ON SUBMODULES INDUCING PRIME IDEALS OF ENDOMORPHISM RINGS

SOON-SOOK BAE

Abstract

In this paper, for any ring R with an identity, in ordei to study prime ideals of the endomorphusm rang End $\mathcal{E}_{R}(M)$ of lett R-module ${ }_{R} M$, meet-prime submodules, prime radical, sutn-phme submodules and the pime socle of a module are defined Somr ielations of the prime radical, the prime socle of a module and the pritne radical of the endotnorphism ang of a module are mestigated It is revealed that meet-prime(or sum-prime) modules and semb-meetprome(or sem-sum-prime) modules have then prime, semi-prime ertdomorphsm rings, respectıvely.

0. Introduction

For an associative ring R and any left R-module ${ }_{R} M$, its endomorphism ring $E n d_{R}(M)$ will act on the right side of ${ }_{R} M$. in other words. ${ }_{R} M_{E n d_{R}(M)}$ will be studied mainly. Thus the composite of endomorphisms preserves the order such that the composite $f g: M \rightarrow M$ of $f: M \rightarrow M$ and $g: M \rightarrow M$ defined by $m f g=(m f) g$ for every $m \in M$.

For any submodule $N \leq{ }_{k} M$, we have ideals:

$$
\begin{gathered}
(N: M)=\{r \in R \mid r M \subseteq N\} \unlhd R \\
A n n_{R}(N)=(0: N)=\{r \in R \mid r N=0\} \unlhd R
\end{gathered}
$$

[^0]of R and a left and a right ideals:
\[

$$
\begin{gathered}
I^{N}=\left\{f \in \operatorname{End}_{R}(M) \mid \operatorname{Imf}=M f \leq N\right\} \unlhd_{l} \operatorname{End}_{R}(M) \\
I_{N}=\left\{f \in \operatorname{End}_{R}(M) \mid N \leq \operatorname{ker} f\right\} \unlhd_{r} \operatorname{End}_{R}(M)
\end{gathered}
$$
\]

of the endomorphism ring $\operatorname{End}_{R}(M)$, briefly denoted by S. For any subset J of S, let $\operatorname{ImJ}=\sum_{f \in J} \operatorname{Imf}=\sum_{f \in J} M f$ and kerJ $=$ $\cap_{f \in J} k \in r f$ be the sum of images of endomorphisms in J and the intersection of kernels in J, respectively. Also we call N an open submodule if $N=N^{o}$, where $N^{o}=\sum_{l m f \leq N} I m f, f \in S$, is the sum of images of endomorphisms contained in N and call N a closed submodule if $N=\bar{N}$, where $\bar{N}=\cap_{N \leq k e r f} k e r f, f \in S$, is the intersection of kernels of endomorphisms containing N.

Here is the definition of a prime submodule that McCasland and Moore set up in their paper "Prime Submodules", 1992 [4].

For a proper submodule $P \leq{ }_{R} M$, if $r m \in P(r \in R$ and $m \in M)$ implies that either $m \in P$ or $r \in(P, M)$, then P will be said to be prome in M.

Lemma 0.1. [4] Let R be any ring and M any R-module. Then
a submodule $N \leq M$ is prome of and only if $P=(N: M)$ is a prome ideal of R and the (R / P)-module M / N is torsion-free.

Comparing the definition of prime submodule with the following definition of meet-prime submodule, it looks very different. But for any integral domain R with identity if ${ }_{R} M$ is a multiplication module(${ }^{3}$), it follows immediately from the Lemma 01 and the Corollary 3.3 that P is a prime submodule of ${ }_{R} M \Longleftrightarrow P$ is meet-prime in ${ }_{R} M$ defined in the next section §1. Also it follows immediately from the Lemma 0.1 and the Corollary 3.7 that P is a prime submodul e of ${ }_{R} M \Longleftrightarrow P$ is sum-prime in ${ }_{R} M$ defined in the next section $\oint 3$.

1. Meet-Prime Submodules

It isn't easy to see the structure of prime ideals of R, S and the structures of prime submodule of ${ }_{R} M$. In addition, there are operations + and \cap on the family of all submodules of ${ }_{R} M$. Using the fact that
under these + and \cap, the family of all submodules of ${ }_{R} M$ is closed. from the structure of submodules there may be some methods to find prime ideals of S and those of R.

The following definition is one of methods to see relations between submodules of ${ }_{R} M$ and prime ideals of the ring R and the endomorphism ring S.

