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Abstract

Empirical likelihood ratio method is a new technique in nonparametric inference devel-
oped by A. Owen (1988, 2001). Sometimes empirical likelihood has difficulties to define
itself. As such a case in point, we discuss the way to define a modified empirical likelihood
for the location of symmetry using well-known points of symmetry as a side conditions.
The side condition of symmetry is defined through a finite subset of the infinite set of
constraints.

The modified empirical likelihood under symmetry studied in this paper is to construct
a constrained parameter space Θ+ of distributions imposing known symmetry as side
information. We show that the usual asymptotic theory (Wilks theorem) still hold for
the empirical likelihood ratio on the constrained parameter space and the asymptotic
distribution of the empirical NPMLE of difference of two symmetric points is obtained.

AMS 1991 Subject Classification: Primary 62G10; secondary 62G05.
Key Words and Phrases: Two-sample Problem, Many Constraints of symmetry, Asymptotic

Chi-square distribution.

0. Introduction

In parametric likelihood inference, we need a parametric family of distributions, but we

might have no idea which parametric family to use. In this case, one often opting for one of the

well-known parametric families for convenience. If the decision was correct, then this parametric

likelihood method is powerful and effective. Otherwise, misspecification can cause estimates to

be inefficient and the corresponding confidence intervals and tests can fail completely. There

is not often enough power to suggest that the corresponding tests and confidence intervals give

correct results. In such cases, the parametric likelihood methods may not be valid. Under the

pressure that the correct assumption of parametric family of distribution for the data has to be

made, many statisticians turn to nonparametric inferences. Nonparametric methods give valid

tests or confidence intervals without having to make strong distributional assumption. Each

nonparametric method has its advantage. Empirical likelihood, newly developed by A. Owen
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(2001), is a nonparametric method that provides the flexibility and effectiveness without having

to assume that the data come from a known family of distributions. In empirical likelihood,

adapted knowledge from the data plays a central role. The knowledge pooling out from the

data can be formed as constraints that restrict the domain of the empirical likelihood function.

As such a case in point, we no longer ignore any information obtained from the data. That

means that we shall use all information arising from the data without discarding any of it.

Therefore, we can expect that empirical likelihood offers a distinct improvement over ordinary

nonparametric likelihood methods.

Definition (Owen (2001)) For given n i.i.d observations X1, · · · , Xn with common distri-

bution function FX(t), the nonparametric or empirical likelihood of the distribution function

FX(t) is

L(F ) =
n∏

i=1

wi (1)

where wi = ∆FX(xi) is the probability of getting the value xi in a sample and
∑

i wi = 1.

Definition (Owen (2001)) For given n i.i.d observations X1, · · · , Xn, the empirical distribu-

tion function of X1, · · · , Xn is

Fn =
∑n

i=1 δxi

n

where δx denotes the distribution under which X = x with probability 1. Thus δx(A) = 1x∈A.

The empirical distribution function maximizes L(F).

However, empirical likelihood in some nonparametric settings has difficulties. Defining em-

pirical likelihood for symmetric distributions is such an example. The cause of this difficulty is

that the condition on symmetry is equivalent to an infinite number of conditional constraints.

In this case, the NPMLE does not exist or there are many NPMLE’s having the same empirical

likelihood value.

For example, suppose X1, X2, X3 are ordered i.i.d observations from a continuous symmetric

distribution F0(t) around c, which is unknown. It is easy to show that P (Fn is symmetric) = 0

where Fn is the empirical distribution function. By adding a number of jump points to Fn, we

can find F ∗
n(t) which is symmetric and maximize the empirical likelihood among all symmetric

distributions. There are a lot of candidates of F ∗
n(t)’s that have the same maximum empirical

likelihood value. If we believe that c is located in the middle of X2 and X3, one more artificial

observation X on the right side of X3 is needed to make F ∗
n(t) symmetric about c with the
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maximum likelihood value L(F ) = 1
4 ×

1
4 ×

1
4 . Otherwise, if we believe that c is possibly located

in the middle of X1 and X2, one more artificial observations X is needed to add on the left side

of X1 so that F ∗
n(t) is symmetric about c with the maximum likelihood value L(F ) = 1

4 ×
1
4 ×

1
4 .

Both are NPMLE’s having the same empirical likelihood value L(F ) = 1
4 ×

1
4 ×

1
4 . That implies

that F ∗
n(t) is not unique. There are a lot of candidates that achieve the same maximum likelihood

value.

We propose to use the method of “envelope empirical likelihood” (Zhou, 2000) to get a

sequence of parameter spaces by first enlarging the parameter space so that the NPMLE uniquely

exists. Then we shrink those enlarged parameter spaces by imposing a number of distinct known

points of symmetry as side information. This constrained or reduced parameter space is called

the envelope parameter space. The NPMLE is now well defined on the constrained parameter

space. The property of the so defined likelihood ratio test and the resulting NPMLE is the focus

of this paper. Asymptotic distributional properties are studied in sections 2 and 3. Examples

and case study are presented in section 4.

To illustrate the possible use of the envelope empirical likelihood and difficulty/inefficiency

of other available nonparametric method, think of two independent random samples both sym-

metrically distributed; one with a Cauchy distribution, the other a normal distribution. The

goal is to estimate the difference of the two point of symmetry.

Finally we point out that the method proposed in this paper can easily (at least in principle)

be generalized to handle higher dimensional data.

