—Fk). Thus we have

1 —a< Pomoxg=o { X1 <max( X.+¢; S\/ )}

2<i<hk

= Posmaxg=0{ X1 —8<max( X:+t.S " +—)}
1
—Pq—nnxq 3{8>X1—max(X +t S n +_‘ )}
1

=P 6 —max 6:> X, —max( X:+t.S +— )}
n

2sisk 25i5hk

Therefore the 100 (1- a )% confidence lower bound on 6, —max 6: s given as follows:
2<i<h

6 —max ;> X, —max (X:+t.S +—~) 2.11)
ni

2<isk 25isk

It should be noted that a confidence lower bound on # —max 8, can be deduced from Dunnett’s

2<5i<kh

(1955, 1964) MCC confidence lower bound on 6,—§:(i=2, ---, £), which in the case of balanced
model is given by

01—0i2X1—X;‘—dD‘/—%—S forall ¢=2, -, &

where dbp is chosen to satisfy the confidence level (1— a). The deduced confidence lower bound on

6,—max #; isgiven by
25ishk

#,—max ;> X,—max X,— dm/-S (2.12)

25ishk 25ishk

which differs from (2.11) only in design constant dp. In fact, do=db(k, v, a) increases as # becomes
larger and dn(2, v, @) =ta(v) with y=k(n—1).Table 1 below gives the values of dp (refer Gupta,
Panchapakesan and Sohn (1985)) compared with the values of #4= do(2, v, a).
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Table 1. Values of design constants do=dn(k, v, a)

a =0.05
k
v 2 3 4 5 6 7 8 9 10
15 175 2.07 224 236 244 252 257 262 267
oo 1.64 192 206 216 223 229 234 238 242
a=0.01
k
v 2 3 4 ) 6 7 8 9 10
15 260 291 308 320 329 336 342 347 351
oo 233 256 268 277 284 289 293 297 3.00

As it can be seen from Table 1, as & becomes larger, the confidence lower bound in (2.11) becomes
more favorable to the confidence lower bound in (2.12) deduced from Dunnett’s simultaneous lower
confidence bounds. This is not surprising at all because the confidence bound in (2.11) is designed only
for the comparison of # with max # while Dunnett’s confidence bound is designed to get the

2<si<k
information about the comparison of # with others. It shows, however, that the confidence bound
in (2.11) or the likelihood ratio test in (2.9) is more useful when the interest is in getting an evidence
for a specific treatment 1 to be the best.
Comparisons of the confidence bound in (2.11) with other multiple comparisons procedures become
more favorable to the bound in (2.11) since Dunnett’s MCC interval uses the smallest design constants
among all multiple comparisons procedures when there is a control.

3. NONPARAMETRIC PROCEDURE

Consider the usual nonparametric balanced one-way model
Xs=0i+eg j=1, =, n;i=1, -, k (3.1

where e4’s are independent and identically distributed with pdf f(-). Let R1(7=2,,%)denote the

sum of the ranks of X1, -+, Xi» in  {Xu, -, Xin; Xa, =, X} (i=2, -, k).
For testing the hypotheses in (2.2), we consider a rank-sum test with rejection region

min Ri:>c¢ (3.2)

2<isk
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where ¢ is to be chosen to satisfy the level.

Since ( Riz, ..., Rix) is stochastically non-decreasing in # and non-increasing in 6, ..., 8, the type I
error probability of the rejection region (3.2) is maximized when =8 and fz= - = fa—y = — w0,
Therefore the maximum of the type I error proability is given by

max Py(min Rii>¢) = Pa-ay ( Run=c).
ﬁsalh] ~ 2<ish

Furthermore, when 6 =6, the distribution of Ry is the null distribution of the two-sample
Wilcoxon’s rank-sum test. Therefore, by taking the critical value of two-sample Wilcoxon’s test as ¢, the
test with rejection region (3.2) is a level a test for the hypotheses in (2.2).

To compute the asymptotic power of the test in (3.2) for large #, we consider an alternative

H}(A)201:02+A, sy, =8+ L (3.3)

for a fixed A > (. First, we note that under the alternative H,(4 ) in (3.3) the moments of Ru(i=2,
..., k) are given as follows:

E(Ru)=n*p:
Var(Ru)=n2p1(1—p1)+2n2(n—l)(pz—pf) (3-4)
Cov( Ry, Ru)zna(pz—pf) (i#7)

where

pi=pu(28)= [ F(x+2)f(2) dx,
(3.5)
pe=p )= FHz+a)f(z) dx

and F is the cdf corresponding to f.
It follows from (3.4) and the general asymptotic theory regarding the rank statistics that for large

{Rii—E(R)} Y Var (Ri) (i=2, -, k)
has asymptotic multivariate normal distribution with means 0, variances 1 and equal correlation 1/2.