Definition 1.1. For a submodule $P \leq{ }_{R} M$ of a left R-module ${ }_{R} M$, we will say that P is a meet-prime submodule of M if it satisfies the following conditions

For any open submodules $A, B \leq M$ with $P^{o}+A \neq M$ or $P^{o}+B \neq$ M,
(1) if $A \cap B \leq P$, then $A \leq P$ or $B \leq P$,
(2) if $(P \cap A \cap B)^{\circ} \neq 0$, then $A \leq P$ or $B \leq P$,
(3) if $P \cap A=0$. then $A=0$ or $P+A=M$.

Trivially every module M is meet-prime in ${ }_{r i} M$.
For example, we have that any prime ideal $\langle p\rangle$ with prime p of a commutative integer ring \mathbb{Z} is a meet-prime submodule of a left \mathbb{Z}-module $\mathbb{Z}^{\mathbb{Z}}$. Clearly the zero submodule of any simple module is meet-prime.

REMARK 1.2. Every meet-prime submodule is not maximal, in general.

Since the non-maximal submodule $p \mathbb{Z}[x] \leq \mathbb{Z}|x| \mathbb{Z}[x]($ for prime $p)$ is meet-prime.

Proposition 13 for any left R-module $R M$. we have the follouıng.
(1) For distinct monzero open meet-prime submodules P and Q of a left R-module ${ }_{R} M$, tt follows that $P+Q=M$.
(2) For a submodule $P \leq_{R} M, P^{\circ}$ us meet-prome vf and only if P is mect-prome.

Proof. (1) Assume $P+Q \neq M$ Since $P \cap(P+Q)=P \neq$ 0 and $Q \cap(P+Q)=Q \neq 0$, the meet-primenesses of P and Q and the openness of $P+Q$ implies $P=Q$ Therefore we have $P+Q=M$.
(2) Since for any open submodule $U \leq M, \quad U \leq P \Longleftrightarrow U \leq P^{\circ}$ and $\left(P^{\prime}\right)^{o}=P^{o}$. The proof is easy from the definition of meet-prame submodule.

Remark 1.4. In a \mathbb{Z}-left module $\mathbb{Z} \mathbb{Z}\left(p^{\infty}\right)$ every proper submodule is meet-prime since $\mathbb{Z} \mathbb{Z}\left(p^{\infty}\right)$ has a unique zero open submodule of it, in other words, no nontrivial submodule is open in $\mathbb{Z} \mathbb{Z}\left(p^{\infty}\right)$ telling that 0 is a unique proper open meet-prime submodule.

The following are some criterior of meet-prime submodules of a module.

A submodule $P \leq{ }_{R} M$ is maximal among open submodules whenever $K \leq M$ is open such that $P \leq K$. then $P=K$ or $K=M$ follows

Lemma 1.5. If a submodule $P \leq{ }_{R} M$ is maximal among open submodules, then P is meet-prime

Proof. From the maximality of open submodule $P=P^{\circ}$ among the open submodules of M, the proof is easy.

It is well-known that not every module has a maximal submodule.
Corollary 1.6. For any left $R-$ module $_{R} M$ we have the following.
(1) If $P \leq_{R} M$ is any maxumal submodule of M, then P is a meetprame submodule of M.
(2) If $I^{P}=J \triangleleft S$ is a maximal deal of S, then P is a meet-prume submodule of M.
(3) For an ıdeal $J \triangleleft S$, if the tdeal $I^{M J}{ }^{\text {is }}$ a maximal deal of S, then $M J$ is a fully invariant open meet-prime submodule.

Proof. The proof is established easily.

2. Sum-Prime Submodules

As a dual way of meet-primeness of submodules of ${ }_{R} M$, the following definition is one of methods to see relations between submodules of $F_{R} M$. prime ideals of the ring R, and the endomorphism ring S.

Definition 2.1. For a submodule $P \leq{ }_{R} M$ of a left R-module ${ }_{R} M$, we will say that P is a sum-prime submodule of M if it satisfies the following conditions:

For any closed submodules $A, B \leq M$ with $\bar{P} \cap A \neq 0$ or $\bar{P} \cap B \neq 0$
(1) if $P \leq A+B$, then $P \leq A$ or $P \leq B$,
(2) if $\overline{P+A+B} \neq M$, then $P \leq A$ or $P \leq B$.
(3) if $P+A=M$, then $A=M$ or $P \cap A=0$

Trivially the zero submodule 0 is sum-prime in ΩM.
For example, we have that a prime ideal $\overline{2}_{\mathbb{Z}_{6}}=\overline{4} \mathscr{Z}_{6} \beth \mathbb{Z}_{6} \mathbb{Z}_{6}$ of a commutative ring \mathbb{Z}_{6} is a sum-prime submodule of a left \mathbb{Z}_{6}-module $\mathbb{Z}_{6} \mathbb{Z}_{6}$.