1. Envelope empirical likelihood ratio for symmetric distributions

1.1 Envelope empirical likelihood in a two sample problem

Suppose X1, · · · , Xn1 are n1 i.i.d. observations from a symmetric distribution F1 with an

arbitrary shift location parameter θ1 (i.e. the center of symmetry of F1 is θ1) and Y1, · · · , Yn2 are

n2 i.i.d observations from a symmetric distribution F2 with an arbitrary shift location parameter

θ2.

Define wi = ∆F1(t1i), the probability of getting the value t1i in a sample from the distribution

function F1(t). Define pj = ∆F2(t2j), the probability of getting the value t2j in a sample from the

distribution function F2(t). As discussed in the introduction, among all symmetric distributions
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based on the samples always yields many candidates of both F1, F2 and θ1, θ2 with the same

likelihood value, when the true distribution is continuous, maximizing the log empirical likelihood

defined by

logH Lik =
n1∑
i=1

log wi +
n2∑

j=1

log pj .

The NPMLE is not well defined.

We first enlarge the parameter space so that just one possible NPMLE can exist in this

space. The enlarged parameter space is the set of all distributions, symmetric or not. Define

those enlarged parameter spaces

Θ1 = {F1 : all distribution without any restriction}

and

Θ2 = {F2 : all distribution without any restriction} .

But these parameter spaces are too large, without restrictions of symmetry. We then shrink

the enlarged parameter space by imposing many (but fixed number) constraints that the distri-

butions are symmetric. As more constraints are imposed, the sequence of the parameter space

shrinks. We show that the NPMLE is now well defined on the shrank spaces. We call this

NPMLE, the envelope nonparametric likelihood estimator.

In this paper, we are interested to study the property of the NPMLE for the difference of

two parameters, θ1 − θ2 in the constrained parameter space and also the envelope empirical

likelihood ratio test.

The constraints are formed as:

For given t1i,

for some θ1, F1(θ1 − t1i) = 1− F1(θ1 + t1i), i = 1, 2, . . . ,m1.

on the parameter space Θ1 = {F1 : all distributions}. Now we put constraints of symmetry on

the parameter space as an integration:

for some θ1,

∫ θ1−t1i

−∞
dF1(t) =

∫ ∞

θ1+t1i

dF1(t), i = 1, 2, . . . ,m1. (2)

If we take the functions g1i(t) = I[t≤θ1−t1i] and g∗1i(t) = I[t≥θ1+t1i] in the above, the integration

can take the form of∫ ∞

−∞
g1i(t)dF1(t) =

∫ ∞

−∞
g∗1i(t)dF1(t), i = 1, 2, . . . ,m1.
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Similarly, for given t2j ,

for some θ2, F2(θ2 − t2j) = 1− F2(θ2 + t2j), j = 1, 2, . . . ,m2.

on the parameter space Θ2 = {F2 : all distributions}. Now we put constraints of symmetry on

the parameter space as an integration:

for some θ2,

∫ θ2−t2j

−∞
dF2(t) =

∫ ∞

θ2+t2j

dF2(t), j = 1, 2, . . . ,m2. (3)

If we take the functions g2j(t) = I[t≤θ2−t2j ] and g∗2j(t) = I[t≥θ2+t2j ] in the above, the integra-

tion can take the form of∫ ∞

−∞
g2j(t)dF2(t) =

∫ ∞

∞
g∗2j(t)dF2(t), j = 1, 2, . . . ,m2.

We can in fact use g and g* that are smooth and define the symmetry similarly.

Maximizing the log empirical likelihood

logH Lik =
n1∑
i=1

log wi +
n2∑

j=1

log pj (4)

defined above among distributions in the constrained parameter space

Θ+ = {F1 : distributions satisfying the equation(2)}⋂
{F2 : distributions satisfying the equation(3)}

yields both the envelope empirical NPMLE θ̂1, θ̂2 and F̂1(t), F̂2(t). The envelope empirical

likelihood ratio can be used to obtain an asymptotic hypothesis test for the difference of two

location parameters. Confidence intervals can also be constructed by inverting hypothesis tests.

1.2 Envelope empirical likelihood ratio

Consider testing hypothesis of the difference of two location parameters. We take

H0 : θ1 = θ2(≡ θ); vs. HA : θ1 6= θ2

The test statistic we propose is the likelihood ratio statistics

T = −2{ max
θ1=θ2=θ∈Θ+

logH Lik − max
allθ1,θ2∈Θ+

logH Lik} . (5)

We show below that this empirical test statistics will have an approximate chi-square distri-

bution with one degrees of freedom under the null hypothesis. We reject H0 for larger values of

T . Confidence intervals for (θ1 − θ2) can be obtained by inverting the chi square test.
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2. Asymptotic Results of envelope ELR test statistic and NPMLE

We shall prove in this section that under the null hypothesis our proposed envelope empirical

likelihood ratio test statistic T defined in section 1.2 (5) has asymptotically a chi-square dis-

tribution with one degree of freedom and obtain the asymptotic distribution of the envelope

empirical NPMLE θ̂1 and θ̂2.

Denote the column vectors

gk(t) = {gk1(t), · · · , gkmk
(t)}T , g∗k(t) = {g∗k1(t), · · · , g∗kmk

(t)}T ;

λk = {λk1, · · · , λkmk
}T , k = 1, 2.

