ON SUBMODULES INDUCING PRIME IDEALS OF ENDOMORPHISM RINGS

SOON-SOOK BAE

ABSTRACT In this paper, for any ring R with an identity, in order to study prime ideals of the endomorphism ring $End_R(M)$ of left R-module $_RM$, meet-prime submodules, prime radical, sum-prime submodules and the prime socle of a module are defined. Some relations of the prime radical, the prime socle of a module and the prime radical of the endomorphism ring of a module are investigated. It is revealed that meet-prime(or sum-prime) modules and semi-meetprime(or semi-sum-prime) modules have their prime, semi-prime endomorphism rings, respectively.

0. Introduction

For an associative ring R and any left R-module $_RM$, its endomorphism ring $End_R(M)$ will act on the right side of $_RM$, in other words, $_RM_{End_R(M)}$ will be studied mainly. Thus the composite of endomorphisms preserves the order such that the composite $fg: M \to M$ of $f: M \to M$ and $g: M \to M$ defined by mfg = (mf)g for every $m \in M$.

For any submodule $N \leq {}_{R}M$, we have ideals:

$$(N:M) = \{r \in R \mid rM \subseteq N\} \leq R$$

 $Ann_R(N) = (0:N) = \{r \in R \mid rN = 0\} \leq R$

Received October 27, 1999 Revised March 10, 2000

¹⁹⁹¹ Mathematics Subject Classification 16A20

Key words and phrases Meet-prime, sum-prime, open, closed submodule, semprime, prime.

of R and a left and a right ideals:

 $I^{N} = \{f \in End_{R}(M) \mid Imf = Mf \leq N\} \leq_{l} End_{R}(M)$ $I_{N} = \{f \in End_{R}(M) \mid N \leq kerf\} \leq_{r} End_{R}(M)$

of the endomorphism ring $End_R(M)$, briefly denoted by S. For any subset J of S, let $ImJ = \sum_{f \in J} Imf = \sum_{f \in J} Mf$ and $kerJ = \bigcap_{f \in J} kerf$ be the sum of images of endomorphisms in J and the intersection of kernels in J, respectively. Also we call N an open submodule if $N = N^{\circ}$, where $N^{\circ} = \sum_{Imf \leq N} Imf$, $f \in S$, is the sum of images of endomorphisms contained in N and call N a closed submodule if $N = \overline{N}$, where $\overline{N} = \bigcap_{N \leq kerf} kerf$, $f \in S$, is the intersection of kernels of endomorphisms containing N.

Here is the definition of a prime submodule that McCasland and Moore set up in their paper "Prime Submodules", 1992 [4].

For a proper submodule $P \leq {}_{R}M$, if $rm \in P(r \in R \text{ and } m \in M)$ implies that either $m \in P$ or $r \in (P \cdot M)$, then P will be said to be prime in M.

LEMMA 0.1. [4] Let R be any ring and M any R-module. Then a submodule $N \leq M$ is prime if and only if P = (N : M) is a prime ideal of R and the (R/P)-module M/N is torsion-free.

Comparing the definition of prime submodule with the following definition of meet-prime submodule, it looks very different. But for any integral domain R with identity if $_RM$ is a multiplication module([3]), it follows immediately from the Lemma 0 1 and the Corollary 3.3 that P is a prime submodule of $_RM \iff P$ is meet-prime in $_RM$ defined in the next section §1. Also it follows immediately from the Lemma 0.1 and the Corollary 3.7 that P is a prime submodul e of $_RM \iff P$ is submodul e of $_RM \iff P$ is sum-prime in $_RM$ defined in the next section §3.

1. Meet-Prime Submodules

It isn't easy to see the structure of prime ideals of R, S and the structures of prime submodule of RM. In addition, there are operations + and \cap on the family of all submodules of RM. Using the fact that

under these + and \cap , the family of all submodules of $_RM$ is closed. from the structure of submodules there may be some methods to find prime ideals of S and those of R.

The following definition is one of methods to see relations between submodules of $_RM$ and prime ideals of the ring R and the endomorphism ring S.

DEFINITION 1.1. For a submodule $P \leq {}_{R}M$ of a left R-module ${}_{R}M$, we will say that P is a meet-prime submodule of M if it satisfies the following conditions

For any open submodules $A, B \leq M$ with $P^o + A \neq M$ or $P^o + B \neq M$,

(1) if $A \cap B \leq P$, then $A \leq P$ or $B \leq P$,

- (2) if $(P \cap A \cap B)^{\circ} \neq 0$, then $A \leq P$ or $B \leq P$,
- (3) if $P \cap A = 0$, then A = 0 or P + A = M.

