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Abstract. In this paper, we first study some characterizations of left MC2 rings. Next,

by introducing left nil−injective modules, we discuss and generalize some well known re-

sults for a ring whose simple singular left modules are Y J-injective. Finally, as a byproduct

of these results we are able to show that if R is a left MC2 left Goldie ring whose every

simple singular left R−module is nil−injective and GJcp−injective, then R is a finite

product of simple left Goldie rings.

Introduction

Throughout this paper R denotes an associative ring with identity, and
R−modules are unital. For a ∈ R, r(a) and l(a) denote the right annihilator of
a and the left annihilator of a, respectively. We write J(R), Zl(R), N(R), N1(R),
Sl(R), P (R),K(R), B(R) and BJ(R) for the Jacobson radical of R, the left singular
ideal of R, the set of nilpotent elements of R, the set of non-nilpotent elements of
R, the left socle of R, the prime radical, the Levitzki radical, antisimple radical and
antisimple primitive radical, respectively. An element k ∈ R is called left minimal if
Rk is a minimal left ideal of R. An element e ∈ R is called left minimal idempotent
if e is a left minimal element and e2 = e. An idempotent e ∈ R is called left (right,
resp) semicentral if, ae = eae (ea = eae) for all a ∈ R.

Recall that a ring R is left DS [1] if for every minimal element k ∈ R, Rk is a
summand of RR. These rings are also called left universally mininjective by W.K.
Nicholson and M.F. Yousif in [3]. There, they proved that R is left DS ring iff
Sl(R) ∩ J(R) = 0. And, in [1], we give a lot of characterizations of left DS rings.
For example, R is left DS ring iff R is left PS ring and left mininjective ring, where
left mininjective rings are defined by W.K. Nicholson and M.F. Yousif in [3].

Call that a ring R is left MC2 if every left minimal idempotent element e ∈ R
is right minimal. In Theorem 1.1, we show that R is left MC2 ring if and only if for
any left minimal elements k, g2 = g ∈ R, Rk ∼= Rg as left R−module always implies
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Rk = Re, e2 = e ∈ R. This characterization is equivalent to the definition appeared
in [1]. In fact, in [1], we have shown that R is left MC2 ring iff Zl(R) ∩ Sl(R) =
J(R) ∩ Sl(R). And, there, we have also shown that left DS rings are left MC2.
Hence, we can easy see that R is left DS ring iff R is left PS ring and left MC2
ring. On the other hand, by [3, Proposition 1.11], we can see that left mininjective
rings are left MC2.

In section 1, we first characterize left MC2 rings. Next, we generalize some
results of left minsymmetric rings, left C2 rings to left MC2 rings. Finally, we
show that every simple projective left R−module is mininjective if and only if R is
left MC2 ring.

In section 2, left MC2 ring R whose simple singular left modules are
nil−injective are studied. As a byproduct of these results we are able to show
that if R is a left MC2 left Goldie ring whose every simple singular left R−module
is nil−injective and left GJcp−injective, then R is a finite product of simple left
Goldie rings.

1. Left MC2 rings

Theorem 1.1. The following conditions are equivalent for a ring R.
(1) R is left MC2 ring;
(2) For any left minimal elements k, g2 = g ∈ R, Rk ∼= Rg as left R−module always
implies Rk = Re, e2 = e ∈ R;
(3) For any left minimal elements k, g ∈ R with k2 = 0, g2 = g, Rk ∼= Rg as left
R−module always implies Rk = Re, e2 = e ∈ R.

Proof. (1) =⇒ (2) Assume that R is left MC2 ring and Rk ∼= Rg for left minimal
elements k, g2 = g ∈ R. Evidently, there exists an idempotent element h ∈ R such
that hk = k and l(k) = l(h). So Rh is a minimal left ideal of R, by (1), hR is a
minimal right ideal, thus kR = hkR = hR. Write h = kc, c ∈ R and let e = ck.
Then Rk = Re, e2 = e.

(2) =⇒ (3) is evident.
(3) =⇒ (1) Let e2 = e ∈ R be a left minimal element. Let a ∈ R such that

ea 6= 0, then Re ∼= Rea, so ea is a left minimal element. If (ea)2 6= 0, then clearly
Rea = Rg, g2 = g ∈ R. If (ea)2 = 0, then by (3), Rea = Rg, g2 = g ∈ R. Write
g = cea, c ∈ R and let h = eac, then eaR = hR, h2 = h. Since l(e) = l(ea) = l(h),
eR = rl(e) = rl(h) = hR = eacR = eaR. This implies e is a right minimal element.
Hence R is a left MC2 ring. �

Associated with each ring R is the monoid (R, ◦), where a◦b = a+b−ab, for each
a, b ∈ R. We call (R, ◦) the circle semigroup of R. An element b ∈ R is quasi-regular
if b is invertible in (R, ◦); i.e., there exists a ∈ R such that b ◦ a = a ◦ b = 0. The
set of all quasi-regular elements in R is denoted by q(R). Note that N(R) ⊆ q(R)
and Theorem 1.1, we have the following corollary.