Lemma 1 The probabilities of getting the value xi and yi in a sample from the distribution

function F1(t) and F2(t) respectively that maximize the log likelihood function (4) satisfying

the constraint (2), (3) with any fixed θ1 and θ2 are given by

wi(λ1(θ1), θ1) =
1

n1 − n1λ1(θ1)T · (g1(θ1 − t;xi)− g∗1(θ1 + t;xi))
; (6)

pj(λ2(θ2), θ2) =
1

n2 − n2λ2(θ2)T · (g2(θ2 − t; yj)− g∗2(θ2 + t; yj))
. (7)

where λk(θk)T ·gk(θk−t; ·) denote the inner product
∑

mk
λkmk

(θk)·gkmk
(θk−t; ·). The λk(θk)

value in the equation (6), (7) above is obtained as the solution of the following mk equations

respectively

hk(λk(θk), θk) = {hk1(λk(θk), θk), · · · , hkmk
(λk(θk), θk)}T k = 1, 2,

by

h1r(λ1(θ1), θ1) =
∑

i

[g1r(θ1 − t;xi)− g∗1r(θ1 + t;xi)]wi(λ1(θ1), θ1))

=
∑

i

[g1r(θ1 − t;xi)− g∗1r(θ1 + t;xi)]
n1 − n1λT

1 (θ1) · (g1(θ1 − t;xi)− g∗1(θ1 + t;xi))
= 0 ,

h2l(λ2(θ2), θ2) =
∑
j

[g2l(θ2 − t; yj)− g∗2l(θ2 + t; yj)]pj(λ2(θ2), θ2))

=
∑
j

[g2r(θ2 − t; yj)− g∗2r(θ2 + t; yj)]
n2 − n2λT

2 (θ2) · (g2(θ2 − t; yj)− g∗2(θ2 + t; yj))
= 0 .
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Proof: The result follows from a standard Lagrange multiplier argument applied to (2), (3)

and (4). Using Lagrange multipliers nkλk and ηk, let

G =
n1∑
i=1

log wi +
m1∑
r=1

n1λ1

∑
i

[g1r(θ1 − t;xi)− g∗1r(θ1 + t;xi)]wi + η1[1−
∑

i

wi]

+
n2∑

j=1

log pj +
m2∑
l=1

n2λ2

∑
j

[g2l(θ2 − t; yj)− g∗2l(θ2 + t; yj)]pj + η2[1−
∑
j

pj ]

Taking derivatives with respect to wi and pj and setting
∂G

∂wi
and

∂G

∂pj
to zero, we obtain

wi =
1

η1 − n1λT
1 · (g1(θ1 − t;xi)− g∗1(θ1 + t;xi))

;

pj =
1

η2 − n2λT
2 · (g2(θ2 − t; yj)− g∗2(θ2 + t; yj))

,

And the calculations show η1 = n1 and η2 = n2.

Thus we get

wi =
1

n1 − n1λT
1 · (g1(θ1 − t;xi)− g∗1(θ1 + t;xi))

;

pj =
1

n2 − n2λT
2 · (g2(θ2 − t; yj)− g∗2(θ2 + t; yj))

where λk must satisfy the following equations

0 = hk(t) = {hk1(t), · · · , hkmk
(t)}T ,

by

h1r(t) =
∑

i

[g1r(θ1 − t;xi)− g∗1r(θ1 + t;xi)]× wi

=
∑

i

[g1r(θ1 − t;xi)− g∗1r(θ1 + t;xi)]
n1 − n1λT

1 (θ1) · (g1(θ1 − t;xi)− g∗1(θ1 + t;xi))
= 0 ; (8)

h2l(t) =
∑
j

[g2l(θ2 − t; yj)− g∗2l(θ2 + t; yj)]× pj

=
∑
j

[g2l(θ2 − t; yj)− g∗2l(θ2 + t; yj)]
n2 − n2λT

2 (θ2) · (g2(θ2 − t; yj)− g∗2(θ2 + t; yj))
= 0 . (9)

Since the solution wi and pj of G depend on (θ1, λ1) and (θ2,λ2) respectively and also the

λk, k=1,2 does depend on θk as well, we denote that wi is of the function of θ1 and λ1(θ1) and

pj is of the function of θ2 and λ2(θ2).

♦
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The concern coming after Lemma 1 is the asymptotic behavior of the solution λk, k=1,2 we

have found in Lemma 1.

Lemma 2 Under some standard conditions, the solution λk of the constraint equations in

(8) and (9) under the null hypothesis have the following asymptotic representations:

(i)
√

Nλk(θ0)
D−→ N(0,Σk) ; as N →∞, N = min(n1, n2)

where θ0 is the true parameter and Σk is defined by (11), k=1,2.

(ii) In addition, assume gk(·) and g∗k(·) are smooth and h′k(0, θ0) (a mk ×mk matrix defined

in (10)) is invertible. For |θk| = O(1/
√

N), we have

λk(θk) = λk(θ0)− h′k(0, θ0)−1Gk(θk − θ0)T + op(1/
√

N)

where Gk is a mk × 1 matrix with its columns defined as

Gk· =

∑
i(j)

g′k1(θ0 − t)− g′k1
∗(θ0 + t)

nk
, · · · ,

∑
i(j)

g′kmk
(θ0 − t)− g′kmk

∗(θ0 + t)
nk


T

.

