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Suppression and Collapsibility for Log-linear Models
Chong Sun Hongl)
Abstract

Relationship between the partial likelihood ratio statistics for logisitic models and
the partial goodness-of-fit statistics for corresponding log-linear models is discussed.
This paper shows how definitions of suppression in logistic model can be adapted for
log-linear model and how they are related to confounding in terms of collapsibility for
categorical data. Several 2 X 2 X 2 contingency tables are illustrated.

Keywords : Confounding, Goodness—of-fit statistic, Logistic, Likelihood ratio statistic,
Suppressor variable.

1. Introduction

Consider H,: 3, =0 for the following two models :
Hy:Y,=a+g
’ (L.1)
H Y, =a+ 06X te¢,
}[’ . Yl = + X’i + fi
0 Ak (1.2)
H:Y,=a+0X;+ 06X +e.

The sums of squares due to regression of the test statistics for the above two hypotheses

would be the sum of squares from regression on X, alone, SSR(X;), and the increase in the
regression sum of squares due to addition of X, to the model that already contains X,
SSR (X,|X, ), respectively. Horst (1941) defined a suppressor variable as a predictor X; that
is correlated with the first predictor X; but uncorrelated with the response Y ; that is,

Tpa, = 0 and 7, = 0. Such a variable causes the squared multiple correlation coefficient R? to

exceed the sum of two squared simple correlation coefficients with Y ;

R*>rl 412, (1.3)
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SSR(X, | X;)> SSR(X,). (1.4)

X, is thus said to suppress some of the variance in X; not relevant to Y, thereby
increasing Xj’'s importance in the regression. Note that (1.3) condition is identical with (1.4)
condition. The relationships between SSR(X, | X,),SSR(X,), and among the correlation

coefficients 7,7, and 7,, have been considered by Hamilton (1987, 1988) with further
contributions by Mitra (1988) and Freund (1988) (called a classical suppression). Hamilton
(1987) suggested a necessary and sufficient condition for (1.3) in terms of the partial

correlation coefficient for X, (a cooperative suppression).

rWz‘Il
Schey (1993) explained a geometrical description about the relationship between SSR(X,)

and SSR(X, | X;) with respect to some correlation coefficients. Sharpe and Roberts (1997)

investigated the condition under which suppression can occur algebraically and graphically in
linear regression. Grayson (1987) discussed the analogous definitions of the suppression and
the confounding for both linear and logistic regression models. However, Lynn (2003) argued
that there are important distinctions in the conditions that lead to suppression and confounding
in logistic regression versus those in linear regression. For logistic regression, he defined the
conditions leading to confounding and suppression (classical and cooperative) via log odds
ratios. Since likelihood ratio statistics play a similar role as regression sum of squares
(actually SSE ; error sum of squares), Lynn (2003) defined a similar condition to (1.4) as

LX | xY)<L(X|Y), (15)

where L(X; | Y) and L(X; | X,Y) are defined as the log likelihood ratio statistics to test

the hypotheses (2.3) and (2.4), respectively (Author regards these statistical models as logit
models rather than logistic models. In this paper, logit model will be named instead of logistic
model). Lynn (2003) demonstrated three 2 X 2 X 2 categorical data in order to explain the

relationship between L(X, | X;Y) and L(X, | ¥) in the absence of confounding.
In this paper, we extend Lynn’s work on suppression and confounding to log-linear models

and discuss how the suppression and confounding relate to the collapsibility with confounding
in log-linear models.

2. Suppression and Collapsibility with Confounding

In epidemiology, confounding is typically presented in terms of association between disease
(D)=Y, exposure (E)=X, and confounder (C) = X,. <Table 2.1> shows three 2X2 X2

contingency tables to explain the relationship between L(X, | X;Y) and L(X; | Y), which

are designed by Lynn (2003).
These values of the log likelihood ratio statistics for the logit models fitted to data in
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<Table 2.1> are obtained in <Table 22> Note that one can get L(X,| X;Y) =
L(XX,| Y)-L(X,| Y), where L(X;| Y) and L(X,X,| Y) are the statistics of logit

models for the null and the alternative hypotheses in (2.4).