Corollary 1.2. R is left MC2 ring if and only if for any left minimal elements
k, g ∈ R with k ∈ q(R), g2 = g, Rk ∼= Rg as left R−module always implies Rk =
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Re, e2 = e ∈ R.

Recall that a ring R is idempotent reflexive [7] if aRe = 0 implies eRa = 0 for
all a, e2 = e ∈ R. Obviously any abelian rings and semiprime rings are idempotent
reflexive rings.

With this idea, we characterize left MC2 rings as follows.

Theorem 1.3. The following conditions are equivalent for a ring R.
(1) R is left MC2 ring;
(2) For any a ∈ R and left minimal idempotent e ∈ R with aRe = 0 always implies
eRa = 0;
(3) For any a ∈ q(R) and left minimal idempotent e ∈ R with aRe = 0 always
implies eRa = 0;
(4) For any a ∈ N(R) and left minimal idempotent e ∈ R with aRe = 0 always
implies eRa = 0;
(5) For any a ∈ R and left minimal idempotent e ∈ R with a2 = 0 and aRe = 0
always implies eRa = 0;
(6) For any left minimal elements k, e2 = e ∈ R with kRe = 0 always implies
eRk = 0;
(7) For any left minimal elements k ∈ q(R), e2 = e ∈ R with kRe = 0 always
implies eRk = 0;
(8) For any left minimal elements k, e2 = e ∈ R with k2 = 0 and kRe = 0 always
implies eRk = 0;

Proof. (1) =⇒ (2) Assume that e2 = e ∈ R is a left minimal element and a ∈ R
with aRe = 0. If eRa 6= 0, then there exists a b ∈ R such that eba 6= 0. Clearly,
Re ∼= Reba. Hence, by Theorem 1.1, Reba = Rg, g2 = g ∈ R. Thus Reba =
RebaReba = Reb(aRe)ba = 0, which is a contradiction. Hence eRa = 0.

(2) =⇒ (3) =⇒ (4) =⇒ (5) =⇒ (8) and (2) =⇒ (6) =⇒ (7) =⇒ (8) are trivial.
(8) =⇒ (1). Assume k, e2 = e ∈ R are left minimal elements with Rk ∼= Re.

Then there exists an idempotent element h ∈ R such that hk = k and l(k) = l(h).
If (Rk)2 = 0, then kRh = 0 because kR ⊆ l(k) = l(h). By hypothesis, hRk = 0,
then hRh = 0 and so h = 0, which is a contradiction. Hence (Rk)2 6= 0, which
implies that R is left MC2 ring. �

By Theorem 1.3, we can see that idempotent reflexive rings are left MC2 rings,
so semiprime rings and abelian rings are all left MC2 rings.

Theorem 1.4. The following conditions are equivalent for a ring R.
(1) R is left MC2 ring;
(2) For any left minimal element k, if Rk is a summand in RR, then k is right
minimal element.
(3) For any left minimal element k, if RRk is projective, then k is right minimal
element.
(4) For any left minimal element k, if RRk is nonsingular, then k is right minimal
element.
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Proof. (1) =⇒ (2) Since Rk is a minimal left ideal of R, RRk is projective if and
only if RRk is nonsingular. Hence, by Theorem 1.3, (3) ⇐⇒ (4) ⇐⇒ (2) =⇒ (1)
are evident.

(1) =⇒ (3). Assume k is a left minimal element with RRk is projective, then
there exists a left minimal idempotent e ∈ R such that ek = k and l(e) = l(k). By
(1), e is right minimal element, so kR = eR is a minimal right ideal of R, hence k
is right minimal element. �

Corollary 1.5. The following conditions are equivalent for a ring R.
(1) R is left MC2 ring;
(2) For any left minimal element k, if k /∈ q(R), then k is right minimal element;
(3) For any left minimal element k, if k /∈ J(R), then k is right minimal element;
(4) For any left minimal element k, if k /∈ Zl(R), then k is right minimal element;
(5) For any left minimal element k, if k /∈ N(R), then k is right minimal element;
(6) For any left minimal element k, if k /∈ P (R), then k is right minimal element.