(iii) Similarly under the same conditions of part (ii), we have the solutions λk(θ) under the

null hypothesisH0 : θ1 = θ2 ≡ θ

λk(θ) = λk(θ0)− h′k(0, θ0)−1Gk(θ − θ0)T + op(1/
√

N)

where Gk is a mk × 1 matrix with its columns defined as

Gk· =

∑
i(j)

g′k1(θ0 − t)− g′k1
∗(θ0 + t)

nk
, · · · ,

∑
i(j)

g′kmk
(θ0 − t)− g′kmk

∗(θ0 + t)
nk


T

.

Proof : We show the asymptotic distribution of λk(θ0).

Define a vector function hk(λk(s), s) = (hk1(λk(s), s), · · · , hkmk
(λk(s), s)) by

h11(λ1(s), s) =
∑

i

(g11(s− t)− g∗11(s + t))(wi(λ1(s), s)) ,

· · · · · ·

h1m1(λ1(s), s) =
∑

i

(g1m1(s− t)− g∗1m1
(s + t))(wi(λ1(s), s)) ) ;

h21(λ2(s), s) =
∑
j

(g21(s− t)− g∗21(s + t))(pj(λ2(s), s)) ,

· · · · · ·

h2m2(λ2(s), s) =
∑
j

(g2m2(s− t)− g∗2m2
(s + t))(pj(λ2(s), s)) ) .
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Then λk(θ0) is the solution of hk(λk(s), s) = 0 where θ0 is the true parameter of θ so that λk(θ0)

is a consistent statistic of λk(θk) and λk(θ0) is sufficiently very small so that the expansion below

is valid. Thus we have 0 = hk(λk(θ0), θ0) = hk(0, θ0)+(λk(θ0)−0 , θ0−θ0)×[h′k(0, θ0) , Gk·]T +

op(1/
√

N) , where h′k(0, θ0) is a mk ×mk matrix. Rearranging the above equation, we obtain

the following equation

√
Nλk(θ0) = −h′k(0, θ0)−1(

√
Nhk(0, θ0)) + op(1)

where the vector function hk(0, θ0) = (hk1(0, θ0), · · · , hkmk
(0, θ0)). The elements of h′k(0, θ0) are

explicitly computed as

h′1rl(0, θ0) =
∑

i

(g′1r(θ0 − t)− g′1r
∗(θ0 + t))(g′1l(θ0 − t)− g′1l

∗(θ0 + t))
n1

;

h′2rl(0, θ0) =
∑
j

(g′2r(θ0 − t)− g′2r
∗(θ0 + t))(g′2l(θ0 − t)− g′2l

∗(θ0 + t))
n2

. (10)

Notice we have nkh
′
krl = −Dkrl where

−Dk =
(

nkh′
k Gk

GT
k 0

)
.

By WLLN,

h1r(0, θ0) =
∑

i

g1r(θ0 − t)− g∗1r(θ0 + t)
n1

P−→ EF1(g1(θ0 − t)− g∗1(θ0 + t))

= E(g1(θ0 − t))− E(g∗1(θ0 + t))

= F1(θ0 − t)− [1− F1(θ0 + t)] = 0;

h2l(0, θ0) =
∑
j

g2l(θ0 − t)− g∗2l(θ0 + t)
n2

P−→ EF2(g2(θ0 − t)− g∗2(θ0 + t))

= E(g2(θ0 − t))− E(g∗2(θ0 + t))

= F2(θ0 − t)− [1− F2(θ0 + t)] = 0

by the assumption of symmetric distributions and

cov(hkrl(0, θ0)) = E(hkrr(0, θ0)× hkll(0, θ0)).

Applying the Cramer-Wold Device, we can show that

√
Nhk(0, θ0)

D−→ N(0,Σhk
)

with Σhk
= lim h′k(0, θ0).
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Finally, we have put all together so that

√
Nλk(θ0) = [h′k(0, θ0)]−1(−

√
Nhk(0, θ0)) + op(1) D−→ N(0,Σk)

with

Σk = lim[h′(0, θ0)]−1 . (11)

Recall nkh
′
krl = −Dkrl, we see that Σ−1

k = lim[h′k(0, θ0)] = Σhk
= D∗

k.

This completes the proof of (i).

Let’s look at the second part of Lemma.

Define a vector function hk(λk(s), s) = (hk1(λk(s), s), · · · , hkmk
(λk(s), s)) by

h11(λ1(s), s) =
∑

i

(g11(t)− g∗11(t))(wi(λ1(s), s)) ,

· · · · · ·

h1m1(λ1(s), s) =
∑

i

(g1m1(t)− g∗1m1
(t))(wi(λ1(s), s))) ;

h21(λ2(s), s) =
∑
j

(g21(t)− g∗21(t))(pj(λ2(s), s)) ,

· · · · · ·

h2m2(λ2(s), s) =
∑
j

(g2m2(t)− g∗2m2
(t))(pj(λ2(s), s))) .

