
노드 모니터링에 의한 효율적인 LDPC 디코딩 알고리듬

 1231

노드 모니터링에 의한 효율적인 LDPC 디코딩 알고리듬

서희종*

Efficient LDPC Decoding Algorithm Using Node Monitoring

Hee-Jong Suh*

요 약

본 논문에서는 노드 모니터링(NM)과 Piecewise Linear Function Approximation(: NP)을 사용하여 LDPC 디

코딩 알고리듬의 계산복잡도를 감소시키는 알고리듬을 제안한다. 이 알고리듬은 기존의 알고리듬보다도 더 효율

적이다. 제안된 알고리즘이 기존의 방법보다도 개선되었다는 것을 확인하기 위해서 모의실험을 하였다. 실험결과, 

제안된 알고리즘의 계산은 기존의 방법에 비해 약 20 % 향상되었음을 확인하였다.

ABSTRACT

In this paper, we proposed an efficient algorithm using Node monitoring (NM) and Piecewise Linear Function Approximation(: NP) 

for reducing the complexity of LDPC code decoding. Proposed NM algorithm is based on a new node-threshold method together with 

message passing algorithm. Piecewise linear function approximation is used to reduce the complexity of the algorithm. This new algorithm 

was simulated in order to verify its efficiency. Complexity of our new NM algorithm is improved to about 20% compared with 

well-known methods according to simulation results.

키워드

LDPC Codes, Node Monitoring, Node-Threshold, Piecewise Linear Function Approximation

LDPC 코드, 노드 모니터링, 노드-임계치, 구분적 선형함수 근사

* 교신저자: 전남대학교 전자통신공학과

ㆍ접  수  일 : 2015. 10. 02

ㆍ수정완료일 : 2015. 11. 13

ㆍ게재확정일 : 2015. 11. 23

ㆍReceived : Oct. 02, 2015, Revised : Nov. 13, 2015, Accepted : Nov. 23, 2015

ㆍCorresponding Author : Hee-jong Suh

　Dept. of Electronic Communication Engineering, Chonnam National University,

  Email : hj-suh@daum.net

Ⅰ. Introduction

Low-density parity-check (LDPC) codes were 

first proposed by Gallager in his doctoral 

dissertation [1] and were forgotten for several 

decades. The study of LDPC codes was resurrected 

in the mid-1990s because of its good performance 

and lower decoding complexity. LDPC codes are 

linear block codes which are falling only 0.04dB 

short of the Shannon limit [2].

LDPC codes algorithm has two parts, which are 

encoding and decoding. Its encoding is very easy, 

but its decoding is more complicated. Decoding 

process of the LDPC code takes much time with the 

existing algorithms [1-3].

There are three approaches existing to reduce the 

complexity of LDPC decoding, which are to simplify 

the computation of the decoder, reduce the number 

of iterations of the decoder and diminish the 

messages of the iterations. In this approaches, there 

http://dx.doi.org/10.13067/JKIECS.2015.10.11.1231



JKIECS, vol. 10, no. 11, 1231-1238, 2015

1232

are many algorithms, such as the massage passing  

algorithm (MPA) [2],[8], the min-sum algorithm [4], 

the various scheduling techniques [5], the forced 

convergence method [3],[6] and the bit-level 

stopping method [7]. The MPA algorithm is known 

as most effective methods among the well-known 

methods [6].

In this paper, we propose a node monitoring 

(NM) algorithm. This method is a new one on 

reducing the decoding complexity, which is different 

from the other methods because it uses two 

monitoring vectors to monitor all the variable nodes 

and check nodes. For initialization the two vectors 

are filled with zeros. Some nodes are steady enough 

in case that these nodes achieve some 

node-threshold, at this case the vector for these 

nodes will stop receiving and updating process of 

these nodes. Proposed algorithm uses a new method 

and it only monitors the check nodes instead of 

monitoring both the check and variable nodes. 

Although it does not monitor the variable nodes, it 

has the same performance in monitoring the 

messages of the check and variable nodes. But, this 

will finally reduce the complexity of the decoding 

process. The piecewise linear function approximation 

[9] is a good way to reduce the function that is 

used in the program of the node monitoring 

algorithm.