Recall that a ring R is left minsymmetric [3] if every left minimal element is
right minimal. From Theorem 1.4, we know that left minsymmetric ring is left
MC2 ring. [3, Proposition 2.7] shows that R is left minsymmetric ring if and only
if any left minimal element k ∈ R, r(Rk ∩ l(a)) = r(k) + aR for all a ∈ R. We can
generalize the result as follows.

Theorem 1.6. The following conditions are equivalent for a ring R.
(1) R is left MC2 ring;
(2) If Rk is a projective minimal left ideal of R, then r(Rk ∩ l(a)) = r(k) + aR for
all a ∈ R;
(3) For each left minimal idempotent e ∈ R, r(Re∩ l(a)) = (1− e)R + aR holds for
all a ∈ R.

Proof. (1) =⇒ (2). Assume that Rk is simple projective left ideal of R. By Theorem
1.4, k is a right minimal element. If ka = 0, then Rk ⊆ l(a) and aR ⊆ r(k), so
r(Rk ∩ l(a)) = r(Rk) = r(k) = aR + r(k), and (2) follows. If ka 6= 0, then
Rk∩ l(a) = 0 and r(k)+aR = R because r(k) is a maximal right ideal of R. Hence
r(Rk ∩ l(a)) = r(0) = R = r(k) + aR and again (2) follows.

(2) =⇒ (3) is trivial.
(3) =⇒ (1) Assume that e2 = e ∈ R is a left minimal element and a ∈ R with

ea 6= 0, then Re ∩ l(a) = 0, so R = r(0) = r(Re ∩ l(a))) = (1 − e)R + aR. Write
1 = x + ab, x ∈ (1− e)R, b ∈ R, then e = ex + eab = eab. Hence eR = eabR = eaR,
which implies that eR is a minimal right ideal of R. �

Call a left R−module M mininjective [3] if for any left minimal element k ∈ R,
every R−morphism f : Rk −→ M extends to R. If RR is mininjective, we call R
is left mininjective ring [3]. By [3, Theorem 1.14], left mininjective rings are left
minsymmetric rings. Hence, left mininjective rings are left MC2 rings. [3, Theorem
1.14] shows that if R is left minsymmetric ring, then Sl ⊆ Sr. We do not know
whether R is left MC2 ring, whence Sl ⊆ Sr.



MC2 Rings 655

Call a ring R left universally mininjective [3] if every left R−module is min-
injective. In [1], we also call this ring left DS ring. Since left DS rings are left
mininjective [3, Theorem 5.1], left DS rings are left MC2 rings.

Call a ring R left C2 [8] if every left ideal which isomorphic to a summand of
RR is a summand. By Theorem 1.6, we see that left C2 rings are left MC2. Hence
right Kasch rings are left MC2 because right Kasch rings are left C2 [8].

Recall that R is left CM−ring iff, for any maximal essential left ideal M of R,
every complement left subideal is an ideal of M . [5, Proposition 3] shows that every
simple projective module over left CM−ring is injective. Hence left CM−ring is
left MC2. In fact, we have the following Theorem.

Theorem 1.7. The following conditions are equivalent for a ring R.
(1) R is left MC2 ring;
(2) Every nonsingular simple left R−module is mininjective;
(3) Every simple projective left R−module is mininjective;

Proof. (1) =⇒ (2). Assume that R is left MC2 ring. Now let W be a nonsingular
simple left R−module. Then RW is projective. Let Rk be any minimal left ideal
of R and f : Rk −→ W be any non-zero left R−morphism. Clearly, f is an
isomorphism, so Rk = Re, e2 = e ∈ R by Theorem 1.1. Set g : R −→ W defined
by g(x) = xf(e), Then g is a left R−morphism, and g(k) = kf(e) = f(ke) = f(k)
because k = ke. This shows RW is left mininjective.

(2) ⇐⇒ (3) is trivial.
(3) ⇐⇒ (1) AssumeRk ∼= Re where Rk, Re, e2 = e are minimal left ideals of R.

Then by (3), RRk is mininjective, so the map I : Rk −→ Rk via xk 7−→ xk, x ∈ R
extends to f : R −→ Rk. Hence there exists a c ∈ R such that k = f(k) = kf(1) =
kck where f(1) = ck. Write ck = h, then h2 = h and Rk = Rh, (1) follows. �

Let R be a left MC2 ring, e2 = e, g2 = g ∈ R be any left minimal elements, if
Re 6= Rg, then by [3], there exists a h2 = h ∈ R such that Re⊕Rg = Rh.

Call a left ideal I of R is minimal finite generated if I is a direct sum of finite
minimal left ideals of R.

Since direct sum of finite mininjective left R−modules is mininjective, we have
the following corollary.

