• Title/Summary/Keyword: ldpc code

Search Result 210, Processing Time 0.024 seconds

A design of LDPC decoder supporting multiple block lengths and code rates of IEEE 802.11n (다중 블록길이와 부호율을 지원하는 IEEE 802.11n용 LDPC 복호기 설계)

  • Kim, Eun-Suk;Park, Hae-Won;Na, Young-Heon;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.132-135
    • /
    • 2011
  • This paper describes a multi-mode LDPC decoder which supports three block lengths(648, 1296, 1944) and four code rates(1/2, 2/3, 3/4, 5/6) of IEEE 802.11n WLAN standard. To minimize hardware complexity, it adopts a block-serial (partially parallel) architecture based on the layered decoding scheme. A novel memory reduction technique devised using the min-sum decoding algorithm reduces the size of check-node memory by 47% as compared to conventional method. The designed LDPC decoder is verified by FPGA implementation, and synthesized with a $0.18-{\mu}m$ CMOS cell library. It has 219,100 gates and 45,036 bits RAM, and the estimated throughput is about 164~212 Mbps at 50 MHz@2.5v.

  • PDF

Construction of Structured q-ary LDPC Codes over Small Fields Using Sliding-Window Method

  • Chen, Haiqiang;Liu, Yunyi;Qin, Tuanfa;Yao, Haitao;Tang, Qiuling
    • Journal of Communications and Networks
    • /
    • v.16 no.5
    • /
    • pp.479-484
    • /
    • 2014
  • In this paper, we consider the construction of cyclic and quasi-cyclic structured q-ary low-density parity-check (LDPC) codes over a designated small field. The construction is performed with a pre-defined sliding-window, which actually executes the regular mapping from original field to the targeted field under certain parameters. Compared to the original codes, the new constructed codes can provide better flexibility in choice of code rate, code length and size of field. The constructed codes over small fields with code length from tenths to hundreds perform well with q-ary sum-product decoding algorithm (QSPA) over the additive white Gaussian noise channel and are comparable to the improved spherepacking bound. These codes may found applications in wireless sensor networks (WSN), where the delay and energy are extremely constrained.

UEP Effect Analysis of LDPC Codes for High-Quality Communication Systems (고품질 통신 시스템을 위한 LDPC 부호의 UEP 성능 분석)

  • Yu, Seog Kun;Joo, Eon Kyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.6
    • /
    • pp.471-478
    • /
    • 2013
  • Powerful error control and increase in the number of bits per symbol should be provided for future high-quality communication systems. Each message bit may have different importance in multimedia data. Hence, UEP(unequal error protection) may be more efficient than EEP(equal error protection) in such cases. And the LDPC(low-density parity-check) code shows near Shannon limit error correcting performance. Therefore, the effect of UEP with LDPC codes is analyzed for high-quality message data in this paper. The relationship among MSE(mean square error), BER(bit error rate) and the number of bits per symbol is analyzed theoretically. Then, total message bits in a symbol are classified into two groups according to importance to prove the relationship by simulation. And the UEP performance is obtained by simulation according to the number of message bits in each group with the constraint of a fixed total code rate and codeword length. As results, the effect of UEP with the LDPC codes is analyzed by MSE according to the number of bits per symbol, the ratio of the message bits, and protection level of the classified groups.

New Decoding Scheme for LDPC Codes Based on Simple Product Code Structure

  • Shin, Beomkyu;Hong, Seokbeom;Park, Hosung;No, Jong-Seon;Shin, Dong-Joon
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.351-361
    • /
    • 2015
  • In this paper, a new decoding scheme is proposed to improve the error correcting performance of low-density parity-check (LDPC) codes in high signal-to-noise ratio (SNR) region by using post-processing. It behaves as follows: First, a conventional LDPC decoding is applied to received LDPC codewords one by one. Then, we count the number of word errors in a predetermined number of decoded codewords. If there is no word error, nothing needs to be done and we can move to the next group of codewords with no delay. Otherwise, we perform a proper post-processing which produces a new soft-valued codeword (this will be fully explained in the main body of this paper) and then apply the conventional LDPC decoding to it again to recover the unsuccessfully decoded codewords. For the proposed decoding scheme, we adopt a simple product code structure which contains LDPC codes and simple algebraic codes as its horizontal and vertical codes, respectively. The decoding capability of the proposed decoding scheme is defined and analyzed using the parity-check matrices of vertical codes and, especially, the combined-decodability is derived for the case of single parity-check (SPC) codes and Hamming codes used as vertical codes. It is also shown that the proposed decoding scheme achieves much better error correcting capability in high SNR region with little additional decoding complexity, compared with the conventional LDPC decoding scheme.