<Table 2.1> Suppression and collapsibility with confounding

Example 1 Example 2 Example 3
(X1X%|Y) (X%1Y]X) (X1LX, | Y and XL Y| X)
X; = yes X; = yes X, = yes
X, X, X,
E | E E | E E| FE
v D | 20| 15 y D |15 ] 30 v D 12 8
D | 10| 20 D | 20| 15 D 2 8
X, = no X, = no X, = no
X, b X,
E | E E | E E | E
y {_7 40 | 30 v ? 30 | 10 y 1_7 6 4
D | 15|30 D40 | 5 Dl 1] 4
<Table 2.2> log likelihood ratio statistics for the logit models
Example 1 Example 2 Example 3
L(X|Y) 10.0893 8.7946 6.7903
L(X|Y) 0.8400 1.3960 0.0000
LXX|Y) 10.8827 8.7946 6.7903
L(X, | X Y) 0.7934 0.0000 0.0000

Since one could derived the logit models which correspond to log-linear models, the log
likelihood ratio test statistics L(X, | Y) and L(X, | X;Y) for the logit models are equivalent

to the goodness—of-fit statistics for the corresponding log-linear models. Hence one can
establish the following Theorem and Definition.

Theorem 2.1.
For dichotomous categorical variables ¥, Xi, and X,, the log-linear models in the following
hypotheses
Hy : logmyy, = u+ ) + Uy, ) + U (1) F Uy ()
H + log My = U+ Uy 5) + Uz, ) F Us, () F Uiz, () T U i)

(2.1)
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and
Hy = logm = u+ ty () + Us, () F Ui,y () T Uya, (i) T Usyzy () 22
H, logmy = u+ Uy + Uy, ) T Us, ) T Uy, () T Uy ) T Uy 36)
are equivalent to the corresponding logit models in the following hypotheses :
H, : logit (jk) = w
0 ogY ) (2.3)
H, : logit (jk) = w+ w,
and
H,: logit (k) = w+w
0 git (k) 1 (2.4)

H, : logit (jk) = w + w, + w,,

respectively, where logit (jk) = log (my 5 /man), w=2u,q), w; =2u

v (17) A0d Wy = 2wy, (1),

proof :
When myy,t=1,2 is substituted by appropriate log-linear models in (2.1) and (2.2), the

corresponding logit models in (2.3) and (2.4) are easily obtained. For example, the alternative
hypothesis model in (2.4) could be derived as

logit (jk) = logm, 3, — logmay,
= [u+Uy1) F Uz () F Us,y (k) T Uy, (1) F Uiz, () + Uy (1) ]
= [u+ uy (@) + Us, () + Uy k) F Uy, (25) T Uy () T Uy 28)]

= [uya) = uy@)] + [y, (1) — Uy 29) ] F [y, (1) — Uy o))
= w+ w; + w,.

The generalized likelihood ratio statistics to test the hypotheses (2.1) and (2.2) could be
defined as the partial goodness-of-fit statistics
G’ (Hy\H,) = G*(Hy) - G*(H,) and G*(H,|H,) = G*(H,)— G’ (H,),

where G?(H,) and G* (H|H,) are the goodness-of-fit statistics under certain models
G’ (H,) = 22’; xijkIOgmijk/”;{ﬁ and G* (H|H,) = 22;77; 57210877’% UH};/??A% gll’c;
27 R

respectively, with the observed value z;; and the expected value nAzijk of a (i,j,k) cell.