REMARK 22 The submodule $\{\overline{0}, \overline{1 / p}, \overline{2 / p}, \quad . \overline{(p-1) / p}\}$ is a sumprime submodule of $\mathbb{Z} \mathbb{Z}\left(p^{\infty}\right)$ with a prime number p However the submodule $\left\{\overline{0}, \overline{1 / p}, \overline{2 / p} . \quad, \overline{(p-1) / p}, \quad . \overline{1 / p^{n}} \cdot \overline{2 / p^{n}} . \cdots \quad \overline{(p-1) / p^{n}}\right\}(n \in$ $\mathbb{N}, n \geq 2$) is not a sum-prime submodule of it.

Every sum-prime submodule is not minimal. in general. Each nonminimal submodule $n \mathbb{Z} \leq \mathbb{Z} \mathbb{Z}(0 \neq n \in \mathbb{Z})$ of an integer module $\mathbb{Z} \mathbb{Z}$ is sum-prime.

Proposition 23 For any left R-module ${ }_{R} M$, we have the followıng:
(1) For distmct proper closed sum-prtme submodules P and Q of a left $R-$ module ${ }_{R} M$, it follows that $P \cap Q=0$.
(2) For a submodule $P \leq{ }_{R} M, \bar{P}$ is sum-promee tf and only if P is sum-prtme.

Proof

(1) Assume $P \cap Q \neq 0$. Since $P+(P \cap Q)=P \neq M$ and Q $(P \cap Q)=Q \neq M$, the sum-primenesses of P and Q and the closedness of $P \cap Q$ implies $P=Q$ Therefore we have $P \cap Q=0$
(2) Since for any closed submodule $F \leq M, ~ P \leq F \Longleftrightarrow \bar{P} \leq F$ and $\overline{\bar{P}}=\bar{P}$. The proof is easy from the definition of sum-prime submodule.

Remark 2.4. In a \mathbb{Z}-left module $z \mathbb{Z}_{p} \oplus \mathbb{Z}_{\psi}$ for prime p the closed sum-prime submodules which are not fully invariant are $0 \oplus \mathbb{Z}_{p}$ and $\mathbb{Z}_{p} \oplus 0$. And $\mathbb{Z}_{p} \oplus \mathbb{Z}_{p}$ is a unique closed fully invariant sum-prime submodule.

The following are some criterion of sum-prime submodules of a module.

A submodule $P \leq{ }_{R} M$ is minimal among closed submodules whenever $K \leq M$ is closed such that $K \leq P$, then $P=K$ or $K=0$ follows.

Lemma 2.5. If a submodule $P \leq{ }_{k} M$ is minumal among closed submodules, then P s sum-prime.

Proof. From the minimality of closed submodule $P=\bar{P}$ among the closed submodules of M. the proof is easy.

It is well known that not every module has a minimal submodule.
Corollary 2.6. For any left $R-$ module ${ }_{R} M$ we have the followng.
(1) If $P \leq_{R} M$ is any minimal submodule of M, then P is a sumprime submodule of M.
(2) If $I_{P}=J \triangleleft S$ ts a menumal deal of S, then P is a sum-prome submodule of M.
(3) For an tdeal $J \triangleleft S$, tf the tdeal $I_{k e r J}$ is a muntrnal tdeal of S, then $k e r J=\cap_{f \in J} k e r f$ is a closed fully tnvariant sump-prome submodule.

Proof. The proof is established easily.

3. Meet-Prime, Sum-Prime Submodules, and Prime Ideals

For any fully invariant submodule $N \leq M$ we have two-sided ideals $(N: M) \unlhd R$ and $I^{N} \unlhd S$. Thus it may be found relations between meet-prime submodules of $R_{R} M$ and prime ideals of S (or R). Here are some results.

Proposition 3.1. If P is a fully mvaraant meet-prame submodule of $R_{R} M$, then I^{P} as a prame ideal of S.

Proof Since P is meet-prime if and only if P° is meet-prime by (2) of the Proposition 1.3 it suffices to show that for any fully invariant open meet-prime submodule $P \leq M, I^{P}$ is a prime ideal of S. Assume that P is a fully invariant open meet-prime submodule

Let $I J \subseteq I^{P}=\{f \in S \mid M f \leq P\}$ for subsets $I, J \subseteq S=$ $\operatorname{End}_{R}(M)$.
(I) First if $P=0$, then $M I J=0$. If $M I \cap M J=0 \leq P=0$. then $M I=0$ or $M J=0$ follows from the meet-primness of $P=0$ Or if $M I \cap M J \neq 0$, then $P \cap(M I \cap M J)=0$ and by (3) of the definition $1 . \mathrm{i}$ we have $M I=M J=M$ which cann't make $M I J=0$. Therefore $I=0$ or $J=0$ follows. Hence $I^{P}=0$ is a prime ideal of S.
(II) Secondly let P be a nonzero submodule of M. Then we have the following cases (i) and (ii) to be concerned. Here let $A=M J$ and $B=P+M I$ as open submodules of ${ }_{R} M$.
(i) for the case of $P+B=M$. from the fully invariantness of P it foliows that

$$
\begin{equation*}
M J=(P-M I) J \leq P J+M I J \leq P+P=P . \tag{*}
\end{equation*}
$$