Corollary 1.8. The following conditions are equivalent for a ring R.
(1) R is left MC2 ring;
(2) Every nonsingular finite generated semisimple left R−module is mininjective;
(3) Every finite generated semisimple projective left R−module is mininjective;
(4) Every minimal finite generated projective left ideal of R is mininjective;
(5) Every nonsingular minimal finite generated left ideal of R is mininjective;
(6) Every minimal finite generated projective left ideal of R is a summand;
(7) Every nonsingular minimal finite generated left ideal of R is a summand.

Call a left R−module M nil−injective if for each nilpotent element k ∈ R, there
exists a positive integer n such that kn 6= 0 and any left R−morphism Rkn −→ M
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extends to R. Example contain left p−injective modules and Y J−injective modules.
R is called left nil−injective ring if RR is nil−injective. So left Y J−injective ring
is left nil−injective ring. Obviously we have the following corollary.

Corollary 1.9. Let R be a left MC2 ring and k be a left minimal element, then
(1) If RRk is injective, then k is right minimal element.
(2) If RRk is p−injective, then k is right minimal element.
(3) If RRk is mininjective, k is right minimal element.
(4) If RRk is Y J−injective, then k is right minimal element.
(5) If RRk is nil−injective, then k is right minimal element.

It is well known that for any ring R, we have (1) P (R) ⊆ K(R) ⊆ N(R)∩J(R)
and N(R) ∪ J(R) ⊆ q(R), (2)B(R) ∪ J(R) ⊆ BJ(R), (3) Zl(R) ∩ Sl(R) ⊆ B(R) ∩
P (R)∩Sl(R). In (3), When does the equality hold? We have the following theorem.

Theorem 1.10. The following conditions are equivalent for a ring R.
(1) R is left MC2 ring;
(2) Zl(R) ∩ Sl(R) = J(R) ∩ Sl(R);
(3) Zl(R) ∩ Sl(R) = P (R) ∩ Sl(R);
(4) Zl(R) ∩ Sl(R) = N(R) ∩ Sl(R);
(5) Zl(R) ∩ Sl(R) = K(R) ∩ Sl(R),
(6) Zl(R) ∩ Sl(R) = q(R) ∩ Sl(R);
(7) Zl(R) ∩ Sl(R) = B(R) ∩ Sl(R)
(8) Zl(R) ∩ Sl(R) = BJ(R) ∩ Sl(R).

Proof. It is obvious because N(R), P (R), q(R), J(R),K(R), B(R), BJ(R) contain
no nonzero idempotents. �

In [8], W.K.Nicholson shows that R is left C2 ring if and only if for any a, e2 =
e ∈ R, any R−isomorphism Ra −→ Re extends to R −→ R if and only if if
l(a) = l(e), a, e2 = e ∈ R, then e ∈ aR . Similar to the proof of the result, we can
generalize the results as follows.

Theorem 1.11. The following conditions are equivalent for a ring R.
(1) R is left MC2 ring;
(2) Every R−morphism f : Rk −→ Re with k, e2 = e ∈ R left minimal, extends to
R −→ R;
(3) Every R−morphism Rk −→ Re with k, e2 = e ∈ R, left minimal and k ∈ q(R),
extends to R −→ R;
(4) Every R−morphism Rk −→ Re with k, e2 = e ∈ R, left minimal and k2 = 0,
extends to R −→ R.

Proof. (1) =⇒ (2) Since Rk, Re are all minimal left ideals of R, f is an isomorphism.
By (1) and Theorem 1.1, Rk = Rg, g2 = g ∈ R. Set ρ : R −→ R defined by ρ(x) =
xf(g), x ∈ R, then ρ is a left R−homomorphism, and ρ(k) = kf(g) = f(kg) = f(k)
because k = kg. We are done.

(2) =⇒ (3) =⇒ (4) are trivial.
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(4) =⇒ (1) Assume that σ : Rk ∼= Re, where Rk,Re, e2 = e are minimal
left ideals of R. If k2 6= 0, then,certainly, Rk = Rg for some g2 = g ∈ R. If
k2 = 0, then by (4), there exists a left R−morphism ρ : R −→ R such that
ρ|Rk = σ. Hence e = σ(ak) = ρ(ak) = akρ(1) = akb, a ∈ R, b = ρ(1) ∈ R.
Since Re = ReRe = Reσ(Rk) = Rakbσ(Rk) = σ(RakbRk) ⊆ σ(RkRk) 6= 0, so
(Rk)2 6= 0, which implies Rk = Rg for some g2 = g ∈ R, we again follow (1). �

Theorem 1.12. The following conditions are equivalent for a ring R.
(1) R is left MC2 ring;
(2) If l(k) = l(e), k, e2 = e are left minimal elements, then e ∈ kR;
(3) If l(k) = l(e), k, e2 = e are left minimal elements with k ∈ q(R) , then e ∈ kR;
(4) If l(k) = l(e), k, e2 = e are left minimal elements with k2 = 0, then e ∈ kR.