To verify the efficiency of proposed algorithm, we 

did simulations. Then, because the MPA algorithm 

is known as the most effective methods among the 

well-known methods, we did comparing with 

proposed NP algorithm only with the MPA 

algorithm. With this comparison, we could got the 

conclusion that NP algorithm is more efficient 

method than previous known methods. Therefore, 

we knew our algorithm is most efficient one among 

the well known methods. Its efficiency was about 

20% improvement.

This paper is organized as follows. Section II 

gives the background of the LDPC code. And 

Section III introduces a new decoding algorithm of 

the LDPC codes and the piecewise linear function 

approximation. In Section IV there are the results of 

the simulation of the algorithm. Conclusion is 

Section V. References are next.

Ⅱ. Related Algorithm and Problem

There are two types LDPC codes, regular LDPC 

codes and irregular LDPC codes, which can be 

represented by a Tanner graph with N variable 

nodes on the left (representing the bits of the code 

word) and M check nodes on the right (representing 

the parity checks constraints).

Fig. 1 is a Tanner graph of a block length 8 (3, 

6). Nodes on the left hand side in Fig. 1 represent 

the code bits; nodes on the right hand side 

represent the parity check constraints. Throughout 

the decoding process, the nodes exchange messages 

  and   over the edges of the graph.

2.1 Standard brief propagation (BP) 

algorithm for iterative decoding of LDPC codes

We introduce the message passing algorithm 

(MPA), the most popular decoding algorithm [2], to 

make a our algorithm for the LDPC code decoding.

Fig. 1 Tanner graph of a block length 8 (3,6) regular 
LDPC code



노드 모니터링에 의한 효율적인 LDPC 디코딩 알고리듬

 1233

We suppose a regular binary (, ) (, ) 

LDPC code C is used for error control over an 

AWGN channel with a mean of zero and power 

spectral density , and assume BPSK signals 

with unit energy, which maps a code word 

   ⋯   into a transmitted sequence 

  ⋯  , according to    , for 

   ⋯   and     or    . If 

   is a code word in C, and     is the 

corresponding transmitted sequence, then the 

received sequence is    , with 

   , where for ≦ ≦,   is Gaussian 

random variables with a mean of zero and variance 

. Let 
   be the parity check matrix 

which defines an LDPC code. We denote the set of 

bits that participate in check   by 

      and the set of checks in 

which bit   participates as      . 

And we denote   as the set   out of 

bit , and   as the set   out of check 

 . In order to explain the iterative decoding, we 

define the following notations with the th  iteration:
• : The log-likelihood ratio (LLR) of bit   

which is from the channel output  . In belief 

propagation decoding, we initially set 

   .

• 
 : The LLR of bit   that check node m 

sends to bit node .

• 
 : The LLR of bit n that bit node   sends 

to check node  .

• 
: The posteriori LLR of bit .

The standard belief propagation algorithm is 

carried out as follows [5]:

Initialization: Set   = 0, and the maximum 

number of iteration to  . For all m, n, set 

   ,   .

Step 1: (i) check-node update: for ≦≦  

and each ∈ :


  tanh 

′∈
tanh

′
(1)

(ii) bit-node update: for ≦ ≦  and each 

∈ :

   

′∈
′ (2)


  

∈

 (3)

Step 2: Hard decision and stopping criterion test:

(i) Create 

 


 in which 


 if 

 , 

and 


 if 
≧ .

(ii) If ⋅


 or    , stop the decoding 

iteration and go to Step 3. Otherwise set     

and go to Step 1.

Step 3: Output 

  as the decoded code word.

2.2 The complexity reducing problem

The standard belief propagation algorithm for 

iterative decoding of LDPC codes has about two 

problems. First, for both the check-to-bit messages 

and bit-to-check messages, the more independent 

information is used to update the messages, the 

more reliable they become. Iteration   of the 

standard two steps implementation of the belief 

propagation algorithm uses all values ′  
computed at the previous iteration in (1). However 

certain values ′ could already be computed 

based on a partial computation of the values 
  

obtained from (2), and then be used instead of 

′  in (1) to compute the remaining values 
 . 

So, if we use certain values ′  to compute a 

partial values 
 , then we can reduce the 

complexity. Second, during the iterative decoding, 

the fact is that a large number of variable nodes 

converge to a strong belief after very few iterations, 

i.e., these bits have already been reliably decoded 



JKIECS, vol. 10, no. 11, 1231-1238, 2015

1234

and we can skip updating their messages in 

subsequent iterations. If we have some ways to 

decide whether a node should update massage at a 

given iteration, then we also can reduce the 

complexity of the decoding process.