Trivially every module M is meet-prime in $_RM$.

For example, we have that any prime ideal $\langle p \rangle$ with prime p of a commutative integer ring \mathbb{Z} is a meet-prime submodule of a left \mathbb{Z} -module $\mathbb{Z}\mathbb{Z}$. Clearly the zero submodule of any simple module is meet-prime.

REMARK 1.2. Every meet-prime submodule is not maximal, in general.

Since the non-maximal submodule $p\mathbb{Z}[x] \leq \mathbb{Z}[x]\mathbb{Z}[x]$ (for prime p) is meet-prime.

PROPOSITION 1.3 For any left R-module $_RM$, we have the following.

- (1) For distinct nonzero open meet-prime submodules P and Q of a left R-module $_{R}M$, it follows that P + Q = M.
- (2) For a submodule $P \leq {}_{R}M$, P° is meet-prime if and only if P is meet-prime.

PROOF. (1) Assume $P + Q \neq M$ Since $P \cap (P + Q) = P \neq 0$ of and $Q \cap (P + Q) = Q \neq 0$, the meet-primenesses of P and Q and the openness of P + Q implies P = Q. Therefore we have P + Q = M.

(2) Since for any open submodule $U \leq M$, $U \leq P \iff U \leq P^{\circ}$ and $(P^{\circ})^{\circ} = P^{\circ}$. The proof is easy from the definition of *meet-prime* submodule.

REMARK 1.4. In a \mathbb{Z} -left module $\mathbb{Z}\mathbb{Z}(p^{\infty})$ every proper submodule is meet-prime since $\mathbb{Z}\mathbb{Z}(p^{\infty})$ has a unique zero open submodule of it, in other words, no nontrivial submodule is open in $\mathbb{Z}\mathbb{Z}(p^{\infty})$ telling that 0 is a unique proper open meet-prime submodule.

The following are some criterior of meet-prime submodules of a module.

A submodule $P \leq {}_{R}M$ is maximal among open submodules whenever $K \leq M$ is open such that $P \leq K$, then P = K or K = Mfollows

LEMMA 1.5. If a submodule $P \leq {}_{R}M$ is maximal among open submodules, then P is meet-prime

PROOF. From the maximality of open submodule $P = P^o$ among the open submodules of M, the proof is easy.

It is well-known that not every module has a maximal submodule.

COROLLARY 1.6. For any left R-module $_RM$ we have the following.

- (1) If $P \leq_R M$ is any maximal submodule of M, then P is a meetprime submodule of M.
- (2) If $I^P = J \triangleleft S$ is a maximal ideal of S, then P is a meet-prime submodule of M.
- (3) For an ideal $J \triangleleft S$, if the ideal I^{MJ} is a maximal ideal of S, then MJ is a fully invariant open meet-prime submodule.

PROOF. The proof is established easily.

2. Sum-Prime Submodules

As a dual way of meet-primeness of submodules of $_RM$, the following definition is one of methods to see relations between submodules of $_RM$, prime ideals of the ring R, and the endomorphism ring S.

DEFINITION 2.1. For a submodule $P \leq {}_{R}M$ of a left R-module ${}_{R}M$, we will say that P is a sum-prime submodule of M if it satisfies the following conditions:

For any closed submodules $A, B \leq M$ with $\overline{P} \cap A \neq 0$ or $\overline{P} \cap B \neq 0$

- (1) if $P \leq A + B$, then $P \leq A$ or $P \leq B$,
- (2) if $\overline{P+A+B} \neq M$, then $P \leq A$ or $P \leq B$.
- (3) if P + A = M, then A = M or $P \cap A = 0$

Trivially the zero submodule 0 is sum-prime in $_RM$.

For example, we have that a prime ideal $\overline{2}\mathbb{Z}_6 = \overline{4}\mathbb{Z}_6 \trianglelefteq_{\mathbb{Z}_6}\mathbb{Z}_6$ of a commutative ring \mathbb{Z}_6 is a sum-prime submodule of a left \mathbb{Z}_6 -module $\mathbb{Z}_6\mathbb{Z}_6$.