The λk(θk) and λk(θ0) are the solution of hk(λk(θk), θk) = 0 and hk(λ(θ0), θ0) = 0 respec-

tively where λk(θ0) is small, so that the expansion below is valid. Thus we have expanded the

above equations at λk(θ0) = 0 as follows 0 = hk(λk(θk), θk) = h(0, θ0) + (λk(θk) − 0 , θk −

θ0) × [h′k(0, θ0) , Gk]T + op(1/
√

N) , and 0 = hk(λk(θ0), θ0) = h(0, θ0) + (λk(θ0) − 0 , θ0 −

θ0)× [h′k(0, θ0) , Gk]T + op(1/
√

N) , where h′k(0, θ0) is a mk ×mk matrix and Gk is a mk × 1

matrix with its columns defined as

G1· =

{∑
i

g′11(θ0 − t)− g′11
∗(θ0 + t)

n1
, · · · ,

∑
i

g′1m1
(θ0 − t)− g′1m1

∗(θ0 + t)
n1

}T

,

G2· =

∑
j

g′21(θ0 − t)− g′21
∗(θ0 + t)

n2
, · · · ,

∑
j

g′2m2
(θ0 − t)− g′2m2

∗(θ0 + t)
n2


T

.

Then it finally turns out that

0 = hk(λk(θk), θk)− hk(λ(θ0), θ0)

= h′k(0, θ0)[λk(θk)− λk(θ0)] + GT
k (θk − θ0) + op(1/

√
N) ,
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and therefore

λk(θk)− λk(θ0) = −[h′k(0, θ0)]−1GT
k (θk − θ0) + op(1/

√
N) .

We have
√

Nλk(θk) =
√

Nλk(θ0)− [h′k(0, θ0)]−1(
√

NGT
k (θk − θ0)) + op(1) .

The second part of lemma is completely shown.

The third part of lemma can be proved similar to the second part of lemma. ♦

Theorem 1 Under the same conditions in Lemma 2, the test statistics T has asymptotically

a chi-square distribution with one degrees of freedom.

Proof: Let’s define

f1(λ1(θ1), θ1) =
∑

i

log wi(λ1(θ1), θ1),

f2(λ2(θ2), θ2) =
∑
j

log pj(λ2(θ2), θ2)

Then the log empirical likelihood ratio statistic is the form of

T = −2 min
θ∈Θ+

{f1(λ1(θ), θ) + f2(λ2(θ), θ)}+ 2 min
∀θ1,θ2∈Θ+

{f1(λ1(θ1), θ1) + f2(λ2(θ2), θ2)} .

By Taylor expansion at θk = θ0 and λk(θk)=λk(θ0), the test statistic T can be expended as

follows:

T = −2 min
θ∈Θ+

{ f1(0, θ0) + (λ1(θ) , θ − θ0)(
∂

∂λ1(θ)
f1(λ1(θ), θ) ,

∂

∂θ
f1(λ1(θ), θ))T |λ1(θ)=0,θ=θ0

+1/2(λ1(θ) , θ − θ0)D1(λ1(θ) , θ − θ0)T + op(1)

+f2(0, θ0) + (λ2(θ) , θ − θ0)(
∂

∂λ2(θ)
f2(λ2(θ), θ) ,

∂

∂θ
f2(λ2(θ), θ))T |λ2(θ)=0,θ=θ0

+1/2(λ2(θ) , θ − θ0)D2(λ2(θ) , θ − θ0)T + op(1)}

+ 2 min
θ1∈Θ+

{ f1(0, θ0) + (λ1(θ1) , θ1 − θ0)(
∂

∂λ1(θ1)
f1(λ1(θ1), θ1) ,

∂

∂θ1
f1(λ1(θ1), θ1))T |λ1(θ1)=0,θ1=θ0

+1/2(λ1(θ1) , θ1 − θ0)D1(λ1(θ1) , θ1 − θ0)T + op(1)}

+ 2 min
θ2∈Θ+

{ f2(0, θ0) + (λ2(θ2) , θ2 − θ0)(
∂

∂λ2(θ2)
f2(λ2(θ2), θ2) ,

∂

∂θ2
f2(λ2(θ2), θ2))T |λ2(θ2)=0,θ2=θ0

+1/2(λ2(θ2) , θ2 − θ0)D2(λ2(θ2) , θ2 − θ0)T + op(1)} (12)

where Dk denotes the (mk + 1) × (mk + 1) matrix of second derivatives of fk(λk(θk), θk) with

respect to λk(θk) and θk, i.e.

Dk =


∂2

∂2λk(θk)
fk(λk(θk), θk)|λk(θk)=0,θk=θ0

∂2

∂λk(θk)∂θk
fk(λk(θk), θk)|λk(θk)=0,θk=θ0

∂2

∂λk(θk)∂θk
fk(λk(θk), θk)|λk(θk)=0,θk=θ0

∂2

∂2θk
fk(λk(θk), θ)|λk(θk)=0,θk=θ0

 .
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The expansion are valid in view of Lemma 2.

Notice we have

λk(θk) = λk(θ0)− [h′k(0, θ0)]−1GT
k (θk − θ0) + op(1) .

and

λk(θ) = λk(θ0)− [h′k(0, θ0)]−1GT
k (θ − θ0) + op(1) .

(see Lemma 2).

