• 제목/요약/키워드: left R-module

검색결과 59건 처리시간 0.022초

THE FINITE DIMENSIONAL PRIME RINGS

  • Koh, Kwangil
    • 대한수학회보
    • /
    • 제20권1호
    • /
    • pp.45-49
    • /
    • 1983
  • If R is ring and M is a right (or left) R-module, then M is called a faithful R-module if, for some a in R, x.a=0 for all x.mem.M then a=0. In [4], R.E. Johnson defines that M is a prime module if every non-zero submodule of M is faithful. Let us define that M is of prime type provided that M is faithful if and only if every non-zero submodule is faithful. We call a right (left) ideal I of R is of prime type if R/I is of prime type as a R-module. This is equivalent to the condition that if xRy.subeq.I then either x.mem.I ro y.mem.I (see [5:3:1]). It is easy to see that in case R is a commutative ring then a right or left ideal of a prime type is just a prime ideal. We have defined in [5], that a chain of right ideals of prime type in a ring R is a finite strictly increasing sequence I$_{0}$.contnd.I$_{1}$.contnd....contnd.I$_{n}$; the length of the chain is n. By the right dimension of a ring R, which is denoted by dim, R, we mean the supremum of the length of all chains of right ideals of prime type in R. It is an integer .geq.0 or .inf.. The left dimension of R, which is denoted by dim$_{l}$ R is similarly defined. It was shown in [5], that dim$_{r}$R=0 if and only if dim$_{l}$ R=0 if and only if R modulo the prime radical is a strongly regular ring. By "a strongly regular ring", we mean that for every a in R there is x in R such that axa=a=a$^{2}$x. It was also shown that R is a simple ring if and only if every right ideal is of prime type if and only if every left ideal is of prime type. In case, R is a (right or left) primitive ring then dim$_{r}$R=n if and only if dim$_{l}$ R=n if and only if R.iden.D$_{n+1}$ , n+1 by n+1 matrix ring on a division ring D. in this paper, we establish the following results: (1) If R is prime ring and dim$_{r}$R=n then either R is a righe Ore domain such that every non-zero right ideal of a prime type contains a non-zero minimal prime ideal or the classical ring of ritght quotients is isomorphic to m*m matrix ring over a division ring where m.leq.n+1. (b) If R is prime ring and dim$_{r}$R=n then dim$_{l}$ R=n if dim$_{l}$ R=n if dim$_{l}$ R<.inf. (c) Let R be a principal right and left ideal domain. If dim$_{r}$R=1 then R is an unique factorization domain.TEX>R=1 then R is an unique factorization domain.

  • PDF

ON A CLASS OF PERFECT RINGS

  • Olgun, Arzu;Turkmen, Ergul
    • 호남수학학술지
    • /
    • 제42권3호
    • /
    • pp.591-600
    • /
    • 2020
  • A module M is called ss-semilocal if every submodule U of M has a weak supplement V in M such that U∩V is semisimple. In this paper, we provide the basic properties of ss-semilocal modules. In particular, it is proved that, for a ring R, RR is ss-semilocal if and only if every left R-module is ss-semilocal if and only if R is semilocal and Rad(R) ⊆ Soc(RR). We define projective ss-covers and prove the rings with the property that every (simple) module has a projective ss-cover are ss-semilocal.

MC2 Rings

  • Wei, Jun-Chao
    • Kyungpook Mathematical Journal
    • /
    • 제48권4호
    • /
    • pp.651-663
    • /
    • 2008
  • In this paper, we first study some characterizations of left MC2 rings. Next, by introducing left nil-injective modules, we discuss and generalize some well known results for a ring whose simple singular left modules are Y J-injective. Finally, as a byproduct of these results we are able to show that if R is a left MC2 left Goldie ring whose every simple singular left R-module is nil-injective and GJcp-injective, then R is a finite product of simple left Goldie rings.

A RECENT GENERALIZATION OF COFINITELY INJECTIVE MODULES

  • Esra OZTURK SOZEN
    • 호남수학학술지
    • /
    • 제45권3호
    • /
    • pp.397-409
    • /
    • 2023
  • Let R be an associative ring with identity and M be a left R-module. In this paper, we define modules that have the property (δ-CE) ((δ-CEE)), these are modules that have a δ-supplement (ample δ-supplements) in every cofinite extension which are generalized version of modules that have the properties (CE) and (CEE) introduced in [6] and so a generalization of Zöschinger's modules with the properties (E) and (EE) given in [23]. We investigate various properties of these modules along with examples. In particular we prove these: (1) a module M has the property (δ-CEE) if and only if every submodule of M has the property (δ-CE); (2) direct summands of a module that has the property (δ-CE) also have the property (δ-CE); (3) each factor module of a module that has the property (δ-CE) also has the property (δ-CE) under a special condition; (4) every module with composition series has the property (δ-CE); (5) over a δ-V -ring a module M has the property (δ-CE) if and only if M is cofinitely injective; (6) a ring R is δ-semiperfect if and only if every left R-module has the property (δ-CE).