REMARK 2.2 The submodule $\{\overline{0}, \overline{1/p}, \overline{2/p}, \dots, (\overline{p-1})/p\}$ is a sumprime submodule of $\mathbb{Z}\mathbb{Z}(p^{\infty})$ with a prime number p However the submodule $\{\overline{0}, \overline{1/p}, \overline{2/p}, \dots, \overline{(p-1)/p}, \dots, \overline{1/p^n}, \overline{2/p^n}, \dots, \overline{(p-1)/p^n}\}$ $(n \in \mathbb{N}, n \geq 2)$ is not a sum-prime submodule of it.

Every sum-prime submodule is not minimal. in general. Each nonminimal submodule $n\mathbb{Z} \leq \mathbb{Z}\mathbb{Z}(0 \neq n \in \mathbb{Z})$ of an integer module $\mathbb{Z}\mathbb{Z}$ is sum-prime.

PROPOSITION 2.3 For any left R-module $_RM$, we have the following:

- (1) For distinct proper closed sum-prime submodules P and Q of a left R-module $_RM$, it follows that $P \cap Q = 0$.
- (2) For a submodule $P \leq {}_{R}M$, \overline{P} is sum-prime if and only if P is sum-prime.

Proof

- (1) Assume $P \cap Q \neq 0$. Since $P + (P \cap Q) = P \neq M$ and $Q (P \cap Q) = Q \neq M$, the sum-primenesses of P and Q and the closedness of $P \cap Q$ implies P = Q. Therefore we have $P \cap Q = 0$.
- (2) Since for any closed submodule $F \leq M$, $P \leq F \iff \overline{P} \leq F$ and $\overline{\overline{P}} = \overline{P}$. The proof is easy from the definition of sum-prime submodule.

REMARK 2.4. In a \mathbb{Z} -left module $_{\mathbb{Z}}\mathbb{Z}_p \oplus \mathbb{Z}_p$ for prime p the closed sum-prime submodules which are not fully invariant are $0 \oplus \mathbb{Z}_p$ and $\mathbb{Z}_p \oplus 0$. And $_{\mathbb{Z}}\mathbb{Z}_p \oplus \mathbb{Z}_p$ is a unique closed fully invariant sum-prime submodule.

The following are some criterion of sum-prime submodules of a module.

A submodule $P \leq {}_{R}M$ is minimal among closed submodules whenever $K \leq M$ is closed such that $K \leq P$, then P = K or K = 0 follows.

LEMMA 2.5. If a submodule $P \leq {}_{R}M$ is minimal among closed submodules, then P is sum-prime.

PROOF. From the minimality of closed submodule $P = \overline{P}$ among the closed submodules of M, the proof is easy.

It is well-known that not every module has a minimal submodule.

COROLLARY 2.6. For any left R-module $_RM$ we have the following.

- (1) If $P \leq_R M$ is any minimal submodule of M, then P is a sumprime submodule of M.
- (2) If $I_P = J \triangleleft S$ is a minimal ideal of S, then P is a sum-prime submodule of M.
- (3) For an ideal $J \triangleleft S$, if the ideal I_{kerJ} is a minimal ideal of S, then $kerJ = \bigcap_{f \in J} kerf$ is a closed fully invariant sum-prime submodule.

PROOF. The proof is established easily.

3. Meet-Prime, Sum-Prime Submodules, and Prime Ideals

For any fully invariant submodule $N \leq M$ we have two-sided ideals $(N:M) \trianglelefteq R$ and $I^N \trianglelefteq S$. Thus it may be found relations between meet-prime submodules of $_RM$ and prime ideals of S(or R). Here are some results.

PROPOSITION 3.1. If P is a fully invariant meet-prime submodule of $_{R}M$, then I^{P} is a prime ideal of S.

PROOF Since P is meet-prime if and only if P^o is meet-prime by (2) of the Proposition 1.3 it suffices to show that for any fully invariant open meet-prime submodule $P \leq M, I^P$ is a prime ideal of S. Assume that P is a fully invariant open meet-prime submodule

Let $IJ \subseteq I^P = \{f \in S \mid Mf \leq P\}$ for subsets $I, J \subseteq S = End_R(M)$.