Ⅲ. Node Monitoring Algorithm and 
Piecewise Linear Function Approximation

For the two problems we described above, we 

introduce a decoding method based on the node 

monitoring algorithm. Most of the variable nodes 

achieve a stable state after very few iterations, 

barely to change the bit that it represents. So 

decoder could skip updating their messages in 

subsequent iterations. Node monitoring algorithm 

uses this phenomenon to reduce the complexity of 

the decoding. It updates messages only that instable 

nodes send at some iteration. In order to describe 

the degree of some nodes that have achieved a 

certain stable state, we define the "aggregate 

messages"   for each variable node as follows:

  
   ∈

  (4)

Checking   against the node-thresholds   will 

find the nodes that are stable.   is the confidence 

of the variable node to be in state 0 or 1, and the 

bigger   is the more stable variable node is. Now, 

we introduce the node monitoring algorithm in 

detail. Suppose a decoding system dealing with 

LDPC codes. First, we define two vectors to store 

the state of check nodes and variable nodes, 

respectively. They are deactivated-v and 

deactivated-c. For initialization, deactivated vectors 

are filled with zeros. Then the variable nodes get 

the information bits, and compute the value 

  . And they send these values as 

messages to their neighbor check nodes. When their 

neighbor check nodes receive these messages, the 

check nodes begin to compute their messages 
  

and send them to variable nodes. Now, two kinds of 

nodes have finished their first message sending 

process. Variable nodes begin a deciding program to 

decide whether continue the next iteration or not. At 

this time, the variable nodes also compute   to 

compare with the node-threshold  . If it is bigger 

than the  , the element in deactivated-v to this 

node will change to 1 from 0. It is a flag that 

represents a stable node at that iteration. Then 

decoder checks each check nodes whether its 

neighbor variable nodes are all stable. If they are all 

in stable state, the element in deactivated-c to this 

node will change to 1 from 0. And this check node 

will not send the message to its neighbors, because 

its neighbors are all in stable state. But even if one 

of its neighbors is instable, the element in 

deactivated-c will still be 0, and all its neighbor 

variable nodes will be reactivated by resuming their 

elements to 0 again in deactivated-v. Then begin 

the new iteration just as above except that check 

the deactivate vector before sending the messages. 

If the element for a node is 1, then skip this node’s 

message sending. 

Piecewise linear function approximation is used to 

reduce the function of tanh . The function of 
tanh  is not a linear function, so it will cost 

much time to compute its value. First we can write 

the equation (1) in another way: separate Piecewise 

linear function approximation is used to reduce the 

function of tanh . The function of tanh  is 
not a linear function, so it will cost much time to 

compute its value. First we can write the equation 

(1) in another way: separate 
  to


 

  
 (5)

  
 



노드 모니터링에 의한 효율적인 LDPC 디코딩 알고리듬

 1235

we then have


  

′∈
′∙ 

′∈
′ (6)

Where we have

  logtanh

  log

 

 
 (7)

The function of   is fairly well behaved, and 

.     But,   is not a linear 

function.  So we use Piecewise linear function 

  to get an approximation of   and the 

complexity can thus be reduced for more. It is 

showed in Fig. 2.

What we have introduced above is the node 

monitoring algorithm. It reduces the complexity of the 

decoding process, but barely brings out degradation 

of the bit error rate(: BER) and the frame error rate 

(: FER) performance.

Fig. 2 The transfer function   used in check 
node calculations and the piecewise linear 

approximation of it.

Ⅳ. Simulation Results

We simulated with a (3, 6) regular LDPC code 

with a block-length of 2000 bits and rate =0.5. 

Fig. 3 shows the bit error performance of three 

kinds of decoding algorithm for comparison. It is 

easy to see that the performance of the Combination 

of Node Monitoring Algorithm and Piecewise Linear 

Function Approximation algorithm(: NM-PW) is 

much better.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
5

4

3

2

1

Bit Error Rate

Eb/No (dB)

 

 

MPA
F (x)
F 1(x)

Fig. 3 Bit error performance of the LDPC code with a 
block-length of 2000 bits.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
16.5

17

17.5

18

18.5

19

19.5

20
ITERATION Rate

IT
E

R
A

T
IO

N
 P

er
 B

lo
ck

Eb/No (dB)

 

 

MPA
F(x)
F1(x)

Fig. 4 Frame error performance of the LDPC code 
with a block-length of 2000 bits.