We substitute the Taylor expansions of λk(θk) to the last form of the test statistics T . Define

(λk(θk) , θk − θ0) = (λk(θ0)− [h′k(0, θ0)]−1GT
k (θk − θ0) , θ − θ0) (13)

= (λk(θ0) , 0)− ([h′k(0, θ0)]−1GT
k , − 1)(θk − θ0)

= Vk1 − Vk2(θk − θ0)

and

(
∂

∂λk(θk)
fk(λk(θk), θk)|λk(θk)=0,θk=θ0

,
∂

∂θk
fk(λk(θk), θk)|λk(θk)=0,θk=θ0

)T = Vk3. (14)

By the equation (13) and (14) above, the test statistic T can be rewritten to

T = −2 min
θ∈Θ+

{(V11 − V12(θ − θ0))T V13 + (V11 − V12(θ − θ0))T D1(V11 − V12(θ − θ0))

+(V21 − V22(θ − θ0))T V23 + (V21 − V22(θ − θ0))T D2(V21 − V22(θ − θ0))}

+2 min
θ1∈Θ+

{(V11 − V12(θ1 − θ0))T V13 + (V11 − V12(θ1 − θ0))T D1(V11 − V12(θ1 − θ0))}

+2 min
θ2∈Θ+

{(V21 − V22(θ2 − θ0))T V23 + (V21 − V22(θ2 − θ0))T D2(V21 − V22(θ2 − θ0))}

+op(1) .

Denote θ̂ the NPMLE that minimizes f1(λ1(θ), θ) + f2(λ2(θ), θ). Similarly denote θ̂k the

NPMLE that minimizes fk(λk(θk), θk), k=1,2.

Considering that the op(1) term can be ignored, we find the minimization over θ and θk and

obtain the minimum value (see Lemma 4 on the appendix). The minimum value of the test

statistic T is the quadratic form of

T = {(V T
12(−D1)V12)(θ̂ − θ̂1)2}+ {(V T

22(−D2)V22)(θ̂ − θ̂2)2}+ op(1) (15)

= {A1(θ̂ − θ̂1)2}+ {A2(θ̂ − θ̂2)2}+ op(1) , (16)

12



where Ak = (V T
k2(−Dk)Vk2) for the convenience. With the very simple form (15) or (16) of the

test statistic T above, we are to show the asymptotic distribution of the statistic T .

Now, recall the distribution of λk(θ0) in Lemma 2 (ii). You can forward to have the asymp-

totic distribution of θ̂ − θ̂k in Theorem 2.

Define

M =
(

1 0
0 1

)
and

Γ =
(

Γ11 Γ12

ΓT
12 Γ22

)

Γkk =
√

Ncov(
√

V T
k2(−Dk)Vk2(θ̂ − θ̂k)), k = 1, 2 ;

Γ12 =
√

Ncov(
√

V T
12(−D1)V12(θ̂ − θ̂1) ,

√
V T

22(−D2)V22(θ̂ − θ̂2)) ,

with rank(MΓ) = trace(MΓ) = Γ11 + Γ22 due to MΓ being idempotent (see Lemma 5 on the

appendix) and Y T = (A1/2
1 (θ̂ − θ̂1) , A

1/2
2 (θ̂ − θ̂2)) where

√
NY

D−→ N(0,Γ) .

That shows that the log empirical likelihood ratio statistic T is

T = Y T MY
D−→ χ2

(Γ11) + χ2
(Γ22) = χ2

1 .

(see Theorem 3 on the appendix for more details)

The proof is completely done. ♦

Theorem 2 Under the same conditions of Theorem 1 except we assume the alternative

hypothesis is true with θ̂ that is the NPMLE of θ under the null hypothesis:

(i) The asymptotic distribution of the envelope estimator (θ̂ − θ̂k) is given by

√
N

√
V T

k2(−Dk)Vk2(θ̂ − θ̂k)T D−→ N(0,Γkk) ,

where

Γkk =
√

Ncov(
√

V T
k2(−Dk)Vk2(θ̂ − θ̂k)), k = 1, 2 .

(ii) The asymptotic joint distribution of the envelope estimator (θ̂− θ̂1 , θ̂− θ̂2)T is given by

√
N(

√
V T

12(−D1)V12(θ̂ − θ̂1) ,
√

V T
22(−D2)V22(θ̂ − θ̂2))T D−→ N(0,Γ) ,

13



where

Γ =
(

Γ11 Γ12

ΓT
12 Γ22

)

Γkk =
√

Ncov(
√

V T
k2(−Dk)Vk2(θ̂ − θ̂k)), k = 1, 2 ;

Γ12 =
√

Ncov(
√

V T
12(−D1)V12(θ̂ − θ̂1) ,

√
V T

22(−D2)V22(θ̂ − θ̂2)) .

Proof: Since θ̂ and θ̂k, k=1,2 are correlated each other, we need to find the joint distribution

of θ̂ and θ̂k, k=1,2.

Aside from the op(1/
√

N) term, the θ̂ and θ̂k that achieves the minimum are computed as

θ̂ =
∑

k(V
T
k2(Dk)Vk1 + V T

k2Vk3)∑
k V T

k2(Dk)Vk2
,

and

θ̂k =
V T

k2(Dk)Vk1 + V T
k2Vk3

V T
k2(Dk)Vk2

.

(see Lemma 4 on the appendix)

Denote Ak = V T
k2(−Dk)Vk2 and Bk = V T

k2(−Dk)Vk1 − V T
k2Vk3, k=1,2.

Recall that

G1· =

{∑
i

g′11(θ0 − t;xi)− g′11
∗(θ0 + t;xi)

n1
, · · · ,

∑
i

g′1m1
(θ0 − t;xi)− g′1m1

∗(θ0 + t;xi)
n1

}T

,

G2· =

∑
j

g′21(θ0 − t; yj)− g′21
∗(θ0 + t; yj)

n2
, · · · ,

∑
j

g′2m2
(θ0 − t; yj)− g′2m2

∗(θ0 + t; yj)
n2


T

.