(I) First if P = 0, then MIJ = 0. If $MI \cap MJ = 0 \le P = 0$, then MI = 0 or MJ = 0 follows from the meet-primess of P = 0 Or if $MI \cap MJ \ne 0$, then $P \cap (MI \cap MJ) = 0$ and by (3) of the definition 1.1 we have MI = MJ = M which cann't make MIJ = 0. Therefore I = 0 or J = 0 follows. Hence $I^P = 0$ is a prime ideal of S.

(II) Secondly let P be a nonzero submodule of M. Then we have the following cases (i) and (ii) to be concerned. Here let A = MJ and B = P + MI as open submodules of $_RM$.

(i) for the case of P + B = M, from the fully invariantness of P it follows that

$$MJ = (P + MI)J \le PJ + MIJ \le P + P = P, \qquad (*)$$

Hence we have that $J \subseteq I^P$.

(ii) for the case of $P + B \neq M$, we have to consider the following cases (a) and (b).

(a) if $(P \cap A \cap B)^o = P \cap A \cap B \neq 0$, then from (2) of the definition of meet-prime submodule P, it follows that

$$A = MJ \leq P$$
 or $B = P + MI \leq P$, implying that $I \subseteq I^P$ or $J \subseteq P$.

(b) if $(P \cap A \cap B)^{\circ} = P \cap A \cap B = 0$, then $P \cap (P + A \cap B) = P \neq 0$ with $P + A \cap B \neq M$ (otherwise, $P + A \cap B = M$ implies P + B = Mcontradicted to $P + B \neq M$) Then by the meet-primeness of P we have that $P + A \cap B \leq P$ Hence $A \cap B \leq P$ and $A \leq P$ or $B \leq P$ follows from (1) of the definition 1.1 Therefore $I \subseteq I^P$ or $J \subseteq I^P$ for any $IJ \subseteq I^P$ and for $I, J \subseteq S$. Therefore the ideal I^P is a prime ideal of S. REMARK 3.2. The fully invariantness of a meet-prime submodule P of $_RM$ inducing a prime ideal I^P of S is essential. For example, on a \mathbb{Z} -module $\mathbb{Z}_8 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3$ there are meet-prime submodules $2\mathbb{Z}_8 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3$ and $\mathbb{Z}_8 \oplus \mathbb{Z}_3 \oplus 0$, the one is fully invariant and the other is not, which induce a prime ideal $I^{2\mathbb{Z}_8 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3} \trianglelefteq' S$ and a non-prime ideal $I^{\mathbb{Z}_8 \oplus \mathbb{Z}_3 \oplus 0} \triangleleft S$.

The converse of the Proposition 3.1 is not true in general. For example, the trivial ideal $0 = I^0 \leq End_{\mathbb{Z}[x]}(\mathbb{Z}[x])$ is a prime ideal of $End_{\mathbb{Z}[x]}(\mathbb{Z}[x])$.

COROLLARY 3.3. If P is a meet-prime submodule of $_RM$ over a commutative ring R with identity, then (P:M) is a prime ideal of R.

PROOF. Since R is a commutative ring with identity it follows immediately that for any $r \in R$, $rM = M\rho(r) \leq M$ is an open submodule of $_RM$, where $\rho(r): M \to M$ is defined by $m\rho(r) = rm$ for each $m \in M$ And hence (P:M)M is also an open submodule of M.

For any $rs \in (P:M)$ with $r, s \in R$, let A = rM and $B = (P \cdot M)M + sM$. Then by the same method of the proof of the Proposition 3.1 it follows that $r \in (P:M)$ or $s \in (P:M)$. Hence (P:M) is a prime ideal of R.

COROLLARY 3.4. If P is a fully invariant meet-prime submodule of $_RM$ over a commutative ring R with identity, then (P:M) and the ideal I^P are prime ideals of R and S, respectively

PROOF. By the Proposition 3.1 and the Corollary 3.3 it is proved

For any fully invariant submodule $N \leq M$ we have two-sided ideals $I_N \leq S$ and $(0:M) = Ann_R(K) \leq R$. Thus it certainly can be found relations between sum-prime submodules of $_RM$ and prime ideals of S and R. Here is some result.

PROPOSITION 3.5. If P is a fully invariant sum-prime submodule of $_RM$, then I_P is a prime ideal of S.

PROOF. Since P is sum-prime if and only if \overline{P} is sum-prime by (2) of the Proposition 2.3 it suffices to show that for any fully invariant

closed sum-prime submodule P, I_P is a prime ideal of S. Assume that P is a fully invariant closed sum-prime submodule of M.