Proof. (1) =⇒ (2) Since Rk ∼= R/l(k) = R/l(e) ∼= Re, By (1) and theorem 1.1,
Rk = Rg, g2 = g, so kR = hR for some h2 = h ∈ R. Hence eR = rl(e) = rl(k) =
rl(kR) = rl(hR) = rl(h) = hR = kR, we are done.

(2) =⇒ (3) =⇒ (4) are obvious.
(4) =⇒ (1). Assume that σ : Rk ∼= Re, where Rk,Re, e2 = e are minimal left

ideals of R. Let σ(ak) = e, σ(k) = be, a, b ∈ R. Then e = abe. Set g = bea, then
g2 = beabea = be(abe)a = beea = bea = g, gk = beak = beσ−1(e) = σ−1(bee) = k
and clearly, l(g) = l(k) because l(g) is a maximal left ideal of R. We can assume
that k2 = 0, then by (4), g ∈ kR. This implies (kR)2 6= 0, so (Rk)2 6= 0, we follow
(1). �

Recall that R is right minannihilator ring [3] if every minimal right ideal K of
R is an annihilator, equivalently, rl(K) = K. Evidently, right DS rings [1] are right
minannihilator rings. Certainly, left p−injective rings are also right minannihilator
rings. With this idea, we give the following theorem.

Theorem 1.13. The following conditions are equivalent for a ring R.
(1) R is left MC2 ring;
(2) For each projective minimal left ideal Rk of R, rl(k) = kR;
(3) For each projective minimal left ideal Rk of R with k ∈ q(R), rl(k) = kR;
(4) For each projective minimal left ideal Rk of R with k2 = 0, rl(k) = kR.

Proof. (1) =⇒ (2) Since RRk is projective, then Rk ∼= Re, e2 = e ∈ R, so Rk =
Rh, h2 = h ∈ R by (1) and Theorem 1.1. Thus we easy show that kR = gR, g2 =
g ∈ R. Consequently, rl(k) = rl(kR) = rl(gR) = rl(g) = gR = kR.

(2) =⇒ (3) =⇒ (4) are trivial.
(4) =⇒ (1) Let Rk ∼= Re, e2 = e, k2 = 0 where Rk, Re be minimal left ideals

of R. By (4), rl(k) = kR. Since there exists a g2 = g ∈ R such that gk = k
and l(k) = l(g). Hence kR = rl(g) = gR, consequently, clearly, (Rk)2 6= 0, which
implies that R is a left MC2 ring. �

2. Certain rings whose simple singular modules are nil−injective

Recall that a ring R is left GQ−injective [6] if, for any left ideal I isomorphic
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to a complement left ideal of R, every left R−homomorphism of I into R extends
to an endomorphism of RR. In [6], Roger Yue Chi Ming shows that if R is left
GQ−injective ring, then J(R) = Zl(R), R/J(R) is regular.

Theorem 2.1. Let R be a left GQ−injective ring whose simple singular left
R−modules are nil−injective, then R is regular ring.

Proof. Suppose that Zl(R) 6= 0. Then there exists a 0 6= a ∈ Zl(R) such that a2 = 0.
If there exists a maximal essential left ideal M containing Zl(R) + l(a), then the
R−morphism f : Ra −→ R/M defined by f(ra) = r + M, r ∈ R extends to R be-
cause R/M is simple singular left R−module, so is left nil−injective. Hence there
exists a c ∈ R such that 1−ac ∈ M . Since ac ∈ Zl(R) ⊆ M , 1 ∈ M , which is a con-
tradiction. This implies that Zl(R)+ l(a) = R. Write 1 = x+y, x ∈ Zl(R), y ∈ l(a).
So a = xa+ya = xa, and then (1−x)a = 0. Since Zl(R) = J(R), 1−x is invertible.
This shows that a = 0, which is a contradiction. Therefore Zl(R) = 0 and so R is
regular ring. �

Call a left R−module M Gnp−injective if for each non-nilpotent element a ∈
R, there exists a positive integer n such that any left R−morphism Ran −→ M
extends to R −→ M . Example contains left Y J−injective modules. R is called
left Gnp−injective ring if RR is Gnp−injective. So left Y J−injective ring is left
Gnp−injective ring. Obviously we have the following corollary.