Hence we have that $J \subseteq I^{P}$.
(ii) for the case of $P+B \neq M$, we have to consider the following cases (a) and (b).
(a) if $(P \cap A \cap B)^{o}=P \cap A \cap B \neq 0$. then from (2) of the definition of meet-prime submodule P, it follows that

$$
A=M J \leq P \text { or } B=P+M I \leq P, \text { implying that } I \subseteq I^{P} \text { or } J \subseteq P .
$$

(b) if $(P \cap A \cap B)^{o}=P \cap A \cap B=0$, then $P \cap(P+A \cap B)=P \neq 0$ with $P+A \cap B \neq M$ (otherwise, $P+A \cap B=M$ implies $P+B=M$ contradicted to $P+B \neq M$) Then by the meet-primeness of P we have that $P+A \cap B \leq P$ Hence $A \cap B \leq P$ and $A \leq P$ or $B \leq P$ follows from (1) of the definition 1.1 Therefore $I \subseteq I^{p}$ or $J \subseteq I^{P}$ for any $J J \subseteq I^{P}$ and for $I, J \subseteq S$. Therefore the ideal I^{P} is a prime ideal of S.

Remark 3.2. The fully invariantness of a meet-prime submodule P of ${ }_{K} M$ inducing a prime ideal I^{P} of S is essential. For example, on a \mathbb{Z}-module $\mathbb{Z}_{8} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$ there are meet-prime submodules $2 \mathbb{Z}_{8} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$ and $\mathbb{Z}_{8} \oplus \mathbb{Z}_{3} \oplus 0$, the one is fully invariant and the other is not, which induce a prime ideal $I^{2 Z_{8} \oplus Z_{3} \oplus Z_{3}} \unlhd^{\prime} S$ and a non-prime ideal $I^{Z_{8} \oplus \mathbb{Z}_{5} \oplus 0} \unlhd S$.

The converse of the Proposition 3.1 is not true in general. For example. the trivial ideal $0=I^{0} \unlhd^{\prime} E n d_{\mathbb{Z}|x|}(\mathbb{Z}[x])$ is a prime ideal of $E v d_{\mathbb{Z} \mid x}:(\mathbb{Z}[x])$.

Corollary 3.3. If P is a meet-prame submodule of ${ }_{r} M$ over a commutatuve ring R with identuty, then $(P: M)$ is a prame ideal of R.

Proof. Since R is a commutative ring with identity it follows immediately that for any $r \in R, r M=M \rho(r) \leq M$ is an open submodule of ${ }_{R} M$, where $\rho(r): M \rightarrow M$ is defined by $m \rho(r)=r m$ for each $m \in M$ And hence $(P: M) M$ is also an open submodule of M.

For any $r s \in(P: M)$ with $r, s \in R$, let $A=r M$ and $B=(P$. $M) M+s M$. Then by the same method of the proof of the Proposition 3.1 it follows that $r \in(P: M)$ or $5 \in(P: M)$. Hence $(P: M)$ is a prime ideal of R.

Corollary 3.4. If P is a fully mvarzant met-prame submodule of ${ }_{R} M$ over a commutative rang R with adentity, then $(P: M)$ and the udeal I^{P} ane prome adeals of R and S, respectuvely

Proof. By the Proposition 3.1 and the Corollary 33 it is proved
For any fully invariant submodule $N \leq M$ we have two-sided ideals $I_{N} \unlhd S$ and ($0: M$) $=A r n_{R}(K) \unlhd R$. Thus it certainly can be found relations between sum-prime submodules of ${ }_{R} M$ and prime ideals of S and R. Here is some result.

Proposition 3.5. If P is a fully invariant sum-prame submodule of ${ }_{R} M$, then I_{P} ws a prime adeal of S.

Proof. Since P is sum-prime if and only if \bar{P} is sum-prime by (2) of the Proposition 2.3 it suffices to show that for any fully invariant
closed sum-prime submodule P, I_{P} is a prime ideal of S. Assume that P is a fully invariant closed sum-prime submodule of M.