Let $IJ \subseteq I_P = \{f \in S \mid P \leq kerf\}$ for subsets $I, J \subseteq S = End_R(M)$.

(1) If P = M, then kerIJ = M. If M = kerI + kerJ, then $M \le kerI$ or $M \le kerJ$ from the sum-primeness of P = M. If $M \ne kerI + kerJ$, then by (3) of the definition 2.1 it follows that kerI + kerJ = Mcontradicted. Therefore $I_M = 0$ is a prime ideal of S.

(II) For $P \neq M$, let $A = P \cap kerI$ and $B = P \cap kerJ$ as closed submodules of $_RM$.

The cases of (i) $P \cap B = 0$ and (ii) $P \cap B \neq 0$ must be considered (i) for $P \cap B = 0$, we have P = 0, then from the equation

$$0 = P \ge P \cap kerIJ \ge \cap_{h \in I} h^{-1}(P \cap kerJ) = \cap_{h \in I} h^{-1}(0) = kerI \quad (*)$$

we have that ker I = 0 Thus $I \subseteq I_P = I_0$ follows

(ii) for the case of $P \cap B \neq 0$. $P \cap B = P \cap kerJ \neq 0$ and $P + kerI + P \cap kerJ \leq kerIJ$.

(a) If $kerIJ \neq M$, then from (2) of the sum-prime submodule P it follows that $P \leq kerI$ or $P \leq P \cap kerJ$. Hence I or $J \subseteq I_P$.

(b) If kerIJ = M. Then the following cases :

- (α) $P + kerI + P \cap kerJ = P + kerI = M$ or
- (β) $P + kerI + P \cap kerJ = P + kerI \neq M$

are concerned. Since P is a sum-prime submodule, with (β) we have that $P \leq kerI$ or $P \leq P \cap kerJ \leq kerJ$. Thus $I \subseteq I_P$ or $J \subseteq I_P$ follows

It remains to deal with (α) P + kerI = M Then by the sumprimeness of P we have that kerI = M or $P \cap (kerI + P \cap kerJ) = 0$. respectively. Thus $I = 0 \subseteq I_P$ only follows. Otherwise if $P \cap (kerI + P \cap kerJ) = 0$, then $P \cap kerI = 0 = P \cap kerJ$ implies $P \nleq kerIJ = M$ which contradicts to $P \leq kerIJ = M$.

Therefore the ideal I_P is a prime ideal of S.

REMARK 3.6. The fully invariantness of a sum-prime submodule P inducing a prime ideal I_P of S is essential. For example, on $\mathbb{Z}_8 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3$ there are sum-prime submodules $4\mathbb{Z}_8 \oplus 0 \oplus 0$ and $0 \oplus \mathbb{Z}_3 \oplus 0$, the one

is fully invariant and the other is not, which induce a prime ideal $I_{4\mathbb{Z}_8\oplus 0\oplus 0} \trianglelefteq S$ and a non-prime ideal $I_{0\oplus \mathbb{Z}_3\oplus 0} \trianglelefteq S$.

The converse of the Proposition 4.1 is not true in general. For example, the trivial ideal $0 = I_M \leq End_{\mathbb{Z}}(\mathbb{Z}(p^{\infty}))$ is a prime ideal of $End_{\mathbb{Z}}(\mathbb{Z}(p^{\infty}))$, however the trivial submodule $\mathbb{Z}(p^{\infty}) \leq \mathbb{Z}(p^{\infty})$ is not sum-prime.

COROLLARY 3.7. If P is a sum-prime submodule of $_RM$ over a commutative ring R with identity, then $Ann_R(P) = (0:P)$ is a prime ideal of R.

PROOF. Since R is a commutative ring with identity it follows immediately that for any $r \in R$, $rM = M\rho(r) \leq M$ is an open submodule of $_RM$, where $\rho(r) : M \to M$ is defined by $m\rho(r) = rm$ for each $m \in M$. And hence $ker\rho(0:P) = \bigcap_{r \in (0|P)} ker\rho(r)$ is also a closed submodule of M.

For $rs \in (0:P)$ with $r, s \in R$, let $A = ker\rho(r)$ and $B = ker\rho(0:P) \cap ker\rho(s)$. Then by the same method of the proof of the Proposition 3.5 it follows that $r \in (0:P)$ or $s \in (0:P)$. Hence (0:P) is a prime ideal of R.

