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Abstract
In this paper we consider the problem of the model selection/discrimination among three different positively

skewed lifetime distributions. Lindley, Weibull, and gamma distributions have been used to effectively analyze
positively skewed lifetime data. This paper assesses how much closer the Lindley distribution gets to Weibull and
gamma distributions. We consider three techniques that involve the likelihood ratio test, asymptotic likelihood
ratio test, and minimum Kolmogorov distance as optimality criteria to diagnose the appropriate fitting model
among the three distributions for a given data set. Monte Carlo simulation study is performed for computing the
probability of correct selection based on the considered optimality criteria among these families of distributions
for various choices of sample sizes and shape parameters. It is observed that overall, the Lindley distribution is
closer to Weibull distribution in the sense of likelihood ratio and Kolmogorov criteria. A real data set is presented
and analyzed for illustrative purposes.

Keywords: likelihood ratio statistic, asymptotic distributions, Kolmogorov distance, Lindley distri-
bution, probability of correct selection, Monte Carlo simulation

1. Introduction

Let X1, X2, . . . , Xn be a univariate lifetime data set and coming from a positively skewed distribution.
Based on the distributional relationship among the Lindley (LI), Weibull (WE), and gamma (GA)
distributions, it is quite natural that the three models may provide similar data fit in the sense the three
models can be used effectively to analyze skewed data. It can be observed that for certain ranges of
the parameter values, the probability density functions (PDFs) or the cumulative distribution functions
(CDFs) of the three distributions are close to each other; however, these distributions are different in
terms of other characteristics. Let us introduce the underlying distributions (LI, WE, GA) for a data
set. The LI distribution was used by Lindley (1958) in the context of Fiducial and Bayesian statistics.
Its PDF is

g(x; λ) =
λ2

λ + 1
(1 + x)e−λx,

= pg1(x; λ) + (1 − p)g2(x; λ), x > 0, λ > 0,

where

p =
λ

λ + 1
, g1(x; λ) = λe−λx, x > 0, g2(x; λ) = λ2xe−λx, x > 0.
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Figure 1: The CDFs of LI(1.52, 0.6), WE(1.45, 0.5), and GA(1.7, 0.86). CDF = cumulative distribution function;
LI = Lindley; WE =Weibull; GA = gamma.

The Lindley PDF can be written as a mixture of an exponential distribution with scale parameter λ
and a GA G(2, λ) with mixing proportion p = λ/(λ + 1). This distribution received attention in the
last few years. Ghitany et al. (2008) showed that the LI distribution is a better model than exponential
distribution for some applications. Mazucheli and Achcar (2011) showed that the LI distribution can
be used effectively in modelling strength data as well as for modelling general lifetime data. The
LI distribution has been studied and extended by many authors in recent years. See, for example,
Asgharzadeh et al. (2016), Asgharzadeh et al. (2017), Bakouch et al. (2012), Gomez-Deniz et al.
(2014), Nadarajah et al. (2011), Okwuokenye and Peace (2016), and Zakerzadeh and Jafari (2009).
Statistical inference for LI distribution based on complete and censored data has been discussed by
several authors. See for example, Ali et al. (2013), Al-Mutairi et al. (2013), Gupta and Singh (2013),
and Krishna and Kumar (2011). For λ > 0, α > 0, the two-parameter LI distribution has the PDF

f (x;α, λ) =
αλ2

λ + 1
xα−1(1 + xα)e−λxα ,

= pg3(x;α, λ) + (1 − p)g4(x;α, λ), x > 0, α, λ > 0,

where

g3(x;α, λ) = αλxα−1e−λxα , x > 0,

g4(x;α, λ) = αλ2x2α−1e−λxα , x > 0.

Here the LI(α, λ) is a two-component mixture of Weibull and a generalized gamma with shape α and
scale λ parameters.

The PDFs of WE and GA distributions are, respectively, of the forms:

fWE(x; β, θ) = β θβxβ−1e−(θx)β , for x > 0, β, θ > 0,

fGA(x; ν, τ) =
τν

Γ(ν)
xν−1e−τx, for x > 0, ν, τ > 0.