Let $I J \subseteq I_{P}=\{f \in S \mid P \leq k e r f\}$ for subsets $I, J \subseteq S=$ $E n d_{R}(M)$.
(I) If $P=M$, then $\operatorname{ker} I J=M$. If $M=k e r I+k e r J$, then $M \leq k e r I$ or $M \leq$ ker J from the sum-primeness of $P=M$. If $M \neq$ ker $I-$ ker J, then by (3) of the definition 2.1 it follows that ker $I+k e r J=M$ contradicted. Therefore $I_{M}=0$ is a prime ideal of S.
(II) For $P \neq M$, let $A=P \cap$ ker I and $B=P \cap$ ker. J as closed submodules of ${ }_{R} M$.

The cases of (i) $P \cap B=0$ and (ii) $P \cap B \neq 0$ must be considered
(i) for $P \cap B=0$. we have $P=0$, then from the equation

$$
\begin{equation*}
0=P \geq P \cap \operatorname{ker} I J \geq \cap_{h \in I} h^{-1}(P \cap \operatorname{ker} J)=\cap_{h \in I} h^{-1}(0)=\operatorname{ker} I \tag{*}
\end{equation*}
$$

we have that her $I=0$ Thus $I \subseteq I_{P}=I_{0}$ follows
(ii) for the case of $P \cap B \neq 0 . P \cap B=P \cap$ ker $J \neq 0$ and $P+k e r I+P \cap k e r J \leq k e r l J$.
(a) If $k e r I J \neq M$. then from (2) of the sum-prime submodule P it follows that $P \leq k e r l$ or $P \leq P \cap k \in r J$. Hence I or $J \subseteq I_{P}$.
(b) If kerIJ $=M$. Then the following cases:
(a) $P+k e r I+P \cap k e r J=P+k e r I=M$ or
(β) $P+k \operatorname{er} I+P \cap k e r J=P+k e r I \neq M$
are concerned. Since P is a sum-prime submodule, with (β) we have that $P \leq k e r I$ or $P \leq P \cap k e r J \leq k e r J$. Thus $I \subseteq I_{P}$ or $J \subseteq I_{P}$ follows

It remains to deal with (α) $P+\operatorname{ker} I=M$ Then by the sumprimeness of P we have that ker $I=M$ or $P \cap($ ker $I+P \cap k e r J)=0$. respectively. Thus $I=0 \subseteq I_{P}$ only follows. Otherwise if $P \cap(k \in r I+$ $P \cap$ ker $J)=0$, then $P \cap$ ker $I=0=P \cap$ ker J implies $P \not \leq k e r I J=M$ which contradicts to $P \leq k e r I J=M$.

Therefore the ideal I_{P} is a prime ideal of S.
REMARK 3.6. The fully invariantness of a sum-prime submodule P inducing a prime ideal I_{I}, of S is essential. For example. on $\mathbb{Z}_{N} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$ there are sum-prime submodules $4 \mathbb{Z}_{8} \oplus 0 \oplus 0$ and $0 \oplus \mathbb{Z}_{3} \oplus 0$, the one
is fully invariant and the other is not, which induce a prime ideal $I_{4 Z_{8} \oplus 0 \oplus 0} \unlhd S$ and a non-prime ideal $I_{0 \oplus \mathbb{Z}_{3} \oplus 0} \unlhd S$.

The converse of the Proposition 4.1 is not true in general. For example, the trivial ideal $0=I_{M} \unlhd E n d_{\mathbb{Z}}\left(\mathbb{Z}\left(p^{\infty}\right)\right)$ is a prime ideal of $E n d_{\mathbb{Z}}\left(\mathbb{Z}\left(p^{\infty}\right)\right)$, however the trivial submodule $\mathbb{Z}\left(p^{\infty}\right) \leq \mathbb{Z}\left(p^{\infty}\right)$ is not sum-prime.

Corollary 3.7. If $P_{\text {is a }}$ a sum-prime submodule of ${ }_{R} M$ over a commutatuve ring R with identaty, then $\operatorname{Artn}_{R}(P)=(0: P)$ as a prame tdeal of R.

Proof. Since R is a commutative ring with identity it follows immediately that for any $r \in R, \quad r M=M \rho(r) \leq M$ is an open submodule of ${ }_{R} M$, where $\rho(r): M \rightarrow M$ is defined by $m \rho(r)=r m$ for each $m \in M$. And hence $\operatorname{ker} \rho(0: P)=\cap_{r \in(0 P)} \operatorname{ker} \rho(r)$ is also a closed submodule of M.

For $r s \in(0: P)$ with $r, s \in R$. let $A=\operatorname{ker} \rho(r)$ and $B=\operatorname{ker} \rho(0:$ $P) \cap \operatorname{ker} \rho(s)$. Then by the same method of the proof of the Proposition 3.5 it follows that $r \in(0: P)$ or $s \in(0: P)$. Hence $(0: P)$ is a prime ideal of R.

Corollary 3.8. For a commutative ring R with identaty, if P as a fully invar ant sum-prime submodule of ${ }_{R} M$, then $(0: P)$ and the ideal I_{P} are prime ideals of R and S, respectuvely.