An analysis of BER performance of LDPC decoder for WiMAX (WiMAX용 LDPC 복호기의 비트오율 성능 분석)

  • Kim, Hae-Ju;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.771-774
    • /
    • 2010
  • In this paper, BER performance of LDPC(Low-Density Parity-Check) decoder for WiMAX is analyzed, and optimal design conditions of LDPC decoder are derived. The min-sum LDPC decoding algorithm which is based on an approximation of LLR sum-product algorithm is modeled and simulated by Matlab, and it is analyzed that the effects of LLR approximation bit-width and maximum iteration cycles on the bit error rate(BER) performance of LDCP decoder. The parity check matrix for IEEE 802.16e standard which has block length of 2304 and code rate of 1/2 is used, and AWGN channel with QPSK modulation is assumed. The simulation results show that optimal BER performance is achieved for 7 iteration cycles and LLR bit-width of (8,6).

  • PDF

An analysis of optimal design conditions of LDPC decoder for IEEE 802.11n Wireless LAN Standard (IEEE 802.11n 무선랜 표준용 LDPC 복호기의 최적 설계조건 분석)

  • Jung, Sang-Hyeok;Na, Young-Heon;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.939-947
    • /
    • 2010
  • The LDPC(Low-Density Parity-Check) code, which is one of the channel encoding methods in IEEE 802.11n wireless LAN standard, has superior error-correcting capabilities. Since the hardware complexity of LDPC decoder is high, it is very important to take into account the trade-offs between hardware complexity and decoding performance. In this paper, the effects of LLR(Log-Likelihood Ratio) approximation on the performance of MSA(Min-Sum Algorithm)-based LDPC decoder are analyzed, and some optimal design conditions are derived. The parity check matrix with block length of 1,944 bits and code rate of 1/2 in IEEE 802.11n WLAN standard is used. In the case of $BER=10^{-3}$, the $E_b/N_o$ difference between LLR bit-widths (6,4) and (7,5) is 0.62 dB, and $E_b/N_o$ difference for iteration cycles 6 and 7 is 0.3 dB. The simulation results show that optimal BER performance can be achieved by LLR bit-width of (7,5) and iteration cycle of 7.

Performance of LDPC Coded OFDM/DS Under Fading and Jamming Environment (페이딩과 재밍 환경에서 LDPC 부호화된 OFDM/DS 시스템의 성능)

  • Seo, Dong-Cheul;Lee, Woo-Chan;Kim, Jong-Hun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.23-33
    • /
    • 2008
  • In this paper, we verify the performance of LDPC coded OFDM/DS system by Monte-Carlo simulation of BER on Eb/No. The simulation results show that LDPC coded OFDM/DS has a strong anti-jamming characteristic over pulse-noise jammer and partial-band noise jammer. The performance of LDPC coded OFDM/DS system is evaluated on both faded waveforms and non-faded waveforms. For non-faded waveforms, high coding gain is attained due to LDPC, even when waveforms have short PN sequence and JSR is only 5dB. Especially, the increase in the repeated number of LDPC decoding enhances coding gain. However, faded waveforms cannot achieve sufficient average effect when PN sequence is short. High coding gain of faded waveforms can be achieved by extending length of PN sequence. In addition, we compare LDPC coded OFDM/DS system with Convolutional coded OFDM/DS system. The simulation results illustrate that when LDPC coded OFDM/DS system with short PN sequence has sufficient average effects, the system shows lower BER than Convolutional coded OFDM/DS system with long PN sequence.

An Optimized Algorithm for Constructing LDPC Code with Good Performance (고성능 LDPC 코드를 생성하기 위한 최적화된 알고리듬)

  • Suh, Hee-Jong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1149-1154
    • /
    • 2013
  • In this paper, an algorithm having new edge growth with depth constraints for constructing Tanner graph of LDPC(Low density parity check) codes is proposed. This algorithm reduces effectively the number of small stoping set in the graph and has lower complexity than other algorithm. The simulation results shows the improved performance of the LDPC codes constructed by this algorithm.

Efficient LDPC Decoding Algorithm Using Node Monitoring (노드 모니터링에 의한 효율적인 LDPC 디코딩 알고리듬)

  • Suh, Hee-Jong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.11
    • /
    • pp.1231-1238
    • /
    • 2015
  • In this paper, we proposed an efficient algorithm using Node monitoring (NM) and Piecewise Linear Function Approximation(: NP) for reducing the complexity of LDPC code decoding. Proposed NM algorithm is based on a new node-threshold method together with message passing algorithm. Piecewise linear function approximation is used to reduce the complexity of the algorithm. This new algorithm was simulated in order to verify its efficiency. Complexity of our new NM algorithm is improved to about 20% compared with well-known methods according to simulation results.

Efficient Design of Structured LDPC Codes (구조적 LDPC 부호의 효율적인 설계)

  • Chung Bi-Woong;Kim Joon-Sung;Song Hong-Yeop
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1C
    • /
    • pp.14-19
    • /
    • 2006
  • The high encoding complexity of LDPC codes can be solved by designing structured parity-check matrix. If the parity-check matrix of LDPC codes is composed of same type of blocks, decoder implementation can be simple, this structure allow structured decoding and required memory for storing the parity-check matrix can be reduced largely. In this parer, we propose a construction algorithm for short block length structured LDPC codes based on girth condition, PEG algorithm and variable node connectivity. The code designed by this algorithm shows similar performance to other codes without structured constraint in low SNR and better performance in high SNR than those by simulation