As we mentioned in Section 1, the log likelihood ratio statistics L(X, | Y) and
L(X, | X;Y) are the statistics for testing the hypotheses (2.3) and (2.4). And test statistics
for the equivalent hypotheses (2.1) and (2.2) are well known as the partial goodness—of-fit
statistics G*(H, | H;) and G2 (Hy|H,) (see Christensen (1990) and Agresti (1990) for more

detail). Therefore, one obtains that the log likelihood ratio statistics for testing the hypotheses
(2.3) and (2.4) are identical to the partial goodness—of-fit statistics for testing the hypotheses
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(2.1) and (2.2), respectively, such as
L(X,|Y) = G*(H,\H,)
L(X\X,Y) = G* (HylH,).
This coincident behavior between log likelihood ratio statistics and goodness—of-fit
statistics might be confirmed at <Table 2.3> with comparing values in <Table 2.2>.

(2.5)

<Table 2.3> goodness—of-fit statistics for log-linear models

Example 1 Example 2 Example 3
G* (H,) 10.8827 8.7946 6.7903
G* (H,) 10.0427 7.3986 6.7903
G*(H, | H,) 0.8400 1.3960 0.0000
G* (Hy) 0.7934 0.0000 0.0000
G*(H,) 0.0000 0.0000 0.0000
G’ (H, | H,) 0.7934 0.0000 0.0000

We knew that the log-linear models in the hypotheses (2.3) and (2.4) could be rewritten as
Hy: [Y][X, %)
H - [YXz]{Xle]
Hy: [YX ][XX,]
H' : [YX [ XX][YX]
Hence one obtains that the suppression condition for log-linear models might be established
as the following Definition based on the condition (1.5) for logit models.

Definition 2.1.
For three dimensional contingency tables, the variable X, is defined as a suppressor if it

satisfies the condition

G ([yx]xx] | [YX]XX%][YX]) < G ((YIXGX) | VX)X X,)). (26)

The definitions of suppression in (1.5) and (2.6) could be interpreted that the suppressor
variable X, is correlated with the variable X but uncorrelated with the response Y in the

log-linear model when there exists relationship between Y and X;. In other words, the
interaction terms between both X; and X;, and Y and X are statistically significant, but that

between ¥ and X, is not significant.
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Based on the definition of the collapsibility over the variable X, (confounder), the variable
X, is uncorrelated to either the variable Y or the variable X; or both (Bishop, Fienberg, and

Holland (1975, pp. 47), Agresti (1984, pp. 146), and Cristensen (1990, pp. 114) for more detail).
It notes that the collapsible log-linear models with confounding over the variable X, are

(YX ][ YX], [YX ][XX;], and [YX;][X,] models among three dimensional models. These

models are also called as strictly and strongly collapsible defined by whittemore (1978),
Durcharme and Lepage (1986), and Geng (1992). In this paper we use the general definition of
the collapsibility defined by BFH 1975) etc. These [YX;][YX), [YX][XX;], and [YX][X,]

models are best fitted log-linear models to the three data sets in <Table 2.1>, respectively,
and the notation (X;LX,]7Y), (LY]|X,), and (X;1X,]| Yand X, L Y| X;) for the logit

models fitted to the data in Example 1 to Example 3 at <Table 2.1> are also expressed by
(YX ][ YX], [YX ][X,X;], and [YX;][X;] for the log-linear models. Hence, we can derive the

fact that the categorical data satisfying the condition (2.6) are collapsible with confounding
over the variable X,, which turns out to be the suppressor variable. (see <Table 2.2 and

2.3>). Therefore, we might mention the following Theorem 2.2 :

Theorem 2.2

The three dimensional categorical data including a suppressor variable X, (confounder) is

collapsible with confounding over the variable X, for the log-linear model.

proof :
Based on the definition of the collapsibility, there exists a distinct relationship between the
variable Y and X, which is coincided with the definition of the suppression. Hence the

circumstance for three dimensional log-linear model based on the relationship among the
variable Y, X, andX, which are explained by the definition of the collapsibility over the

variable X, is identical with the situation when the variable X; is suppressor for both the

logit and regression models. %

Unfortunately, except in the trivial case when both L(X; | X;Y) and L(X,|Y) equal
zero in logit model, L(X; | X;Y) is not always less than L(X, | ¥) (Lynn, 2003). We find
that this phenomenon happens to the log-linear models in <Table 2.2 and 2.3>.