COROLLARY 3.8. For a commutative ring R with identity, if P is a fully invariant sum-prime submodule of $_RM$, then (0: P) and the ideal I_P are prime ideals of R and S, respectively.

PROOF. By the Proposition 3.5 and the Corollary 3.7 it is proved.

4. (Semi-)Meet-Prime Modules and (Semi-)Prime Rings

In order to see relations among semi-prime rings, semi-meet-prime modules and semi-prime endomorphism rings of left modules, and relations among the prime radicals of rings, endomorphism rings and the prime radicals of modules, we need a new definition as follows

DEFINITION 4.1. For a left R-module $_RM$, we define the prime radical $rad(M) = \bigcap_{\alpha \in \Lambda} P_{\alpha}$ to be the intersection of all fully invariant meet-prime submodules $P_{\alpha} \leq M$ for $\alpha \in \Lambda$. Consequently, if rad(M) =

 $\cap P_{\alpha}$, then we have an open submodule $rad(M) = \cap P_{\alpha} = \cap P_{\alpha}^{o}$ of M by (2) of the Proposition 1.3.

A left R-module $_RM$ is said to be semi-meet-prime if the prime radical rad(M) = 0 i.e., the intersection $\cap P_{\alpha} = 0$ for all fully invariant meet-prime submodules $P_{\alpha} \leq M$.

THEOREM 4.2. If a left R-module $_RM$ is semi-meet-prime, then its endomorphism ring S is semi-prime.

PROOF. Let $rad(M) = \bigcap P_{\alpha}$ be the prime radical of $_{R}M$ for each fully invariant meet-prime submodule P_{α} of $_{R}M$. Assume that $_{R}M$ is semi-meet-prime.

Then $rad(M) = 0 = \bigcap P_{\alpha}, P_{\alpha}$ is a fully invariant meet-prime submodule of M. Thus the prime radical $rad(S) \leq \bigcap I^{P_{\alpha}} = I^{\bigcap P_{\alpha}} = I^{rad(M)} = I^0 = 0$ must be zero. Therefore S is semi-prime

THEOREM 4 3. For a commutative ring R with identity, if a faithful left R-module $_RM$ is semi-meet-prime, then the ring R and its endomorphism ring S are semi-prime.

PROOF. The relation $(\cap P_{\alpha} : M) = \cap (P_{\alpha} : M)$ implies that $0 = (0 : M) = (rad(M) : M) = \cap (P_{\alpha} : M) \ge rad(R)$ since M is faithful.

Recall that a ring is said to be prime if its zero ideal is prime. Thus we can define in the same way, if $_RM$ has a zero meet-prime submodule of it. $_RM$ will be called a meet-prime module.

THEOREM 4.4 For a commutative ring R with identity, if there is at least one faithful meet-prime module, say $_RM$, then R is a prime ring. And so is S.

PROOF. Let $_RM$ be a left faithful meet-prime R-module. Since 0 is a fully invariant meet-prime submodule of a faithful module M we have that

 $0 = (0 \cdot M) \trianglelefteq R$ and $0 = I^0 \oiint S$ are prime ideals of R and S. respectively. Hence R and S are prime rings.

THEOREM 4.5. If a left R-module $_RM$ is meet-prime, then S is a prime ring.

PROOF. Since $I^0 = 0 \leq S$ is a prime ideal of S by the Proposition 2.1 it follows immediately that S is a prime ring.

PROPOSITION 4.6. For a commutative ring R with identity, if a left R-module $_RM$ is meet-prime, then $Ann_R(M) = (0:M)$ is a prime ideal of R and S is a prime ring.

PROOF. It is an immediate consequence of the Theorem 3.3 and the meet-primeness of the prime radical rad(M) = 0.

PROPOSITION 4.7. For a commutative ring R with identity, if a left faithful R-module $_RM$ is meet-prime, then R and S are prime rings.

PROOF. It is clear.

APPLICATION 4.8. Clearly semi-meet-primeness of $\mathbb{Z}[x] \mathbb{Z}[x]$ implies that its endomorphism ring is semi-prime.