Theorem 2.2. Let R be a left MC2 ring. Then
(1) If a ∈ R is not a left weakly regular element, then every maximal left ideal M
of R containing RaR + l(a) must be essential in RR.
(2) If every simple singular left R−module is nil−injective, then for any non-zero
nilpotent elementa ∈ R, there exists a positive integer n such that an 6= 0 and
RaR + l(an) = R. Therefore N(R) ∩ J(R) = 0. Consequently, R is NI ring if and
only if R is reduced ring if and only if R is 2-prime ring.
(3) If every simple singular left R−module is Gnp−injective, then for any non-
nilpotent elementa ∈ R, there exists a positive integer n such that RaR+ l(an) = R.
Therefore N1(R) ∩ J(R) = 0.
(4) If every simple singular left R−module is nil−injective, then for any 0 6= a ∈ R,
(Ra)2 6= 0. Therefore R is semiprime ring.

Proof. (1) Assume that a ∈ R is not left weakly regular element. Then RaR+l(a) is
contained in some maximal left ideal M . If M is not essential, then M = l(e), e2 =
e ∈ R. Then aRe = 0. Since R is left MC2 ring and e is a left minimal idempotent,
eRa = 0. Hence e ∈ l(a) ⊆ M = l(e), which is a contradiction. This implies M is
essential.

(2) Assume that an 6= 0, an+1 = 0. if an is a left weakly regular element, then we
are doen. Otherwise, by (1), there exists a maximal essential left ideal M containing
RanR + l(an). Thus R/M is a simple singular left R−module, so is nil−injective.
Hence the left R−morphism f : Ran −→ R/M defined by f(ran) = r + M extends
to R, so there exists a c ∈ R such that 1 − anc ∈ M . Since anc ∈ RanR ⊆ M ,
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1 ∈ M , which is a contradiction. Hence R = RanR + l(an) = RaR + l(an).
(3) Consider the chain RaR+l(a) ⊆ RaR+l(a2) ⊆ · · · . Let ∪∞i=1[RaR+l(ai)] =

I. If I 6= R, then I is contained in a maximal essential left ideal M of R. Then
R/M is left Gnp−injective. So there exists a positive integer n such that such
that the left R−morphism Ran −→ M defined by ran 7−→ r + M extends to R.
By a similar way as in the previous process, we obtain a contradiction. Therefore
∪∞i=1[RaR + l(ai)] = R, then we can easy to show that RaR + l(am) = R for some
positive integer m.

(4) If (Ra)2 = 0, then by (2), we have RaR + l(a) = R. Hence a ∈ RaRa = 0,
which is a contradiction. Thus (Ra)2 6= 0. �

Corollary 2.3. Let R be left MC2 ring whose simple singular left R−modules are
nil−injective and Gnp−injective, then for any nonzero elementa ∈ R, there exists
a positive integer n such that an 6= 0 and RaR + l(an) = R. Therefore J(R) = 0.

A ring R is called ZI if ab = 0 implies aRb = 0 for all a, b,∈ R. Evidently, ZI
ring is abelian and 2-prime, so ZI ring is left MC2 and NI ring. N.K. Kim and
J.Y. Kim [12, Theorem 4] shows that if R is a ZI ring whose every simple singular
left R−module is Y J−injective, then R is reduced weakly regular ring. Then by
[12, Proposition 8], we generalize above result as follows.

Theorem 2.4. Let R be a left MC2 ring whose every simple singular left R−module
is nil−injective, then the following conditions are equivalent.
(1) R is reduced ring;
(2) R is ZI ring;
(3) R is 2-prime ring;
(4) R is NI ring.
In this case, R is weakly regular ring. And if R is also MELT ring, then R is
strongly regular ring.

Proof. (1) =⇒ (2) =⇒ (3) =⇒ (4) are obviously.
(4) =⇒ (1) Assume that a ∈ R with a2 = 0. If a 6= 0, then there exists a

maximal left ideal M of R such that l(a) ⊆ M . If M is not essential in RR, then
M = l(e) where e2 = e ∈ R is a left minimal element. Hence ae = 0 because
a ∈ l(a). If aRe 6= 0, then RaRe = Re. Since R is NI ring, then N(R) is an ideal of
R, so RaRe ∈ N(R) because a ∈ N(R). Thus e ∈ N(R), which is a contradiction.
This shows that aRe = 0. Hence eRa = 0 because R is left MC2 ring. Thus
e ∈ l(a) ⊆ l(e), which is also a contradiction. This implies that M is essential in
RR, then R/M is left nil−injective by hypothesis. Hence the left R−morphism
f : Ra −→ R/M defined by f(xa) = x + M,x ∈ R extends to R −→ R/M , which
implies that there exists a c ∈ R such that 1− ac ∈ M . Since ac ∈ N(R), 1− ac is
invertible, so M = R, which is a contradiction. This shows that a = 0 and so R is
reduced. �

Call a left R−module M GJcp−injective if for each a /∈ Zl(R), there exists
a positive integer n such that an 6= 0 and any left R−morphism Ran −→ M
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extends to R −→ M . Example contains left Y J−injective modules. R is called
left GJcp−injective ring if RR is GJcp−injective. So left Y J−injective ring is left
GJcp−injective ring.