The WE and GA distributions are two of the most popular distributions used for analyzing skewed
lifetime data. They have many applications that include queuing systems, reliability assessment, and
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Table 1: The PCS based on the maximized likelihood when the model LI(1.5, 1)

n 20 30 50 80 100 500
PCS 0.392 0.445 0.594 0.655 0.691 0.945

PCS = probability of correct selection.
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Figure 2: The hazard (a) and mean residual life (b) functions of LI(1.52, 0.6), WE(1.45, 0.5), and GA(1.7, 0.86).
LI = Lindley; WE =Weibull; GA = gamma.

insurance claims. A detailed discussion on WE distribution and its related issues can be found in Kim
(2016) and Park et al. (2016). A WE distribution with shape and scale parameters will be denoted by
WE(β, θ) and similarly a GA distribution with shape parameter ν and inverted scale parameter τ will
be denoted as GA(ν, τ).

Bain and Engelhardt (1980) proposed the use of the likelihood ratio statistic when choosing be-
tween a Weibull or gamma model and the values of the probability of correct selection (PCS) are
obtained by Monte Carlo (MC) simulation. Marshall et al. (2001) considered the discrimination
problem between the geometric extreme exponential model and other families of distributions that in-
cluded Weibull, gamma and lognormal families as alternatives. Wiens (1999) discussed the problem
of discriminating between lognormal and GA distributions. Dumonceaux and Antle (1973) and Pas-
cual (2005) used maximum likelihood estimation (MLE) to study the miss-specification of lognormal
and WE distributions.

Now we briefly describe the importance of choosing the best correct model, assuming that all the
three models fit the data reasonable well. Let us consider the CDFs of LI(1.52, 0.6), WE(1.45, 0.5),
and GA(1.7, 0.86) presented in Figure 1. Data can be also fitted well by the other two distributions
if it follows any one of the three distributions. This means that the separation between the three
distributions are of great interest because they allow practitioners to choose the best choice among the
distributions. The problem of choosing the correct model is not an easy task if the sample size n is
small. For example, if the data are coming from LI(1.5, 1), then the PCSs based on MC simulations
based on the maximized likelihood method are computed as in Table 1. It is observed from Table 1
that the PCS can be only 0.392 when the sample size is 20. The mis-specification problem would lead
to a serious effect. Let us look at the hazard functions or the mean residual life function of the three
distribution functions displayed in Figure 2. The three CDFs are quite close to each other; however,
it is evident that other characteristics such as the hazard functions or mean residual life functions of
these distribution are clearly separated. Significant separation may occur for other characteristics as a
variable sampling plan (Schneider, 1989).

This paper is to help the experimenter decide which distribution best fit his real data. The most
appropriate fitting model allows us to develop valid model of random processes and make better de-
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cisions. In practice, the probability distributions are crucial for making efficient inferences in diverse
fields as risk analysis, actuarial studies, reliability engineering and medicine. The problem of dis-
crimination among some specific lifetime distributions has received a considerable attention in the
literature due to increasing applications of lifetime distributions. We use the maximized likelihood
ratio test (LRT), its asymptotic distribution and the minimum Kolmogorov distance (KD) procedures
as optimal criteria to discriminate among the three competitive models: LI, WE, and GA distributions.
We use the asymptotic distributions of the maximized likelihood functions since the exact distributions
of the maximized likelihood functions are not available for finite samples. By using these procedures,
PCSs are computed to discriminate among these models and determine the correct model by extensive
computer simulations for different sample sizes.

The rest of the paper is organized as follows. We briefly describe the maximized LRT and mini-
mum KD procedures in Section 2. In Section 3, the asymptotic distributions of the ratio of maximized
likelihoods (RMLs) to discriminate between all pairs of the distributions are obtained. MC simulation
experiments of PCS values using the LRT and KD procedures as well as the asymptotic results are
presented in Section 4. Analysis of real data is also performed in Section 5. Finally, we conclude the
paper in Section 6 with a look towards future work.

2. Likelihood ratio test and Kolmogorov distance procedures

Here in this section, we use the maximum LRT and the minimum KD criteria to choose the de-
sirable fitted model among LI, WE, and GA distributions. Assume that the random sample X =
(X1, X2, . . . , Xn) is known to come from either a LI distribution, X ∼ LI(α, λ), or a WE distribution,
X ∼ WE(β, θ) or a GA distribution, X ∼ GA(ν, τ). Based on the observed sample, the corresponding
likelihood functions are LL(α, λ; x), LW (β, θ; x), LG(ν, τ; x), respectively. For LI observed data with
given α, the MLE of λ is

λ̂(α) =
n −∑n

i=1 xαi +
√(

n −∑n
i=1 xαi

)2
+ 8n

∑n
i=1 xαi

2
∑n

i=1 xαi
. (2.1)

Now, to obtain the MLE of α, we need to maximize the profile log-likelihood function with respect
to α. It can be shown that the maximum of log L(α, λ̂(α)) can be found as a fixed point solution of the
following non-linear equation g(α) = α, where

g(α) =

 λ̂(α)
n

n∑
i=1

xαi ln xi −
1
n

n∑
i=1

ln xi −
1
n

n∑
i=1

xαi ln xi

1 + xαi

−1

.