Proof. By the Proposition 3.5 and the Corollary 3.7 it is proved.

4. (Semi-)Meet-Prime Modules and (Semi-)Prime Rings

In order to see relations among semi-prime rings, semi-meet-prime modules and semi-prime endomorphism rings of left modules, and relations among the prime radicals of rings, endomorphism rings and the prime radicals of modules, we need a new definition as follows

DEfinition 4.1. For a left R-module ${ }_{R} M$, we define the prime radical $\operatorname{rad}(M)=\cap_{\alpha \in \Lambda} P_{\alpha}$ to be the intersection of all fully invariant meet-prime submodules $P_{\alpha} \leq M$ for $\alpha \in \Lambda$. Consequently, if $\operatorname{rad}(M)=$
$\cap P_{\alpha}$, then we have an open submodule $\operatorname{rad}(M)=\cap P_{\alpha}=\cap P_{\alpha}^{\alpha}$ of M by (2) of the Proposition 1.3.

A left R-module ${ }_{R} M$ is said to be semi-meet-prime if the prime radical $\operatorname{rad}(M)=0$ i.e., the intersection $\cap P_{\alpha}=0$ for all fully invariant meet-prime submodules $P_{\alpha} \leq M$.

ThEOREM 42 . If a left R-module ${ }_{R} M$ is seml-meet-prame, then us endomorphism ring S is semi-prime.

Proof. Let $\operatorname{rad}(M)=\cap P_{\alpha}$ be the prime radical of $n_{R} M$ for each fully invariant meet-prime submodule ${Y_{\alpha}}^{\text {of }}{ }_{R} M$. Assume that ${ }_{R} M$ is semi-meet-prime.

Then $\operatorname{rad}(M)=0=\cap P_{\alpha}, P_{\alpha}$ is a fully invariant meet-prime submodule of M. Thus the prime radical $\operatorname{rad}(S) \leq \cap I^{P_{a}}=I^{\cap P_{A}}=$ $I^{\operatorname{rad}(M)}=I^{0}=0$ must be zero. Therefore S is semi-prime

THEOREM 4 3. For a commutative ring R with vdentuty, if a fauthful left R-module ${ }_{R} M$ is semi-meet-prome, then the rung R and ats endomorphism ring S are semi-prime.

Proof. The relation $\left(\cap P_{\alpha}: M\right)=\cap\left(P_{\alpha k}: M\right)$ implies that
$0=(0: M)=(\operatorname{rad}(M): M)=\cap\left(P_{\alpha}: M\right) \geq \operatorname{rad}(R)$ since M is faithful.

Recall that a ring is said to be prime if its zero ideal is prime. Thus we can define in the same way, if ${ }_{R} M$ has a zero meet-prime submodule of it. ${ }_{R} M$ will be called a meet-prime module.

Theorem 4.4 For a commutative rang R wath adeniaty, of there is at least one fathful meet-prnme module, say $\mathrm{r} M$, then R is a prome rung. And so is S.

Proof. Let ${ }_{R} M$ be a left faithful meet-prime R-module. Since 0 is a fully invariant meet-prime submodule of a faithful module M we have that
$0=(0 \cdot M) \unlhd R$ and $0=I^{0} \unlhd S$ are prime ideals of R and S. respectively. Hence R and S are prime rings.

ThEOREM 4.5. If a left $R-\operatorname{module}_{R} M$ is meet-prime, then S is a prome ring.

Proof. Since $I^{0}=0 \leq S$ is a prime ideal of S by the Proposition 2.1 it follows immediately that S is a prime ring.

Proposition 4.6. For a commutative ring R with identity, if a left R-module $R M$ is meet-prime, then $\operatorname{Ann}_{R}(M)=(0: M)$ is a prime adeal of R and S us a prime ring.

Proof. It is an immediate consequence of the Theorem 33 and the meet-primeness of the prime radical $\operatorname{rad}(M)=0$.

Proposition 4.7. For a commutative rıng R with identity, if a left faithful $R-$ module $_{R} M$ is meet-prtme, then R and S are prone rings.

Proof. It is clear.
Application 4.8. Clearly semi-meet-prameness of $\mathbb{Z} \mid \mathbb{Z}_{[}^{i} x_{j}^{i}$ mplues that tts endomorphism ring is semi-prime.