For any indexed family of $\{M_{\alpha}\}_{\alpha\in\Gamma}$ of R-modules $M_{\alpha}(\alpha\in\Gamma)$, a direct product $\prod_{\alpha\in\Gamma} M_{\alpha}$ (a direct sum $\bigoplus_{\alpha\in\Gamma} M_{\alpha}$) is said to be of *invariant* factor modules $M_{\alpha}(\alpha\in\Gamma)$ if each homomorphism group

 $Hom_R(M_{\alpha}, M_{\beta}) = \{f \mid f \mid M_{\alpha} \to M_{\beta} \text{ is an } R\text{-homomorphism}\}$

is a trivial additive group for each $\alpha \neq \beta$ in Γ , that is, zero.

PROPOSITION 4.9. If $\prod_{\alpha \in \Gamma} M_{\alpha}$ is a direct product of semi-meetprime invariant factor R-modules M_{α} ($\alpha \in \Gamma$), then $\prod_{\alpha \in \Gamma} M_{\alpha}$ is also semi-meet-prime. Hence S is semi-prime.

PROOF. Considering the canonical projections (here they are endomorphisms) $\pi_{\iota} : \prod M_{\alpha} \to M_{\iota}$ defined by $(x_{\alpha})\pi_{\iota} = x_{\iota}$ for each $(x_{\alpha}) \in \prod M_{\alpha}$, from the fact that

for every fully invariant meet-prime submodule $P_{\iota} \leq M_{\iota}$, it follows that every preimage $\pi_{\iota}^{-1}(P_{\iota})$ is meet-prime in $\prod M_{\alpha}$ since $\prod M_{\alpha}$ is a direct product of invariant factors. The rest of the proof can be established easily.

COROLLARY 4.10 If $\prod_{\alpha \in \Gamma} M_{\alpha}$ is a direct product of meet-prime invariant factor R-modules M_{α} , then $\prod_{\alpha \in \Gamma} M_{\alpha}$ is also semi-meetprime. Moreover S is semi-prime.

PROOF. The proof is an immediate consequence of the Proposition 5.9.

COROLLARY 4.11 For a commutative ring R with identity, if a left semi-simple R-module $_RM$ is a direct sum of simple invariant factor modules, then its endomorphism ring S is semi-prime. Additionally, if $_RM$ is faithful, then R is also a semi-prime ring

PROOF. The proof is elementary by the Theorem 4.3 and the Proposition 4.9 since every a direct sum of semi-simple invariant factor modules is semi-meet-prime.

5. (Semi-)Sum-Prime Modules and (Semi-)Prime Rings

In order to see relations among semi-prime rings. semi-sum-prime modules and semi-prime endomorphism rings of left modules, and relations among the prime radicals of rings, endomorphism rings and the prime socles of modules, we need a new definition as follows

DEFINITION 5.1. For a left R-module $_RM$, we define the prime socle

 $soc(M) = \sum_{\alpha \in \Lambda} P_{\alpha}$ to be the sum of all fully invariant sum-prime submodules $P_{\alpha} \leq M$ for $\alpha \in \Lambda$. Consequently, if $soc(M) = \sum P_{\alpha}$, then we have a closed submodule $soc(M) = \sum P_{\alpha} = \sum \overline{P_{\alpha}}$ of M by (2) of the Proposition 2.3

A left R-module $_RM$ is said to be semi-sum-prime if the prime socle soc(M) = M i.e., the sum $\sum P_{\alpha} = M$ for all fully invariant sum-prime submodules $P_{\alpha} \leq M$

THEOREM 5.2 If a left R-module $_RM$ is semi-sum-prime, then its endomorphism ring S is semi-prime.

PROOF. Let $soc(M) = \sum P_{\alpha}$ be the prime socle of $_{R}M$ for each fully invariant sum-prime submodule P_{α} of $_{R}M$. Assume that $_{R}M$ is semi-sum-prime.

Then $soc(M) = M = \sum P_{\alpha}$, P_{α} is a fully invariant sum-prime submodule of M. Thus the prime radical $rad(S) \leq \cap I_{P_{\alpha}} = I_{\sum P_{\alpha}} = I_{soc(M)} = I_M = 0$ must be zero. Therefore S is semi-prime.

Recall that a ring is said to be prime if its zero ideal is prime. Thus we can define in the dual way, if $_RM$ has a nonzero trivial sum-prime submodule M of itself M, $_RM$ will be called a sum-prime module.

THEOREM 5.3. For a commutative ring R with identity, if a faithful left R-module $_RM$ is semi-sum-prime, then the ring R and its endomorphism ring S are semi-prime.