Very simple iterative procedure g(α(k)) = α(k+1) can be used, where α(k) is the kth iterate. Once the
MLE of α is computed, the MLE of λ can be computed immediately from (2.1).

For WE distribution with given β, the MLE θ̂ of θ is obtained as

θ̂ =

 n∑n
i=1 xβi


1
β

.

By substituting θ̂ in the respective log-likelihood, we obtain the MLE of β as a fixed point solution to
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h(β) = β, where

h(β) =

∑n
i=1 xβi ln xi∑n

i=1 xβi
−

∑n
i=1 ln xi

n

−1

.

Under the assumption that the observations follow GA distribution, the MLEs of ν and τ for G(ν, τ)
are obtained by solving the nonlinear equation:

ln ν − ψ(ν) +
1
n

n∑
i=1

ln xi − ln X = 0,

where X is the sample mean. If ν̂ is obtained, the MLE of τ is computed to be τ̂ = ν̂/X.

2.1. Likelihood ratio test procedure

Let X1, . . . , Xn be independent and identically distributed (iid) random variables (r.v.’s) coming from
either a LI(α, λ) or a WE(β, θ). The log-likelihood ratio statistic TLW, is defined as the logarithm of
RML functions (see for example, Cox, 1961):

TLW = ln

 LL

(
α̂, λ̂; x

)
LW

(
β̂, θ̂; x

) 
= n ln

 α̂λ̂2(
λ̂ + 1

)
β̂ θ̂β̂

 + (
α̂ − β̂

) n∑
i=1

ln xi +

n∑
i=1

ln
(
1 + xα̂i

)
− λ̂

n∑
i=1

xα̂i + n, (2.2)

where α̂ and λ̂ are the MLEs of α and λ, respectively, under the LI distribution and β̂ and θ̂ are the
MLEs of β and θ based on WE distribution. Now, the log-likelihood ratio statistic TLG based on
LI(α, λ) and GA(ν, τ) is also defined as

TLG = ln
(

LL(α̂, λ̂; x)
LG(ν̂, τ̂; x)

)
= n ln

 α̂λ̂2Γ(ν̂)

τ̂ν̂
(
λ̂ + 1

)  + (α̂ − ν̂)
n∑

i=1

ln xi +

n∑
i=1

ln
(
1 + xα̂i

)
+ τ̂

n∑
i=1

xi − λ̂
n∑

i=1

xα̂i . (2.3)

The decision rule for discriminating between the LI and WE distributions is to choose the LI if TLW >
0, and to reject the LI in favor of the WE, otherwise. Similarly, for discriminating between any LI and
GA, we choose LI if TLG > 0, and GA otherwise.

2.2. Kolmogorov distance procedure

The KD between two distributions is a tool to measure how similar two probability distributions are.
It is the usually preferred way of measuring similarity of distributions. Let FL(α̂, λ̂), FW (β̂, θ̂) and
FG(ν̂, τ̂) be the CDFs computed at the MLEs of the parameters of LI, WE, and GA distributions,
respectively. Also, let Fn(x) be the empirically observed CDF computed based on the available data.
KDs associated with the three models are defined as:

KDL = sup
−∞<x<∞

∣∣∣∣FL

(
α̂, λ̂

)
− Fn(x)

∣∣∣∣ , KDW = sup
−∞<x<∞

∣∣∣∣FW

(
β̂, θ̂

)
− Fn(x)

∣∣∣∣ ,
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and

KDG = sup
−∞<x<∞

|FG (ν̂, τ̂) − Fn(x)| , (2.4)

respectively. The decision rule here for discriminating among the three distributions is to choose the
model with the minimum KD.

3. Asymptotic results of the ratio of maximized likelihood

In this section, we provide the asymptotic distribution of the logarithm of RML statistics LLW and
LLG under null hypotheses in two different cases for each statistic. The results are concluded using
the Central Limit Theorem (CLT) and White (1982). For notational convenience, let ϕ(V) be any
Borel measurable function. The mean and variance of ϕ(V) under the assumption that V follows
LI(·, ·) are denoted by EL(ϕ(V)) and VarL(ϕ(V)), respectively. Similarly, EW (ϕ(V)),VarW (ϕ(V)) and
EG(ϕ(V)),VarG(ϕ(V)) stand for the mean and variance of WE(·, ·) and GA(·, ·), respectively. We also
denote the almost sure convergence by a.s.