Then the standard analysis yields the following asymptotic power of the test in (3.2): Under Hi{ &) in
(3.3)

Pymin Ruzc) =~ [ 0 (x+VIZn 2p3(0) —VZ Z)dO(x) (3.6)

2<isk
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Note that by (3.5) P1 (0) is given by

pi0)= [ f*(z) dx. 3.7)

For the likelihood ratio test in Section 2, it can be easily observed that the asymptotic power for
large » is given by

Pg(Xl)E‘a‘JE X'H-ta(v)Sv 2/n )
(3.8)
~ [0 (z+Vmale—VTZ,) do(x)

under Hi(A)in (3.3). Therefore it follows from (3.6), (3.7) and (3.8) that the Pitman efficiency of the
rank-sum test in (3.2) relative to the likelihood ratio test in (2.9) is that of the Wilcoxon’s test relative
to f-test, i.c.

e, (F)=12¢*[J f*(x)dz]",

Next, a confidence lower bound on 01—;2?‘1’5 8:is to be derived from the rank-sum test in (3.2).

First note that

1 —aSPo,=o|,,] ( :!"ﬂ‘l} R <c)
= Po-c=s,, ( zrlsﬁsllRli( d)<e) (3.9)

where Ri{(8) istheranksumof Xu—2#, -, Xin—8 in {Xu-—38, -, Xin—0; Xu, -, Xin}
(=2, -, k).
Furthermore it can be easily observed that

Rn‘(&):‘lzz:l{é I(X.-,«SXU'—(?)'FEII(XM—3§X“—8)}

:_n<_nz+_1)_+g > I(Xo<Xu—38).
=1 j=1

Therefore, R1.(8)<c if and only if

82(Xi~Xo) e ot LLAS (3.10$)
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where (Xi—X:i)m <+ <(Xi—X)nn denote the ordered Xy— Xu(j, I=1, -, n).
Thus it follows from (3.9) and (3.10) that 100(1—a )% confidence lower bound on 4, —max g, is given
by 2£4<h

6 —max 8;> min ( X, ~ X:) (w4 bl 3.1D

2<i<h 2<i<k

As in Section 2, a lower confidence bound on éy —max #: can be deduced from Steel’s (1959)

2<i<k

MCC confidence lower bound on #,— §; (=2, -+, k) based on ranks, which is given by
01'_0|'Z(X1_Xi) (n’—-r+*"—(—%‘t&) (122’ e k)

where 7 is chosen to satisfy the confidence level (1-a ). The deduced confidence lower bound on
6 —max 6: is therefore given by

25i<h

6i—max 6, 2min (Xi—X:) oo,y amsl), (3.12)

2<i<hk 2<i<k

The design constant 7 = 7 ( &, n,a ) decreases as £ becomes larger and in fact 7 (2, n#, 2 ) =Cc=C(n, a).
Table 2 below shows the difference between r and ¢ (see, Miller (1981)).

Table 2. Values of design constants r=r(k, n,a)

a = 0.05
k
2 3 4 5 6 7 8 9 10
n
10 128 131 133 135 136 136 137 138 138
30 1026 1026 1056 1062 1067 1071 1075 1077 1080
a =0.01
k
2 3 4 5 6 7 8 9 10
n
10 136 140 142 143 144 144 145 145 146
30 1072 1089 1098 1104 1108 1112 1115 1117 1119
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4. AN EXAMPLE WITH REAL DATA

The data in Table 3 is given in Watson et al. (1949), and cited in Hsu (1982) to demonstrate how
to choose the treatment with the highest coefficient of digestibility on the average.

Table 3. Coefficients of Digestibility for Five Rations for Total Carbohydrates

Treatment = Block = Steer Group

Ration 1 2 3 4 5 6
1 86.5 74.5 68.8 79.9 78.2 86.8
2 78.2 76.9 67.8 74.2 725 76.5
3 74.7 72.3 72.7 76.3 75.8 76.1
4 72.9 76.9 64.7 73.2 73.2 73.2
5 70.8 73.5 67.2 745 71.5 70.4

The data is related to the comparison of the coefficients of digestibility of total carbohydrates of
five rations for cattles, which consist of 3 kilograms of hay per animal per day with increasing amounts
of linseed oil meal, approximately 1, 2, 3, 4, or 5 kilograms per animal per day. These treatments were
assigned random to the animals in each block. The measured coefficients of digestibility, in present, for
total carbohydrates are the data in Table 3.

Hsu (1982) applied MCB procedure to this data to detect the best treatment. It seems, however,
that the ration with smaller linseed oil meal is likely to mark larger coefficient of digestibility. Thus,
we can apply the result in Section 2 to this data set with treatment 1 as a specific candidate for the best.

Assuming the usual balanced two-way no interaction model with normal errors, it can be easily
observed that the result in Section 2 can be applied to this data set with obvious modifications. The
summary statistics are given as follows:

£1.=79.1, £2=744, £2.=T74.7, £.=724, £ =713, s7=9.91, v=20,

Note that in this case s ? is the usual pooled estimate of the error variance with v = (k-1) (n-) degrees
of freedom. Therefore, the observed value of the test statistic in (2.9) is given by

X, —max Ij

_ 2<5<B —
t = W— 2.42.

Therefore the p-value of this data in testing the hypotheses in (2.2) is given by & = 0.01. It should be
noted that the MCB procedure by Hsu (1984) can not detect the treatment 1 as the best treatment at
such a level. That is due to the fact that, in MCB procedure, the treatment 1 is designated as the best
after observing the data.
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