For any indexed family of $\left\{M_{\alpha}\right\}_{\alpha \in \Gamma}$ of $R-$ modules $M_{\alpha}(\alpha \in \Gamma)$, a direct product $\prod_{\alpha \in \Gamma} M_{\alpha}$ (a direc sum $\oplus_{\alpha \in \Gamma} M_{\alpha}$) is said to be of invariant factor modules $M_{\alpha}(\alpha \in \Gamma)$ if each homomorphism group
$\operatorname{Hom}_{R}\left(M_{\alpha}, M_{\beta}\right)=\left\{f \mid f \quad M_{\alpha} \rightarrow M_{\beta}\right.$ is an R-homomorphism $\}$
is a trivial additive group for each $\alpha \neq \beta$ in Γ, that is, zero.
Proposition 4.9. If $\prod_{\alpha \in \Gamma} M_{\alpha}$ us a direct product of semm-meetprume invartant factor R-modules $M_{\alpha}(\alpha \in \Gamma)$, then $\prod_{a x \in \Gamma} M_{\alpha}$ as also semi-meet-prime. Hence S is semi-prime.

Proof. Considering the canonical projections(here they are endomorphisms) $\pi_{i}: \prod M_{\alpha} \rightarrow M_{i}$ defined by $\left(x_{\alpha}\right) \pi_{i}=x_{i}$ for each $\left(x_{\alpha}\right) \in \prod M_{\alpha}$, from the fact that
for every fully invariant meet-prime submodule $P_{L} \leq M_{L}$, it follows that every preimage $\pi_{\iota}^{-1}\left(P_{\iota}\right)$ is meet-prime in $\prod M_{\alpha}$ since $\prod M_{\alpha x}$ is a direct product of invariant factors. The rest of the proof can be established easily.

Corollary 4.10 If $\prod_{\alpha \in \Gamma} M_{c x}$ is a durect product of meet-pume invan ant factor R-modules M_{α}, then $\prod_{\alpha \in 1} M_{\alpha x}$ is also semu-meetprame. Moreover S is semt-prime.

Proof. The proof is an immediate consequence of the Proposition 5.9.

Corollary 4.11 For a commutative rang R with udentuty, of a left sem-stmple R-module ${ }_{R} M$ is a durect sum of sumple: mavaruant factor modules, then ts endomorphism rang S is semi-prume. Additionally. of $R_{R} M$ is fathful, then R is also a semu-prime ring

Proof. The proof is elementary by the Theorem 4.3 and the Proposition 4.9 since every a direct sum of semi-simple invariant factor modules is semi-meet-prime.

5. (Semi-)Sum-Prime Modules and (Semi-)Prime Rings

In order to see relations among semi-prime rings. semi-sum-prime modules and semi-prime endomorphism rings of left modules, and relations among the prime radicals of rings, endomorphism rings and the prime socles of modules, we need a new definition as follows

Definition 5.1. For a left R--module ${ }_{R} M$. we define the prime socle
$\operatorname{soc}(M)=\sum_{\alpha \in \Lambda} P_{a}$ to be the sum of all fully invariant sum-prime submodules $P_{\alpha} \leq M$ for $\alpha \in \Lambda$. Consequently, if $\operatorname{soc}(M)=\sum P_{\alpha}$, then we have a closed submodule $\operatorname{sor}(M)=\sum P_{\alpha}=\sum \overline{P_{c k}}$ of M by (2) of the Proposition 2.3

A left $R-$ module ${ }_{K} M$ is said to be semi-sum-prime if the prime socle $\operatorname{soc}(M)=M$ i.e, the sum $\sum P_{\alpha}=M$ for all fully invariant sum-prime submodules $P_{\alpha} \leq M$

Theorem 5.2 If a lefl R-module ${ }_{R} M$ is semi-sum-prume, then its endomorphism nugg S is semt-prune.

Proof. Let $\operatorname{soc}(M)=\sum P_{\alpha}$ be the prime socle of ${ }_{k} M$ for each fully invariant sum-prime submodule $P_{c x}$ of ${ }_{R} M$. Assume that ${ }_{R} M$ is semi-sum-prime.

Then $\operatorname{soc}(M)=M=\sum P_{\alpha}, P_{\alpha}$ is a fully invariant sum-prime submodule of M. Thus the prime radical $\operatorname{rad}(S) \leq \cap I_{p_{\alpha}}=I_{\sum P_{\alpha}}=$ $I_{s o c(M)}=I_{M}=0$ must be zero. Therefore S is semi-prime.

Recall that a ring is said to be prime if its zero ideal is prime. Thus we can define in the dual way, if ${ }_{R} M$ has a nonzero trivial sum-prime submodule M of itself $M,{ }_{R} M$ will be called a sum-prime module.

Theorem 5.3. For a commutative ring R with identuty, if a faithful left R-module ${ }_{B} M$ is semi-sum-prome, then the rung R and its endomorphism ring S are semı-prime.