3.1. Asymptotic distribution of Lindley against Weibull

Case 1: The data come from a LI distribution LI(α, λ) and competing distribution is a WE distribution
WE(β, θ). In this case, let us present the following lemma which is quite useful for the asymptotic
results in Theorem 1 given below.

Lemma 1. Under the assumption that the data are sampling from LI(α, λ), we have the following
results as n→ ∞,

(a) α̂→ α a.s., and λ̂→ λ a.s., where

EL (ln fL (X;α, λ)) = max
ᾱ,λ̄

EL

(
ln fL

(
X; ᾱ, λ̄

))
.

(b) β̂→ β̃ a.s., and θ̂ → θ̃ a.s., where

EL

(
ln fW

(
X; β̃, θ̃

))
= max

β,θ
EL (ln fW (X; β, θ)) .

(c) If T ∗LW = ln[(LL(α, λ; x))/(LW (β̃, θ̃; x))], then n−1/2(TLW −EL(TLW)) is asymptotically equivalent to
n−1/2(T ∗LW − EL(T ∗LW)).

Proof: Using arguments similar to those in White (1982, Theorem 1), we conclude the results. �

Theorem 1. Under the assumption that the data are coming from LI(α, λ), then the distribution of
TLW as defined in (2.2) is approximately normally distributed with mean EL(TLW) and VarL(TLW) as
n→ ∞.

Proof: It follows from CLT and part (b) of Lemma 1 that n−1/2(T ∗LW − EL(T ∗LW)) is asymptotically
normally distributed with mean 0 and variance VarL(T ∗LW) = VarL(TLW). Then by using (c) of Lemma
1, n−1/2(TLW − EL(TLW)) also approximately normally distributed as n → ∞. Then for large n, TLW
converges in distribution to normal distribution with mean EL(TLW) and variance VarL(TLW). �
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Now, the mis-specified WE parameters when the data are coming from LI distribution, β̃ and θ̃ are
computed based on maximizing π1(β, θ) = EL[ln fW (X; β, θ)]. Equivalently, β̃ and θ̃ are, respectively,
solutions to

1
β
+ EL(ln X) − EL(Xβ ln X)

EL
(
Xβ

) = 0, (3.1)

θ =

(
1

EL
(
Xβ

) ) 1
β

, (3.2)

where

EL

(
Xβ

)
=
λΓ

(
β
α
+ 1

)
λ

β
α (λ + 1)

{
1
λ

(
β

α
+ 1

)
+ 1

}
, EL (ln X) =

1
α

{
ψ(1) +

1
λ + 1

− ln λ
}
,

EL

(
Xβ ln X

)
=
λΓ

(
β
α
+ 1

)
λ

β
α (λ + 1)α

{[
ψ

(
β

α
+ 1

)
− ln λ

] [
1 +

1
λ

(
β

α
+ 1

)]
+

1
λ

}
.

Consequently, for large n, TLW is asymptotically normal distribution with mean EL(TLW) and VarL(TLW)
and variance, where

AML
LW = lim

n→∞

EL(TLW)
n

= EL

[
ln fL (X;α, λ) − ln fW

(
X; β̃, θ̃

)]
, (3.3)

AVL
LW = lim

n→∞

VarL(TLW)
n

= VarL

[
ln fL(α, λ) − ln fW

(
β̃, θ̃

)]
, (3.4)

provided that AML
LW and AVL

LW exist. The asymptotic PCS given that the true sampled distribution is
LI and that the competing distribution is WE, is given by

PCSL = P (TLW > 0) ≈ 1 − Φ

−nAML
LW√

nAVL
LW

 ,
where Φ(.) is the distribution function of the standard normal distribution.