Recall that a ring R is said to be left weakly π−regular if for every x ∈ R, there
exists a positive integer n, depending on x, such that xn ∈ RxnRxn. Similar to the
proof process of [14, Lemma 3.1], we have the following theorem.

Theorem 2.5. Let R be a left MC2 left Goldie ring. If every simple singular left
R−module is nil−injective and GJcp−injective, then R is a finite product of simple
left Goldie rings.

Proof. First we claim that R is semiprime ring. In fact, if a ∈ R with aRa = 0,
then a = 0. Otherwise, there exists a maximal left ideal M of R such that RaR ⊆
l(a) ⊆ M because l(a) 6= R. If M = l(e), e2 = e ∈ R, then aRe = 0 because
RaR ⊆ l(e). Since R is left MC2 ring and e is left minimal element, eRa = 0,
which is a contradiction because e ∈ l(a) ⊆ l(e). This shows that M is essential
in RR, so R/M is left nil−injective, and clearly, there exists a c ∈ R such that
1 − ac ∈ M . Since ac ∈ RaR ⊆ M , 1 ∈ M , which is also a contradiction. Hence
a = 0 and so R is semiprime ring.

Next note that for any nonzero element 0 6= a ∈ R, RaR + l(Ra) is essential
in RR. Otherwise there exists a 0 6= b ∈ R such that (RaR + l(Ra)) ∩ Rb = 0.
Hence aRb ⊆ aR ∩ Rb = 0, so bRa = 0 because R is semiprime ring. Thus
b ∈ l(Ra) ∩ Rb = 0, which is a contradiction. Hence RaR + l(Ra) is essential in
RR. Since R is a left Goldie ring, there exists a c ∈ R with l(c) = r(c) = 0 and
c ∈ RaR + l(Ra). Clearly, c /∈ Zl(R). Finally we show that RcR = R. If there
exists a maximal left ideal M of R such that RcR ⊆ M , then M must be essential
in RR. In fact, if M = l(e), e2 = e ∈ R, then ce = 0, so e = 0 because r(c) = 0,
which is a contradiction. Thus M is essential, and so R/M is GJcp−injective.
Hence there exists a positive integer n such that any R−morphism Rcn −→ R/M
extends to R −→ R/M . Since Rcn −→ R/M via xcn 7−→ x + M are well defined
left R−morphism, so there exists a d ∈ R such that 1 − cnd ∈ M , so 1 ∈ M
because cnd ∈ RcR ⊆ M , which is a contradiction. This implies RcR = R, so
RaR + l(Ra) = R, further, RaR + l(a) = R. This implies R is left weakly regular
ring. �

From the proof of Theorem 2.5, we can see that the following corollary holds

Corollary 2.6. Let R be left MC2 ring whose each simple singular left R−module
is nil−injective, then R is semiprime ring.

Corollary 2.7. Let R be a left Goldie ring with every minimal idempotent element
of R be right semicentral. If every simple singular left R−module is nil−injective
and GJcp−injective, then R is a finite product of simple left Goldie rings.

Proof. By Theorem 2.5, we only show that R is left MC2 ring. In fact, if aRe = 0
where a ∈ R and e ∈ R is left minimal idempotent. By hypothesis, e is right
semicentral in R. of R, thus eRa = eRae = 0. By Theorem 1.3, R is left MC2
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ring. �

Recall that a ring R is said to be left weakly π−regular if for every x ∈ R, there
exists a positive integer n, depending on x, such that xn ∈ RxnRxn. Similar to the
proof of Theorem 2.5, we have the following theorem

Theorem 2.8. Let R be a left MC2 left Goldie ring whose each simple singular left
R−module is nil−injective. If R is left weakly π−regular, then R is a finite product
of simple left Goldie rings.

We do not know that whether Zl(R) = 0, if R is left MC2 ring whose each simple
singular left R−module is nil−injective? But we have the following theorem.

Theorem 2.9. Let R be a left MC2 ring whose each simple singular left R−module
is nil−injective, then Zr(R) = 0.