By SLLN,

Gk
P−→ E(g′k(θ0 − t; ·)− g′k

∗(θ0 + t; ·)) = Ck

where Ck is a constant in R. Therefore,

Ak = V T
k2(−Dk)Vk2 = (nk − 2)GT

k h′k(0, θ0)−1Gk

= (
nk − 2

nk
)GT

k (nkh
′
k(0, θ0)−1)Gk

P−→ CT
k ΣkCk , k = 1, 2

14



and in view of Lemma 2(i)

√
NBk =

√
N(V T

k2(−Dk)Vk1 − V T
k2Vk3)

= −
√

N((nk)GT
k h′k(0, θ0)−1h′k(0, θ0)λk(θ0) + GT

k λk(θ0) + nkG
T
k λk(θ0))

=
√

N(GT
k λk(θ0))

D−→ N(0, CT
k ΣkCk) , k = 1, 2

Thus we have
√

N
√

Ak(θ̂ − θ̂k)T D−→ N(0,Γkk) ,

where

Γ11 =
√

Ncov(
√

V T
12(−D1)V12(θ̂ − θ̂1))

P−→ CT
2 Σ2C2∑2

k=1(CT
k ΣkCk)

;

Γ22 =
√

Ncov(
√

V T
22(−D2)V22(θ̂ − θ̂2))

P−→ CT
1 Σ1C1∑2

k=1(CT
k ΣkCk)

.

This completes the part(i).

We know that (θ̂− θ̂1) and (θ̂− θ̂2) are not independent. In order to find the joint distribution

of those two variables, we compute the variance-covariance matrix of those variables

Γ12 =
√

Ncov(
√

V T
12(−D1)V12(θ̂ − θ̂1) ,

√
V T

22(−D2)V22(θ̂ − θ̂2))

=
√

Ncov(
√

A1(θ̂ − θ̂1) ,
√

A2(θ̂ − θ̂2))

=

√
CT

1 Σ1C1CT
2 Σ2C2∑

k(CT
k ΣkCk)

.

Therefore the asymptotic joint distribution of the estimator (θ̂ − θ̂1 , θ̂ − θ̂2)T is given by

√
N(

√
A1(θ̂ − θ̂1) ,

√
A2(θ̂ − θ̂2))T D−→ N(0,Γ) ,

where

Γ =
(

Γ11 Γ12

ΓT
12 Γ22

)
.

The theorem is completely proved. ♦

3. An illustrative example

3.1 An illustration with small samples

Consider the data that appear in section 6.9 of Snedecor and Cochran (1989), which shows

the weight gains (in grams) for two groups of female rats under the two diets. The 12 rats
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Figure 3.1.1: Descriptive Statistics for weight gain in high protein diet

were given the high protein diet, and the 7 rats were given the low protein diet. Suppose a

nutritionist is interested in the relative merits of two diets, one featuring high protein, the other

low protein. Do the two diets lead to differences in mean weight gain? The high protein and low

protein samples are presumed to have mean-value location parameters, θ1 and θ2, and standard

deviation scale parameters, σ1 and σ2, respectively. We are primarily interested in whether there

is any difference in the mean weight gains.

For each sample, we make a set of exploratory data analysis plots, consisting of a histogram,

a box plot, an empirical likelihood function, and a normal qq-plot, all displayed in a two-by-two

layout in Figure 3.1.1. The resulting plots for the high protein group indicate that the data

come from a symmetric distribution, and there is no indication of outliers. As shown in Figure

3.1.2, the plots for the low protein group support the same conclusion.

As a result, we have good reason to believe that the envelope empirical likelihood ratio test

for a difference of the two mean weight gains proposed in this paper will provide a valid test for
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Figure 3.1.2: Descriptive Statistics for weight gain in low protein diet

the hypotheses.

The plots in Figure 3.1.1 and Figure 3.1.2 suggest a set of points of symmetry. We use those

points as side constraints. We apply our algorithm to the data set with the side constraints.

Figure 3.1.3 shows the likelihood values of the envelope empirical likelihood function under

the corresponding hypothesis. The global maximum value of the envelope empirical likelihood

function is chosen and served to the envelope empirical likelihood ratio for testing. With this

ratio the corresponding P-value with one degree of freedom is estimated.

According to the corresponding p-value, the null hypothesis of no difference is not rejected.

We conclude that there is no difference in the mean weight gains. Also the estimate of NPMLE

of θ that maximizes the envelope empirical likelihood function under the alternative hypothesis

can be found by choosing the θ̂ corresponding to the maximum likelihood function value.
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Figure 3.1.3: Log empirical likelihood function value for θ

3.2 An illustration with simulated large samples

We consider an application to the simulation data set, which is generated from Cauchy

distribution with location parameter 0 and scale parameter 1. The aim is to identify whether

there is a difference of two location parameters. The set of exploratory data analysis plots for

each simulated data set is described in Figure 3.2.1 and Figure 3.2.2. The plots show that they

are symmetric around 0.

As a result, we have good reason to believe that the envelope empirical likelihood ratio test

for a difference of the two location parameters proposed in this paper will provide a valid test

for the hypotheses.