Case 2: The data come from a WE distribution WE(β, θ) and competing distribution is a LI(α, λ).
Using similar procedures used in Case 1, it can be shown that as n → ∞, TLW is normally distributed
with mean EW (TLW) and variance VarW (TLW), where

AMW
LW = lim

n→∞

EW (TLW)
n

= EW

[
ln fL

(
X; α̃, λ̃

)
− ln fW (X; β, θ)

]
, (3.5)

AVW
LW = lim

n→∞

VarW (TLW)
n

= VarW

[
ln fL

(
X; α̃, λ̃

)
− ln fW (X; β, θ)

]
, (3.6)

where α̃ and λ̃ are mis-specified LI parameters when the data are coming from WE distribution. Here
α̃ and λ̃ are the values that maximizes π2(α, λ) = EW

[
ln fL(X;α, λ)

]
. Therefore α̃ and λ̃ are solutions

to the following equations:

1
α
+ EW (ln X) + EW

(
Xα ln X
1 + Xα

)
− λ̃(α)EW (Xα ln X) = 0,

λ̃(α) =
1 − EW (Xα) +

√
(1 − EW (Xα))2 + 8EW (Xα)

2EW (Xα)
,
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where

EW (Xα) = Γ
(
α

β
+ 1

)
, EW (ln X) =

(
ψ(1)
β
− ln θ

)
,

EW (Xα ln X) =
Γ
(
α
β
+ 1

)
θα

ψ
(
α
β
+ 1

)
β

− ln θ

 ,
EW

(
Xα ln X
1 + Xα

)
=

1
β

∫ ∞

0

x
α
β

1 + x
α
β

ln x e−xdx.

3.2. Asymptotic distribution of Lindley against gamma

Case 1: The data come from a LI distribution LI(α, λ) and competing distribution is a GA distribution
GA(ν, τ). TLG is approximately normally distributed as n → ∞, with mean EL(TLG) and variance
VarL(TLG), where

AML
LG = lim

n→∞

EL(TLG)
n

= EL
[
ln fL(X;α, λ) − ln fG (X; ν̃, τ̃)

]
, (3.7)

AVL
LG = lim

n→∞

VarW (TLG)
n

= VarL
[
ln fL(α, λ) − ln fG (ν̃, τ̃)

]
, (3.8)

where ν̃ and τ̃ are mis-specified GA parameters when the data are coming from LI distribution. Under
LI, the mis-specified parameters ν̃ and τ̃ are derived based on maximizing π3(ν, τ) = EL[ln fG(X; ν̃, τ̃)].
Precisely, ν̃ is the solution to

ψ(ν) − ln ν + EL(X) − EL(ln X) = 0, (3.9)

τ̃ =
ν̃

EL(X)
. (3.10)

Note that

EL(X) =
Γ
(

1
α

) (
1
α
+ λ + 1

)
αλ

1
α (λ + 1)

, and EL(ln X) =
(1 + λ) (ψ(1) − ln λ) + 1

α(λ + 1)
.

Case 2: The data come from a GA distribution GA(ν, τ) and competing distribution is a LI distribution
LI(α, λ). In this case, TLG is approximately normally distributed as n → ∞, with mean EG(TLG) and
variance VarG(TLG), where

AMG
LG = lim

n→∞

EG(TLG)
n

= EG

[
ln fL

(
X; α̃, λ̃

)
− ln fG(X; ν, τ)

]
, (3.11)

AVG
LG = lim

n→∞

VarG(TLG)
n

= VarG

[
ln fL

(
α̃, λ̃

)
− ln fG(ν, τ)

]
, (3.12)

where α̃ and λ̃ are mis-specified LI parameters when the data are coming from GA distribution.
Here, under LI, the mis-specified parameters α̃ and λ̃ are derived based on maximizing π4(α, λ) =
EG[ln fL(X; α̃, λ̃)]. It is easily checked that α̃ is the solution to

1
α
+ EG(ln X) + EG

(
Xα ln X
1 + Xα

)
− λ̃(α)EG (Xα ln X) = 0,

λ̃(α) =

(
1 − EG

(
Xα̃

))
+

√(
1 − EG

(
Xα̃

))2
+ 8EG

(
Xα̃

)
2EG

(
Xα̃

) ,
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where

EG (Xα) =
Γ (α + ν)
Γ (ν) τα

, EG (ln X) = ψ (ν) − ln τ,

EG (Xα ln X) =
Γ (α + ν)
ταΓ (ν)

(ψ (α + ν) − ln τ) ,

EG

(
Xα ln X
1 + Xα

)
=

τν

Γ (ν)

∫ ∞

0

xα+ν−1

1 + xα
ln x e−τxdx.