3. Non-Collapsibility without Confounding

Confounding is typically presented in terms of odds ratios in epidemiology : the conditional
odds ratio measuring the association between disease and confounder among the non-exposed,
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and the conditional odds ratio measuring the association between exposure and confounder
among the non-diseased (Kleinbaum, Kupper, and Morgenstern 1982). With these odds ratios,
Boivin and Wacholder (1985) defined positive and negative confounding, and Lynn (2003)
explained classical and cooperative suppressions. Based on these theories, one could check that
the three data sets in <Table 2.1> satisfy all these suppression conditions.

In this section, other three data sets which do not satisfy the suppression conditions are
generated and listed at <Table 3.1>, which are all non-collapsible over the variable X,

(non-collapsibility without confounding). As we discussed in Section 2, similar results of log
likelihood ratio statistics for logit and goodness-of-fit statistics for log-linear models are
shown in <Table 3.2 and 3.3>.

<Table 3.1> Non-collapsibility without confounding

Example 1 Example 2 Example 3
[Y][Xx,X,] [YX][X] [¥Y2][X %]
X, = yes X, = yes X; = yes
E| FE E | FE E | E
v 1_7 17 9 v 9 9 34 v {) 68 | 25
D |21 11 Dl 5 |19 D |29 | 11
X, = no X, = no X, = no
X X X
D | 27 | 36 D | 11 | 44 D {12 | 35
Y D | 34| 45 Y D | 16 | 62 Y D| 5 |15

<Table 3.2> log likelihood ratio statistics for the logit models

Example 1 Example 2 Example 3
L(Xx|7Y) 0.0002 0.0010 0.0039
L(X|Y) 0.0035 9.3802 0.0011
L(XX|Y) 0.0044 9.3831 0.0086
L(X | XY) 0.0042 9.3821 0.0047

Since these illustrated data are non-collapsible without confounding, neither (1.5) nor (2.6)
condition is satisfied (see <Table 3.2 and 3.3>). In other words, the interaction term between
Y and X; is not statistically significant in the best fitted log-linear models ([Y][X;X;],
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[YX;1[X], and [¥X,][X,X,] models) corresponding the data in <Table 3.1>. This coincides

with the fact that we obtained in Section 2.

<Table 3.3> goodness-of-fit statistics for log-linear models

Example 1 Example 2 Example 3
G* (Hy) 0.0044 9.3855 0.0086
G*(H,) 0.0008 0.0053 0.0075
G*(H | H) 0.0036 9.3802 0.0011
G* (Hy) 0.0041 9.3846 0.0047
G* (H,') 0.0000 0.0024 0.0000
G (H, | H) 0.0041 9.3822 0.0047

4. Conclusion

Previous sections explain how definition of suppression in logit model can be adapted for
use in log~linear model and how suppression is related to concepts of confounding in terms of
collapsibility for three dimensional categorical data.

If for three dimensional contingency table with X, being confounder,

G ((YIxX] | [¥X5][xX] > &*(YX]XX] | [YX][XX][YX),

then we find that the variable X, is a suppressor. And one could conclude that the data
including the suppressor variable X, (confounder) might be collapsed over the variable X,.

It notes that collapsible log-linear models over the confounder X, are [YX;][YX;], and
[YX][X], [YX][XX,] models among three dimensional log-linear models. For the data
explained by these collapsible log-linear models ([YX;][YX;], and [YX][X], [YX ][ X X)),
the variable X, turns out to be a suppressor or confounder variable.

Since Schey (1993) and Sharpe and Roberts (1997) examined the relationship between
regression sums of squares and the correlation coefficients by using geometric methods in
regression model, one might study the analogus relationship about measure of associations
among Y, X, and X, for further work.
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