Proof. The relation $\left(0: \sum P_{\alpha}\right)=\cap\left(0: P_{\alpha}\right)$ implies that
$0=(0: \operatorname{soc}(M))=\cap\left(0: P_{\alpha}\right) \geq \operatorname{rad}(R)$ since M is faithful
Theorem 5.4. For a commutative ring R with adentuty, of thete is at least one faithful sum-prome module, say ${ }_{R} M$, then R is a prame ring. And so is S.

Proof. Let ${ }_{R} M$ be a left faithful sum-prime R-module. Since M is a fully invariant sum-prime submodule of a faithful module M we have that
$0=(0: M) \unlhd R$ and $0=I_{M} \unlhd S$ are prime ideals of R and S. respectively. Hence R and S are prime rings

Theorem 5.5. If a left R-module ${ }_{R} M$ is sum-pivme, them S is a primering.

Proof. Since $I_{M}=0 \unlhd S$ is a prime ideal of S by the Proposition 4.1 it follows immediately that S is a prime ring.

Proposition 5.6. For a commutative ring R with identity, if a left R-module ${ }_{R} M$ is sum-prame, then $\operatorname{Ann}_{R}(M)=(0: M)$ is a prime ıdeal of R and S is a prime ring.

Proof. It is an immediate consequence of the Theorem 53 and the sum-primeness of the prime socle $\operatorname{soc}(M)=M$.

Proposition 5.7. For a commutative rang R with udentaty, va left. faithful R-module ${ }_{R} M$ is sum-piame, then R and S are prame rungs.

Proof. It is clear.

APPliCation 5.8. Clearly sema-sum-prameness of a left \mathbb{Z}-module $\oplus_{p} \mathbb{Z}_{p}$ (prome number p) implues that ats endomorphism ring as semiprime.

Proposition 5.9 If $\oplus_{\alpha \in \operatorname{Ti}} M_{\alpha}$ is a darect sum of sema-sum-printe invartant factor R-modules $M_{\alpha}(\alpha \in \Gamma)$, then $\oplus_{\alpha \in \Gamma} M_{\alpha x}$ is also semi-sum-prome. Hence S is semv-prime.

Proof Considering the canonical injections(here they are R-homor phisms) $\iota_{\alpha}: M_{\alpha} \rightarrow \oplus M_{\gamma}$ defined by $x_{\alpha} \iota_{\alpha}=\oplus x_{\gamma}$ for each $x_{\gamma}=$ 0_{γ} if $\gamma \neq \alpha, x_{\gamma}=x_{\alpha}$ if $\gamma=\alpha$, there is an R-endomorphism $\oplus \iota_{\alpha}: \oplus M_{\gamma} \rightarrow \oplus M_{\gamma}$. ${ }_{\text {¿From the fact that }}$
for every fully invariant sum-prime submodule $P_{\alpha} \leq M_{\alpha}$, it follows that every image $\iota_{\alpha}\left(P_{\alpha}\right)$ is sum-prime in $\oplus M_{c x}$ since $\oplus M_{c x}$ is a direct sum of invariant factors. The rest of the proof can be established easily

Corollary 5.10. If $\oplus_{\alpha \in \Gamma} M_{\alpha}$ is a direct sum of sum-prame thvarant factor $R-$ modules M_{α}, then $\oplus_{\alpha \in \Gamma} M_{\alpha}$ is also semu-sam-prime. Moreovet S is semi-prime.

Proof. The proof is an immediate consequence of the proposition 6.9.

Corollary 5.11. For a commutatue ring R with dentuty, df a left: semi-stmple R-module ${ }_{R} M$ is a derect sum of stmple invartant factor modules, then its endomorphism ring S is semt-prame. Addutuonally, ${ }^{\text {if }} R M$ is fathful, then R is also a semu-prome rang.

Proof. The proof is elementary by the Theorem 6.3 and the Proposition 6.9 since every a direct sum of semi-simple invariant factor modules is semi-meet-prime.

References

[1] Soont-Sook Bae, On Ideals of Endomorphasm Ring of Projecture Module, Pusan Kyóng nam Mathematical Journal 15 (1989), 81-86.
[2] \qquad , Certain Discriminations of Prome Endomorphism and Prome Matrzx, East Asian Mathematical Journal 14, no 2 (1998), 259-218.
[3] Z A. El-Bast and P. F. Smith, Multtplicatton Modules, Communications in Algebra 16 (1988), 755-779.
[4] R L. McCasland and M. E. Moore, Prume Submodules, Cornmunications in Algebra 20 (1992), 1803-1817

Department of Mathematics
Kyungnam University
Masan 631-701. Korea
E-mall: ssb@hanma.kyungnam.ac.kr

[^0]: Recerved October 27, 1999 Revised March 10, 2000
 1991 Mathematies Subject Clansification 16A20
 Key words and phrases Meet-primes, sum-prime, oper, closed submodule, sermprime, prime.