4. Numerical simulation study

Here in this section, we use the MC simulation to see which model among LI, WE, and GA distri-
butions is preferred for fitting the data under the considered optimality criteria. In fact, we study the
behavior of the PCS of the LI, WE, and GA distributions based on LRT, KD, and asymptotic LRT pro-
cedures. Let us consider the case where the null distribution is LI(1, λ) and the alternative is WE(β, θ).
In this case we consider n = 20, 40, 60, 80 and λ = 0.1, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0. The MC samples
are generated using the following algorithm:

Step 1: Generate data set from a LI distribution of size n.

Step 2: For each fixed value of λ, we compute the MLEs of all parameters involved in the alternatives:
WE and GA distributions. In addition, we compute the mis-specified parameters β̃ and θ̃ of
WE distribution as well as the mis-specified parameters ν̃ and τ̃ of GA distribution using
Equations (3.1), (3.2), (3.9), and (3.10).

Step 3: From Step 2, compute the LRT statistics TLW and TLG in (2.2) and (2.3), respectively. Also,
compute KDL, KDW , and KDG in (2.4).

Step 4: Repeat Step 1–3 M times and obtain MC samples T i
LW, L

i
LG,KDi

L,KDi
W , and KDi

G, i =
1, 2, . . . , M.

Step 5: Under the assumption that the true distribution is LI(1, λ), the approximate PCS based on
LRT and KD can be described as:

PCSLRT
LW ≈

# of TLW values in Step 3 > 0
M

,

PCSKD
LW =

# of times KDL is minimum with respect KDW

M
.

The PCSLRT
LG and PCSKD

LG can be described similarly.

The approximate PCSs based on the normal distribution of TLW and TLG as n → ∞ (using Equa-
tions (3.3), (3.4), (3.7), and (3.8) are

PCSLW ≈ 1 − Φ

−nAML
LW√

nAVL
LW

 , and PCSLG ≈ 1 − Φ

−nAML
LG√

nAVL
LG

 .
The PCS results obtained from MC simulations (carried out using Mathematica package) considering
LRT, asymptotic approximations and KD are presented in Tables 2 and 3 for various sample sizes
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and different parameters values. Arguments similar to ones in the above algorithm can be conducted
when the parent distribution is WE or GA. The simulation study is conducted under WE and GA true
distributions and the respective results are presented in Tables 4 and 5, respectively. From Tables 2–5,
we conclude the following comments:

• Clearly, Tables 2 and 4 show some moderate values of PCS based on LRT, asymptotic LRT and
KD procedures. This shows that these procedures are not clearly discriminate between LI and WE
distributions. Towards this end, LI is close to WE distribution in terms of these criteria.

• When compared to Tables 2 and 4, Tables 3 and 5 present high PCS values. That is, when the
underlying distribution is LI (GA) and the competing GA (LI), the LI distribution can be discrimi-
nated well against GA. When discriminating between LI and GA, the PCS based on LRT, and KD
procedures gets high as α or ν moves away from 1. This implies that the discrimination procedures
perform well in discriminating between LI and GA when α or ν goes away from 1.

• It is easily checked that for fixed sample size, the KD procedure is not intrinsically sensitive to the
choices of parametric values to discriminate between LI and WE distributions. This conclusion is
reversed while discriminating between LI and GA distributions where one can observe significant
variations for various parametric changes. This confirms apparent distinction between LI and GA
fitting distributions and some difficulties in obtaining an obvious discrimination between LI and
WE distributions.

• Generally, the asymptotic PCS and the simulated LRT are close in the most considered cases. This
indicates that asymptotic LRT works reasonably well in discriminating between these distributions
even when the sample size is small or moderate. For large sample sizes, PCS values computed
based on LRT tends to the ones based on the simulated LRT.

5. Data analysis

In this section, we apply the procedures developed in this paper on a real life data set. We present
a data analysis of the insulating fluid data presented by Nelson (1982). The data represent the times
to breakdown of an insulating fluid between electrodes recorded at voltage of 34 kV. As indicated in
Nelson (1982), the times to breakdown insulating fluid at these voltages are an exponential distribu-
tion. Awwad et al. (2014) analyzed the data assuming the WE distribution. The times to breakdown
are recorded as