PROOF. The relation $(0: \sum P_{\alpha}) = \cap(0: P_{\alpha})$ implies that $0 = (0: soc(M)) = \cap(0: P_{\alpha}) \ge rad(R)$ since M is faithful

THEOREM 5.4. For a commutative ring R with identity, if there is at least one faithful sum-prime module, say $_RM$, then R is a prime ring. And so is S.

PROOF. Let $_RM$ be a left faithful sum-prime R-module. Since M is a fully invariant sum-prime submodule of a faithful module M we have that

 $0 = (0: M) \leq R$ and $0 = I_M \leq S$ are prime ideals of R and S. respectively. Hence R and S are prime rings

THEOREM 5.5. If a left R-module $_RM$ is sum-prime, then S is a prime ring.

PROOF. Since $I_M = 0 \leq S$ is a prime ideal of S by the Proposition 4.1 it follows immediately that S is a prime ring.

PROPOSITION 5.6. For a commutative ring R with identity, if a left R-module $_RM$ is sum-prime, then $Ann_R(M) = (0:M)$ is a prime ideal of R and S is a prime ring.

PROOF. It is an immediate consequence of the Theorem 5.3 and the sum-primeness of the prime socle soc(M) = M.

PROPOSITION 5.7. For a commutative ring R with identity, if a left faithful R-module $_RM$ is sum-prime, then R and S are prime rings.

PROOF. It is clear.

APPLICATION 5.8. Clearly semi-sum-primeness of a left \mathbb{Z} -module $\oplus_p \mathbb{Z}_p$ (prime number p) implies that its endomorphism ring is semiprime.

PROPOSITION 5.9 If $\bigoplus_{\alpha \in \Gamma} M_{\alpha}$ is a direct sum of semi-sum-prime invariant factor R-modules M_{α} ($\alpha \in \Gamma$), then $\bigoplus_{\alpha \in \Gamma} M_{\alpha}$ is also semisum-prime. Hence S is semi-prime.

PROOF Considering the canonical injections (here they are R-homor phisms) $\iota_{\alpha} : M_{\alpha} \to \bigoplus M_{\gamma}$ defined by $x_{\alpha}\iota_{\alpha} = \bigoplus x_{\gamma}$ for each $x_{\gamma} = 0_{\gamma}$ if $\gamma \neq \alpha$, $x_{\gamma} = x_{\alpha}$ if $\gamma = \alpha$, there is an R-endomorphism $\oplus \iota_{\alpha} : \oplus M_{\gamma} \to \oplus M_{\gamma}$. From the fact that

for every fully invariant sum-prime submodule $P_{\alpha} \leq M_{\alpha}$, it follows that every image $\iota_{\alpha}(P_{\alpha})$ is sum-prime in $\oplus M_{\alpha}$ since $\oplus M_{\alpha}$ is a direct sum of invariant factors. The rest of the proof can be established easily

COROLLARY 5.10. If $\bigoplus_{\alpha \in \Gamma} M_{\alpha}$ is a direct sum of sum-prime invariant factor R-modules M_{α} , then $\bigoplus_{\alpha \in \Gamma} M_{\alpha}$ is also semi-sum-prime. Moreover S is semi-prime.

PROOF. The proof is an immediate consequence of the proposition 6.9.

COROLLARY 5.11. For a commutative ring R with identity, if a left semi-simple R-module $_RM$ is a direct sum of simple invariant factor modules, then its endomorphism ring S is semi-prime. Additionally, if $_RM$ is faithful, then R is also a semi-prime ring.

PROOF. The proof is elementary by the Theorem 6.3 and the Proposition 6.9 since every a direct sum of semi-simple invariant factor modules is semi-meet-prime.

References

- [1] Soon-Sook Bae, On Ideals of Endomorphism Ring of Projective Module, Pusan Kyóng nam Mathematical Journal 15 (1989), 81-86.
- [2] _____, Certain Discriminations of Prime Endomorphism and Prime Matrix, East Asian Mathematical Journal 14, no 2 (1998), 259–218.
- [3] Z A. El-Bast and P. F. Smith, *Multiplication Modules*, Communications in Algebra 16 (1988), 755-779.
- [4] R. L. McCasland and M. E. Moore, Prime Submodules, Communications in Algebra 20 (1992), 1803–1817

Department of Mathematics Kyungnam University Masan 631-701. Korea *E-mail*: ssb@hanma.kyungnam.ac.kr