In the same manner of section 3.1, the descriptive statistics suggest a set of points of sym-

metry so that we can use those points as side constraints. We apply our algorithm to the data

set with the side constraints. We maximize the log empirical likelihood function under those

constraints.

18



Figure 3.2.1: Descriptive Statistics for simulated data set X

As shown in Figure 3.2.3, there are the global maximum values of the envelope empirical like-

lihood function under the corresponding hypothesis. Those maximum values serve to estimate

the envelope empirical likelihood ratio for testing. With this ratio the corresponding P-value

with one degree of freedom is estimated.

According to the corresponding p-value, the null hypothesis of no difference is not rejected.

We conclude that there is no difference in the location parameters.

Remark: We have discovered that the smoothness of the log empirical likelihood is subject

to a point of symmetry used as side constraint. As the points of symmetry that are far from

the center are chosen as side constraints, a lot of observation can be disregarded. Therefore, we

recommend opting the points of symmetry that are close to the center as side constraints.

Appendix

Lemma3 Show f ′1(0, θ0) = n1h1(0, θ0).
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Figure 3.2.2: Descriptive Statistics for simulated data set Y

We compute

∂

∂λ1(θ)
f1(λ1(θ), θ) =

∂

∂λ1(θ)

∑
log(wi(λ1(θ), θ))

=
∑ n1(g1(θ − t;xi)− g∗1(θ + t;xi))

n1 − n1λT
1 (θ) · (g1(θ − t;xi)− g∗1(θ + t;xi))

So

f ′1(0, θ0) =
∑

g1(θ − t;xi)− g∗1(θ + t;xi) = n1h1(0, θ0)

Similarly, we can show that f ′2(0, θ0) = h2(0, θ0).

By SLLN,
1
n1

f ′1(0, θ0)
P−→ E(g1(θ0 − t;xi)− g∗1(θ0 + t;xi)) = 0

and in view of Lemma 2(i)

√
Nλ1(θ0)

D−→ N(0,Σ1) , as N →∞.
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Figure 3.2.3: Log empirical likelihood function value for θ

By Slutsky’s theorem,

√
NλT

1 (θ0)
f ′1(0, θ0)

n1

P−→ 0 , as N →∞.

Also taking the second derivatives with respect to λ1(θ), we now compute f ′′1 (0, θ0) =

n1h
′
1(0, θ0) = D1rl. The rlth element of the (m1 + 1)× (m1 + 1) matrix D1 is

D1rl =
∂2

∂λ1r(θ)∂λ1l(θ)
f1(λ1(θ), θ)|λ1(θ)=0 .

♦

Lemma4 Suppose Dk is a positive definite matrix of s× s, Vki, i=1,2,3 is a vector of sx1,

and θ is a scalar in R.

The minimization of the following equation

min
θ
{ 2(V11 − V12θ)T V13 + (V11 − V12θ)T D1(V11 − V12θ)

+2(V21 − V22θ)T V23 + (V21 − V22θ)T D2(V21 − V22θ)} (17)
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occurs when θ is θ̂ that is the solution of the following equation f ′1(θ) + f ′2(θ) = 0 where

fk(θ) = {(Vk1 − Vk2θ)T Vk3 + (Vk1 − Vk2θ)T Dk(Vk1 − Vk2θ)}

and

f ′k(θ) =
∂

∂θ
{(Vk1 − Vk2θ)T Vk3 + (Vk1 − Vk2θ)T Dk(Vk1 − Vk2θ)} .

The value θ̂ that achieves the minimum value is

θ̂ =
∑

k(V
T
k2DkVk1 + V T

k2Vk3)∑
k(V T

k2DkVk2)
. (18)

The minimum value achieved is f1(θ̂) + f2(θ̂).

Similarly, the minimization of the following equation

min
θk

{2(Vk1 − Vk2θk)T Vk3 + (Vk1 − Vk2θk)T Dk(Vk1 − Vk2θk)} (19)

occurs when θk is θ̂k that is the solution of the following equation f ′k(θk) = 0 where

fk(θk) = {(Vk1 − Vk2θk)T Vk3 + (Vk1 − Vk2θk)T Dk(Vk1 − Vk2θk)}

and

f ′k(θk) =
∂

∂θk
{(Vk1 − Vk2θk)T Vk3 + (Vk1 − Vk2θk)T Dk(Vk1 − Vk2θk)} .

The value θ̂k that achieves the minimum value is

θ̂k =
V T

k2DkVk1 + V T
k2Vk3

V T
k2DkVk2

(20)

and the minimum value achieved is fk(θ̂k).

Theorem 3 (F. Graybill (1976)) Suppose Y
D−→ N(µ,Γ) , Γ is a positive definite matrix

with rank n. Suppose M is a positive symmetric matrix. Then the quadratic form Y T MY
D−→

χ2(df = γ, ncp = 1/2µT Mµ) if and only if rank of MΓ is γ and MΓ is idempotent.

Lemma 5 Show that MΓ is idempotent.

Proof: The claim we need to show is that (MΓ)(MΓ)=MΓ.

In Theorem 1, M is the identity matrix so that MΓ=Γ and (MΓ)(MΓ)=Γ2. Since each

element of Γ2 is the same as that of Γ, it proves that Γ is idempotent. That implies that MΓ is

also idempotent as well with rank=trace(MΓ)=1. ♦
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