0.19 0.78 0.96 1.31 2.78 3.16 4.15 4.67

4.85 6.50 7.35 8.01 8.27 12.06 31.75 32.52

33.91 36.71 72.89

Here, we aim at discriminating among LI, WE, and GA and choosing the best preferred model for
fitting this data set. For comparison purposes, we plot the three fitted distribution functions for data
set in Figure 3. It is clear that the three fitted distribution functions are very close in the sense of fitting
probability model; therefore, a tool is required to discriminate among them. Here, we show that the
logarithm of RML plays an important role in discriminating among overlapping families. For this,
it is worthy to decide which one of them represents the data better. Now, the MLEs of the unknown
parameters are α̂ = 0.6141, λ̂ = 0.3979, β̂ = 0.7708, θ̂ = 0.0818, ν̂ = 0.6898, and τ̂ = 0.0480. The
log-likelihood values corresponds to LI, WE, and GA distributions are −63.75 and −68.39 and −68.62.
Therefore, TLW = 4.64 > 0,TLG = 4.87 > 0 and this indicates that the LI distribution is the preferred
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Table 2: The probability of correct selection based on LRT, ALRT, and KD procedures when the true model is
Lindley and the competing distribution is Weibull model

α
n = 20 n = 40 n = 60 n = 80

LRT ALRT KD LRT ALRT KD LRT ALRT KD LRT ALRT KD
0.1 0.47 0.54 0.39 0.52 0.55 0.40 0.52 0.56 0.42 0.52 0.57 0.42
0.3 0.45 0.54 0.40 0.49 0.55 0.40 0.53 0.57 0.43 0.54 0.57 0.43
0.5 0.45 0.54 0.40 0.50 0.55 0.40 0.52 0.56 0.42 0.55 0.57 0.45
1.0 0.46 0.54 0.41 0.50 0.55 0.40 0.51 0.56 0.41 0.54 0.57 0.44
1.5 0.45 0.54 0.39 0.50 0.55 0.39 0.52 0.56 0.42 0.54 0.57 0.44
2.0 0.45 0.54 0.39 0.49 0.55 0.39 0.52 0.56 0.42 0.54 0.57 0.45
2.5 0.46 0.54 0.40 0.50 0.55 0.40 0.51 0.56 0.42 0.54 0.57 0.44
3.0 0.47 0.54 0.40 0.49 0.55 0.40 0.54 0.56 0.44 0.54 0.57 0.43
LRT = likelihood ratio test; ALRT = asymptotic likelihood ratio test; KD = Kolmogorov distance.

Table 3: The probability of correct selection based on LRT, ALRT, and KD procedures when the true model is
Lindley and the competing distribution is gamma model

α
n = 20 n = 40 n = 60 n = 80

LRT ALRT KD LRT ALRT KD LRT ALRT KD LRT ALRT KD
0.1 0.70 0.54 0.92 0.88 0.56 0.98 0.95 0.57 0.99 0.98 0.58 1.00
0.3 0.61 0.69 0.82 0.74 0.76 0.88 0.83 0.81 0.92 0.88 0.84 0.95
0.5 0.50 0.62 0.75 0.60 0.67 0.79 0.65 0.70 0.81 0.69 0.73 0.82
1.0 0.49 0.56 0.41 0.56 0.59 0.44 0.60 0.61 0.50 0.61 0.63 0.51
1.5 0.63 0.66 0.38 0.69 0.72 0.51 0.74 0.76 0.57 0.78 0.79 0.64
2.0 0.66 0.70 0.41 0.76 0.77 0.55 0.81 0.82 0.65 0.85 0.86 0.72
2.5 0.70 0.73 0.43 0.80 0.81 0.60 0.85 0.85 0.70 0.88 0.89 0.76
3.0 0.71 0.74 0.45 0.82 0.82 0.63 0.86 0.87 0.71 0.90 0.91 0.79
LRT = likelihood ratio test; ALRT = asymptotic likelihood ratio test; KD = Kolmogorov distance.

Table 4: The probability of correct selection based on LRT, ALRT, and KD procedures when the true model is
Weibull and the competing distribution is Lindley model

α
n = 20 n = 40 n = 60 n = 80

LRT ALRT KD LRT ALRT KD LRT ALRT KD LRT ALRT KD
0.1 0.57 0.58 0.65 0.56 0.61 0.66 0.57 0.64 0.65 0.59 0.66 0.66
0.3 0.55 0.53 0.66 0.56 0.55 0.66 0.57 0.56 0.65 0.58 0.56 0.66
0.5 0.55 0.53 0.65 0.58 0.55 0.66 0.56 0.56 0.66 0.57 0.56 0.64
1.0 0.55 0.53 0.65 0.57 0.55 0.65 0.58 0.56 0.65 0.59 0.56 0.65
1.5 0.56 0.53 0.67 0.56 0.55 0.66 0.57 0.56 0.65 0.58 0.56 0.64
2.0 0.57 0.53 0.66 0.56 0.55 0.66 0.58 0.56 0.65 0.60 0.56 0.66
2.5 0.55 0.53 0.66 0.57 0.55 0.66 0.57 0.56 0.65 0.58 0.56 0.65
3.0 0.57 0.53 0.65 0.57 0.55 0.66 0.58 0.56 0.64 0.59 0.56 0.65
LRT = likelihood ratio test; ALRT = asymptotic likelihood ratio test; KD = Kolmogorov distance.