Proof. Suppose that Zr(R) 6= 0, then there exists a 0 6= a ∈ Zr(R) such that a2 = 0.
We claim that Zr(R) + l(a) = R. Otherwise, there exists a maximal left ideal M
such that Zr(R) + l(a) ⊆ M . If M is not essential, then M = l(e), e2 = e ∈ R.
Hence ae = 0 because a ∈ l(a) ⊆ l(e). If aRe 6= 0, then RaRe = Re because Re
is a minimal left ideal of R. Since a ∈ Zr(R), RaRe ⊆ Zr(R), then e ∈ Zr(R),
which is a contradiction. Hence aRe = 0. Since R is left MC2 ring, eRa = 0,
e ∈ l(a) ⊆ l(e), which is a contradiction. Hence M is essential in RR. Thus R/M
is nil−injective. Similarly to the proof of Theorem 2.5, there exists a c ∈ R such
that 1 − ac ∈ M . Since ac ∈ Zr(R) ⊆ M , 1 ∈ M , which is a contradiction. Hence
Zr(R) + l(a) = R. Write 1 = x + y, x ∈ Zr(R), y ∈ l(a), then a = xa. Since
x ∈ Zr(R) and r(x) ∩ r(1− x) = 0, r(1− x) = 0. Thus a = 0 because a ∈ r(1− x),
which is a contradiction. This implies that Zr(R) = 0. �

We do not know wether the result hold if we obit the condition ”R is left MC2
ring”? But we indeed have the following theorem.

Theorem 2.10. Let R be a ring whose each simple singular left R−module is
nil−injective, then Zl(R) ∩ Zr(R) = 0.

Proof. Suppose that Zl(R) ∩ Zr(R) 6= 0, then there exists a 0 6= a ∈ Zl(R) ∩ Zr(R)
such that a2 = 0. We claim that Zr(R) + l(a) = R. Otherwise, there exists
a maximal essential left ideal M such that Zr(R) + l(a) ⊆ M . Thus R/M is
nil−injective. Similarly to the proof of theorem 2.5, there exists a c ∈ R such that
1 − ac ∈ M . Since ac ∈ Zr(R) ⊆ M , 1 ∈ M , which is a contradiction. Hence
Zr(R) + l(a) = R. Write 1 = x + y, x ∈ Zr(R), y ∈ l(a), then a = xa. Since
x ∈ Zr(R) and r(x) ∩ r(1− x) = 0, r(1− x) = 0. Thus a = 0 because a ∈ r(1− x),
which is a contradiction. This implies that Zl(R) ∩ Zr(R) = 0. �

With Theorem 2.10, we can obtain the following corollary. And from the fol-
lowing corollary, we can see that if R is right GJcp−injective, then Zr(R) ⊆ J(R).

Corollary 2.11. Let R be a left GQ−injective, right GJcp−injective ring whose
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each simple singular left R−module is nil−injective, then R is regular ring.
Proof. First for any 0 6= a ∈ Zr(R), 1−a /∈ Zr(R). Since R is right GJcp−injective,
there exists a positive integer n such that (1 − a)n 6= 0 (in fact, r(1 − a) = 0) and
any right R−morphism (1 − a)nR −→ R extends to R −→ R. Hence the right
R−morphism (1 − a)nR −→ R defined by (1 − a)nx 7−→ x, x ∈ R extends to
R −→ R, and so there exists a c ∈ R such that 1 = c(1 − a)n, which implies
Zr(R) ⊆ J(R). Next R is left GQ−injective, then Zl(R) = J(R) and R/J(R) is
regular ring. Finally, since each simple singular left R−module is nil−injective,
by Theorem 2.10, Zr(R) ∩ Zl(R) = 0. Hence Zr(R) ⊆ J(R) = Zl(R), and so
Zr(R) = Zr(R) ∩ Zl(R) = 0. Consequently, R is right Y J−injective ring because
R is right GJcp−injective. Thus J(R) = Zr(R), which implies that J(R) = 0, and
so R is regular ring. �

Corollary 2.12. Let R be a right GQ−injective, left GJcp−injective ring whose
each simple singular left R−module is nil−injective, then R is regular ring.
Proof. First R is right GQ−injective, then Zr(R) = J(R) and R/J(R) is regular
ring. Next R is left GJcp−injective, then Zl(R) ⊆ J(R). Finally Zl(R)∩Zr(R) = 0
by hypothesis and Theorem 2.10. Hence Zl(R) = 0 because Zl(R) ⊆ Zr(R).
Consequently, R is left Y J−injective because R is left GJcp−injective. Hence
J(R) = Zl(R) = 0, which implies R is a regular ring. �
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