Fig. 4 shows the frame error performance of 

three kinds of decoding algorithm for comparison. It 

is easy to see that the performance of the 

Combination of Node Monitoring Algorithm and 

Piecewise Linear



JKIECS, vol. 10, no. 11, 1231-1238, 2015

1236

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

5

0

5

0

5

0

5

0
Massages Rate

Eb/No (dB)

 

 

MPA
F (x)
F 1(x)

Fig. 5 Messages per bit of the LDPC code with a 
block-length of 2000 bits.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
-3

-2

-1

0
Frame Error Rate

Eb/No (dB)

 

 

MPA
F (x)
F 1(x)

Fig. 6 Iterations per block of the LDPC code with a 
block-length of 2000 bits.

Function Approximation algorithm (NM-PW) is 

performed better results too. Fig. 5 shows the 

Messages per bit of three kinds of decoding 

algorithm for comparison. It is easy to see that the 

complexity of the Combination of Node Monitoring 

Algorithm and Piecewise Linear Function 

Approximation algorithm (NM-PW) is about 80% of 

the other two. Fig. 6 shows the Iterations per block 

of three kinds of decoding algorithm for comparison. 

As we can see from the graph, the iterations of the 

Combination of the Node Monitoring Algorithm and 

Piecewise Linear Function Approximation algorithm 

(NM-PW) is less than the other two.

Ⅴ. Conclusion

We have proposed a Combination of Node 

Monitoring Algorithm and Piecewise Linear Function 

Approximation algorithm (NP) to reduce the 

complexity of the LDPC decoding. With the 

simulation, we could see its better performance than 

existing well-known methods. 

So, we can conclude that this method is the best 

way to reduce efficiently the complexity of the 

decoder. But we must endeavor in order to achieve 

a more practical node monitoring decoder for LDPC 

codes. And we must try to make more improvement 

to get better performance.

References

 [1] C. Park, O. Kwon, and S. Yun, “New SNR 

Estimation Algorithm using Preamble and 

Performance Analysis,” Conf. of the Korea 

Institute of Building Construction, Seoul, Korea, 

Apr. 2007, pp. 93-96.

 [2] S. Park, J. Lee, J. Song, and K. Oh, “RFID 

Technology Application in Construction 

Material Management Process,” Conf. of the 

Architectural Institute of Korea, Gwangju, Korea, 

Oct. 2008, pp. 593-596. 

 [3] J. Lee, J. Song, and K. Oh, “A Study on 

Developing a Context - Aware Scenario for the 

RFID Application of the Information 

Management on the Construction Materials,” J. 

of the Architectural Institute of Korea, vol. 25, no. 

3, 2009, pp. 111-118.

 [4] IEC 61511-1, “Functional safety-safety 

instrumented systems for the process 

industry sector,” IEC, Geneva, Switzerland, 

Jan. 2003.

 [5] IEC 61025, “Fault tree analysis(FTA),” IEC, 

Geneva, Switzerland, Dec. 2006.

 [6] K. Chung, “Diagnosis of power supply by 

analysis of chaotic nonlinear dynamics,” J. of 

the Korea Institute of Electronic Communication 



노드 모니터링에 의한 효율적인 LDPC 디코딩 알고리듬

 1237

Sciences, vol. 9, no. 7, 2014, pp. 753-759.

 [7] H. Shin, “Development of constant current 

SMPS for LED Lighting,” J. of the Korea 

Institute of Electronic Communication Sciences, 

vol. 10, no. 1, 2015, pp. 111-116.

 [8] Y. Jeong, “A study on control of generators 

based on SMPS,” J. of the Korea Institute of 

Electronic Communication Sciences, vol. 7, no. 

1, 2012, pp. 107-115.

 [9] H. Shin, “Design of LED Driving SMPS for 

Large Traffic Signal Lamp,” J. of the Korea 

Institute of Electronic Communication Sciences, 

vol. 4, no. 2, 2009, pp. 123-129.

저자 소개

서희종(Hee-Jong Suh)

1975년 한국항공대학 학사 

1996년 중앙대학교 대학원 전자

공학과 박사

2006년3월∼전남대학교 전자통신공학과 교수

※ 관심분야 : 그래프이론, 컴퓨터네트워크, 컴퓨

터통신