Table 5: The probability of correct selection based on LRT, ALRT, and KD procedures when the true model is
gamma and the competing distribution is Lindley model

α
n = 20 n = 40 n = 60 n = 80

LRT ALRT KD LRT ALRT KD LRT ALRT KD LRT ALRT KD
0.1 0.87 0.86 0.52 0.94 0.94 0.66 0.97 0.97 0.74 0.99 0.99 0.80
0.3 0.74 0.71 0.44 0.80 0.78 0.54 0.83 0.83 0.61 0.88 0.87 0.66
0.5 0.63 0.61 0.37 0.67 0.65 0.41 0.71 0.68 0.46 0.72 0.71 0.49
1.0 0.55 0.53 0.54 0.55 0.55 0.49 0.56 0.56 0.48 0.56 0.56 0.47
1.5 0.60 0.60 0.64 0.64 0.64 0.66 0.68 0.67 0.69 0.70 0.70 0.68
2.0 0.65 0.64 0.70 0.70 0.69 0.71 0.74 0.73 0.73 0.76 0.76 0.74
2.5 0.66 0.66 0.71 0.71 0.72 0.73 0.77 0.76 0.76 0.79 0.79 0.77
3.0 0.68 0.67 0.73 0.73 0.73 0.74 0.78 0.77 0.76 0.82 0.81 0.79
LRT = likelihood ratio test; ALRT = asymptotic likelihood ratio test; KD = Kolmogorov distance.
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Figure 3: The three fitted distribution (LI, WE, GA) functions for the insulating fluid data set. CDF = cumulative
distribution function; LI = Lindley; WE =Weibull; GA = gamma.

fitting model. The KD distances between the empirical distribution function and the fitted distributions
and the associated p-values are (KDL = 0.1602, p-value = 0.7142), (KDW = 0.1614, p-value =
0.7055), and (KDG = 0.1849, p-value = 0.5346). It is clear that the three distributions fit the data
reasonably well but LI is the preferred one. The WE distribution is very competitive fitting distribution
and is a good alternative. The GA distribution is fitting the data, but it is a worse one in terms of KD
criterion. In terms of LRT criterion, LI distribution is relatively closer to WE than GA distribution.

The results developed in the previous sections are used to examine that LI is the preferred model
over WE and GA distributions. Suppose the distribution of the above data is LI with α = 0.6141 =
α̂, λ = 0.3979 = λ̃. In this case, the PCS using KD criteria is computed based on a simulation
(10,000 runs) to be PCS = 0.60 if the competing distribution is WE and PCS = 0.72 if the competing
distribution is GA distribution. This implies that we are confident more than 70% that LI distribution
is preferred against GA distribution and just 60% that LI is preferred against WE distribution. In the
case, we wrongly choose the GA with ν = 0.6898 = ν̂, τ = 0.048 = τ̂ as the underlying distribution of
this data, then based on a simulation of 10,000 runs, we obtain PCS using LRT as 0.70.

6. Conclusions
In this paper, we study the problem of closeness of the LI distribution to the WE and GA distribu-
tions using statistics based on maximized RML and minimized KD. However, we obtain asymptotic
distributions of the logarithm of RML statistics between LI and WE distributions and LI and GA
distributions under two different conditions. We compare PCSs using the LRT, asymptotic LRT and
KD criteria via MC simulations for various choices of sample sizes. The conclusion of this paper is
mainly two fold. First, it is observed that overall, the LI distribution is closer to WE distribution in the
sense of LRT and KD criteria while these criteria can discriminate the LI distribution well from the
GA distribution. The second conclusion of this paper is that the asymptotic LRT works adequately
even for small or moderate sample sizes. Clearly, the PCS depends on the model parameters of the
parent distribution as well as sample sizes. Based on the first conclusion, one may question if we can
approximate the LI distribution by WE distribution; subsequently, more work is required in this area.
The results developed in the paper can be extended for Type I censored data. We have considered the
closeness among LI, WE, and GA distributions; however, our procedures can be extended to check
the closeness and separation among other related distributions.
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