A REMARK ON MULTIPLICATION MODULES

  • Choi, Chang-Woo;Kim, Eun-Sup
    • 대한수학회보
    • /
    • 제31권2호
    • /
    • pp.163-165
    • /
    • 1994
  • Modules which satisfy the converse of Schur's lemma have been studied by many authors. In [6], R. Ware proved that a projective module P over a semiprime ring R is irreducible if and only if En $d_{R}$(P) is a division ring. Also, Y. Hirano and J.K. Park proved that a torsionless module M over a semiprime ring R is irreducible if and only if En $d_{R}$(M) is a division ring. In case R is a commutative ring, we obtain the following: An R-module M is irreducible if and only if En $d_{R}$(M) is a division ring and M is a multiplication R-module. Throughout this paper, R is commutative ring with identity and all modules are unital left R-modules. Let R be a commutative ring with identity and let M be an R-module. Then M is called a multiplication module if for each submodule N of M, there exists and ideal I of R such that N=IM. Cyclic R-modules are multiplication modules. In particular, irreducible R-modules are multiplication modules.dules.

  • PDF

Weakly np-Injective Rings and Weakly C2 Rings

  • Wei, Junchao;Che, Jianhua
    • Kyungpook Mathematical Journal
    • /
    • 제51권1호
    • /
    • pp.93-108
    • /
    • 2011
  • A ring R is called left weakly np- injective if for each non-nilpotent element a of R, there exists a positive integer n such that any left R- homomorphism from $Ra^n$ to R is right multiplication by an element of R. In this paper various properties of these rings are first developed, many extending known results such as every left or right module over a left weakly np- injective ring is divisible; R is left seft-injective if and only if R is left weakly np-injective and $_RR$ is weakly injective; R is strongly regular if and only if R is abelian left pp and left weakly np- injective. We next introduce the concepts of left weakly pp rings and left weakly C2 rings. In terms of these rings, we give some characterizations of (von Neumann) regular rings such as R is regular if and only if R is n- regular, left weakly pp and left weakly C2. Finally, the relations among left C2 rings, left weakly C2 rings and left GC2 rings are given.

INJECTIVE AND PROJECTIVE PROPERTIES OF REPRESENTATIONS OF QUIVERS WITH n EDGES

  • Park, Sangwon
    • Korean Journal of Mathematics
    • /
    • 제16권3호
    • /
    • pp.323-334
    • /
    • 2008
  • We define injective and projective representations of quivers with two vertices with n arrows. In the representation of quivers we denote n edges between two vertices as ${\Rightarrow}$ and n maps as $f_1{\sim}f_n$, and $E{\oplus}E{\oplus}{\cdots}{\oplus}E$ (n times) as ${\oplus}_nE$. We show that if E is an injective left R-module, then $${\oplus}_nE{\Longrightarrow[50]^{p_1{\sim}p_n}}E$$ is an injective representation of $Q={\bullet}{\Rightarrow}{\bullet}$ where $p_i(a_1,a_2,{\cdots},a_n)=a_i,\;i{\in}\{1,2,{\cdots},n\}$. Dually we show that if $M_1{\Longrightarrow[50]^{f_1{\sim}f_n}}M_2$ is an injective representation of a quiver $Q={\bullet}{\Rightarrow}{\bullet}$ then $M_1$ and $M_2$ are injective left R-modules. We also show that if P is a projective left R-module, then $$P\Longrightarrow[50]^{i_1{\sim}i_n}{\oplus}_nP$$ is a projective representation of $Q={\bullet}{\Rightarrow}{\bullet}$ where $i_k$ is the kth injection. And if $M_1\Longrightarrow[50]^{f_1{\sim}f_n}M_2$ is an projective representation of a quiver $Q={\bullet}{\Rightarrow}{\bullet}$ then $M_1$ and $M_2$ are projective left R-modules.

  • PDF

ON M-INJECTIVE MODULES AND M-IDEALS

  • Min, Kang-Joo
    • 충청수학회지
    • /
    • 제18권1호
    • /
    • pp.87-93
    • /
    • 2005
  • For a left R-module M, we identify certain submodules of M that play a role analogous to that of ideals in the ring R. We investigate some properties of M-ideals in the submodules of M and also study Jacobson radicals of a submodule of M.

  • PDF

ON COFINITELY CLOSED WEAK δ-SUPPLEMENTED MODULES

  • Sozen, Esra Ozturk
    • 호남수학학술지
    • /
    • 제42권3호
    • /
    • pp.511-520
    • /
    • 2020
  • A module M is called cofinitely closed weak δ-supplemented (briefly δ-ccws-module) if for any cofinite closed submodule N of M has a weak δ-supplement in M. In this paper we investigate the basic properties of δ-ccws modules. In the light of this study, we can list the main facts obtained as following: (1) Any cofinite closed direct summand of a δ-ccws module is also a δ-ccws module; (2) Let R be a left δ-V -ring. Then R is a δ-ccws module iff R is a ccws-module iff R is extending; (3) Any nonsingular homomorphic image of a δ-ccws-module is also a δ-ccws-module; (4) We characterize nonsingular δ-V -rings in which all nonsingular modules are δ-ccws.

ON SUBMODULES INDUCING PRIME IDEALS OF ENDOMORPHISM RINGS

  • Bae, Soon-Sook
    • East Asian mathematical journal
    • /
    • 제16권1호
    • /
    • pp.33-48
    • /
    • 2000
  • In this paper, for any ring R with an identity, in order to study prime ideals of the endomorphism ring $End_R$(M) of left R-module $_RM$, meet-prime submodules, prime radical, sum-prime submodules and the prime socle of a module are defined. Some relations of the prime radical, the prime socle of a module and the prime radical of the endomorphism ring of a module are investigated. It is revealed that meet-prime(or sum-prime) modules and semi-meet-prime(or semi-sum-prime) modules have their prime, semi-prime endomorphism rings, respectively.

  • PDF