• Title/Summary/Keyword: k-hyponormal

Search Result 85, Processing Time 0.024 seconds

Weyl Type Theorems for Unbounded Hyponormal Operators

  • GUPTA, ANURADHA;MAMTANI, KARUNA
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.3
    • /
    • pp.531-540
    • /
    • 2015
  • If T is an unbounded hyponormal operator on an infinite dimensional complex Hilbert space H with ${\rho}(T){\neq}{\phi}$, then it is shown that T satisfies Weyl's theorem, generalized Weyl's theorem, Browder's theorem and generalized Browder's theorem. The equivalence of generalized Weyl's theorem with generalized Browder's theorem, property (gw) with property (gb) and property (w) with property (b) have also been established. It is also shown that a-Browder's theorem holds for T as well as its adjoint $T^*$.

Operators on a finite dimensional space

  • Ko, Eungil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.19-28
    • /
    • 1997
  • Let $H$ and $K$ be separable, complex Hilbert spaces and $L(H, K)$ denote the space of all linear, bounded operators from $H$ to $K$. If $H = K$, we write $L(H)$ in place of $L(H, K)$. An operator $T$ in $L(H)$ is called hyponormal if $TT^* \leq T^*T$, or equivalently, if $\left\$\mid$ T^*h \right\$\mid$ \leq \left\$\mid$ Th \right\$\mid$$ for each h in $H$. In [Pu], M. Putinar constructed a universal functional model for hyponormal operators.

  • PDF

On the Flatness of Semi-Cubically Hyponormal Weighted Shifts

  • Li, Chunji;Ahn, Ji-Hye
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.4
    • /
    • pp.721-727
    • /
    • 2008
  • Let $W_{\alpha}$ be a weighted shift with positive weight sequence ${\alpha}=\{\alpha_i\}_{i=0}^{\infty}$. The semi-cubical hyponormality of $W_{\alpha}$ is introduced and some flatness properties of $W_{\alpha}$ are discussed in this note. In particular, it is proved that if ${\alpha}_n={\alpha}_{n+1}$ for some $n{\geq}1$, ${{\alpha}_{n+k}}={\alpha}_n$ for all $k{\geq}1$.

On the Iterated Duggal Transforms

  • Cho, Muneo;Jung, Il-Bong;Lee, Woo-Young
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.4
    • /
    • pp.647-650
    • /
    • 2009
  • For a bounded operator T = $U{\mid}T{\mid}$ (polar decomposition), we consider a transform b $\widehat{T}$ = ${\mid}T{\mid}U$ and discuss the convergence of iterated transform of $\widehat{T}$ under the strong operator topology. We prove that such iteration of quasiaffine hyponormal operator converges to a normal operator under the strong operator topology.

INEQUALITIES OF OPERATOR POWERS

  • Lee, Eun-Young;Lee, Mi-Ryeong;Park, Hae-Yung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Duggal-Jeon-Kubrusly([2]) introduced Hilbert space operator T satisfying property ${\mid}T{\mid}^2{\leq}{\mid}T^2{\mid}$, where ${\mid}T{\mid}=(T^*T)^{1/2}$. In this paper we extend this property to general version, namely property B(n). In addition, we construct examples which distinguish the classes of operators with property B(n) for each $n{\in}\mathbb{N}$.

  • PDF

ON THE SEMI-HYPONORMAL OPERATORS ON A HILBERT SPACE

  • Cha, Hyung-Koo
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.597-602
    • /
    • 1997
  • Let H be a separable complex Hilbert space and L(H) be the *-algebra of all bounded linear operators on H. For $T \in L(H)$, we construct a pair of semi-positive definite operators $$ $\mid$T$\mid$_r = (T^*T)^{\frac{1}{2}} and $\mid$T$\mid$_l = (TT^*)^{\frac{1}{2}}. $$ An operator T is called a semi-hyponormal operator if $$ Q_T = $\mid$T$\mid$_r - $\mid$T$\mid$_l \geq 0. $$ In this paper, by using a technique introduced by Berberian [1], we show that the approximate point spectrum $\sigma_{ap}(T)$ of a semi-hyponomal operator T is empty.

  • PDF

A Note on Subnormal and Hyponormal Derivations

  • Lauric, Vasile
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.2
    • /
    • pp.281-286
    • /
    • 2008
  • In this note we prove that if A and $B^*$ are subnormal operators and is a bounded linear operator such that AX - XB is a Hilbert-Schmidt operator, then f(A)X - Xf(B) is also a Hilbert-Schmidt operator and $${\parallel}f(A)X\;-\;Xf(B){\parallel}_2\;\leq\;L{\parallel}AX\;-\;XB{\parallel}_2$$, for f belonging to a certain class of functions. Furthermore, we investigate the similar problem in the case that S, T are hyponormal operators and $X\;{\in}\;\cal{L}(\cal{H})$ is such that SX - XT belongs to a norm ideal (J, ${\parallel}\;{\cdot}\;{\parallel}_J$) and prove that f(S)X - Xf(T) $\in$ J and ${\parallel}f(S)X\;-\;Xf(T){\parallel}_J\;\leq\;C{\parallel}SX\;-\;XT{\parallel}_J$, for f in a certain class of functions.

HYPONORMAL TOEPLITZ OPERATORS ON THE BERGMAN SPACE. II.

  • Hwang, In-Sung;Lee, Jong-Rak
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.517-522
    • /
    • 2007
  • In this paper we consider the hyponormality of Toeplitz operators $T_\varphi$ on the Bergman space $L_\alpha^2(\mathbb{D})$ with symbol in the case of function $f+\bar{g}$ with polynomials f and g. We present some necessary conditions for the hyponormality of $T_\varphi$ under certain assumptions about the coefficients of $\varphi$.

HYPONORMAL TOEPLITZ OPERATORS ON THE BERGMAN SPACE

  • Lee, Jong-Rak;Lee, You-Ho
    • Honam Mathematical Journal
    • /
    • v.30 no.1
    • /
    • pp.127-135
    • /
    • 2008
  • In this paper we consider the hyponormality of Toeplitz operators $T_{\varphi}$ on the Bergman space $L^2_a(\mathbb{D})$ with symbol in the case of function f + $\overline{g}$ with polynomials f and g. We present some necessary conditions for the hyponormality of $T_{\varphi}$, under certain assumptions about the coefficients of ${\varphi}$.