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OPERATORS ON A FINITE DIMENSIONAL SPACE

EunciL Ko

1. Introduction

Let H and K be separable, complex Hilbert spaces and £(H,K) denote
the space of all linear, bounded operators from H to K. If H=K, we write
L(H) in place of L(H,K). An operator T in £L(H) is called hyponormal
if TT* < T*T, or equivalently, if |T*h|| < ||Th|| for each h in H. In
[Pu], M. Putinar constructed a universal functional model for hyponormal
operators. A linear bounded operator .S on H is called scalar of order
m if it possesses a spectral distribution of order m, i.e., if there is a
continuous unital morphism of topological algebras

®:C(C) — L(H)

such that ®(z) = S, where as usual z stands for the identity function on
C, and C§*(C) stands for the space of compactly supported functions on
C, continuously differentiable of order m, 0 < m < oco. An operator is
subscalar if it is similar to the restriction of a scalar operator to a closed
invariant subspace. M. Putinar in [Pu] showed that every hyponormal
operator is subscalar of order 2. In this paper we show that every operator
on a finite dimensional complex space is subscalar. The techniques which
are developed in this paper will be useful to characterize several classes of
operators on an infinite dimensional Hilbert space. This paper has four
sections. In section two we have included the preliminaryfacts. Section
three deal with Putinar theorem. In section four we show the main
theorems.
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2. Preliminaries

Let z be the coordinate in the complex plane C and let du(z), or simply
dp, denote the planar Lebesgue measure. Fix a complex (separable)
Hilbert space H and a bounded (connected) open subset U of C. We
shall denote by L?(U, H) the Hilbert space of measurable functions f :
U — H, such that

17l = ([ 1F)IPdu()t < o0

The space of functions f € L?*(U, H) which are analytic functions in
U (i.e., 0f = 0) is denoted by A?(U, H). A%(U, H) is called the Bergman
space for U. Note that A?(U, H) has a natural inner product and norm
from L?(U, H).

The Bergman operator for the open set U is the operator S defined
on A*(U,H) by (Sf)(z) = 2f(z). Since U is bounded, S is a bounded
operator on a Hilbert space A%(U, H).

The proof is elementary but some of the facts established will be
needed later. Throughout this paper we will assume that 0 € D, where
D is a bounded open set.

PROPOSITION 2.1. ([Co]) If f € A*(U,H), a € U, and dist(a,dU) >
r > 0, then

I fla)ll < \/—”f“zu

PROPOSITION 2.2. If S is the Bergman operator for the bounded open
set D, then S is bounded below.

Proof. This immediately follows from [Co, Corollary 10.7, page 177].
O

Let us define now a special Sobolev type space. Let U be again a
bounded open subset of C and m be a fixed non-negative integer. The
vecter valued Sobolev space W™(U, H) with respect to d and of order
m will be the space of those functions f in L2(U,H) whose derivatives
df,...,0™f in the sense of distributions still belong to L2(U, H). En-
dowed with the norm '

m
L lm = 3 10°F 115
=0
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W™(U,H) becomes a Hilbert space contained continuously in L2(U,H).
We next discuss the fact concerning the multiplication operator by z
on W™(U,H). Let U be a (connected) bounded open subset of C and let
m be a non-negative integer. The linear operator M of multiplication by
z on W™ (U, H) is continuous and it has a spectral distribution of order
m, defined by the relation
Py CF(C) — LW™(U,H)), Du(f) = M;

Therefore, M is a scalar operator of order m.

3. Putinar Theorem

Let T € L(H). Then for a given open bounded subset D of C, z — T
acts (linearly and) continuously on the space W*(D, H).

LEMMA 3.1. ([Pu], Lemma 1.1) If U and V are bounded connected
open sets in C, and if V is relatively compact in U, then there is a
constant ¢ > 0, such that

1 Flloov < cll fll2w
for every f in A2(U, H).

PROPOSITION 3.2. ([Pu], Proposition 2.1) For a bounded disk D in

the complex plane there is a constant Cp, such that for an arbitrary
operator T in L(H) and f in W?(D, H) we have

I = P)fllzp < Co(lli(z = T)*0fll2,p + [|(z = T)*0*f|l2.0)
where P denotes the orthogonal projection of L*(D, H) onto the Bergman
space A*(D,H).
CoROLLARY 3.3. ([Pu], Corollary 2.2) If T' is hyponormal, then
I = P)flleo < Colll(z = T)0f |l2,0 + Il(z = T)8*fll2.p)

THEOREM 3.4. ([Pu], Theorem 1) Any hyponormal operator is sub-
scalar of order 2.

Proof. Let T be a hyponormal operator on the Hilbert space H. Con-
sider an arbitrary bounded open subset D of C and the quotient space

B W2(D,H)
H(D) = cl(z — T)W?(D, H)
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endowed with the Hilbert space norm. The class of a vector f or an
operator A on this quotient will be denoted by f, respectively A.

Note that M, the operator of multiplication by z on W?2(D, H), leaves
invariant ran (z — T), hence M is well defined.

On the other hand, the map

®: C5(C) — LW*(D,H)), &(f) = M;
is a spectral distribution for M, order 2. Thus the operator M is C*-
scalar. Since ran(z - T) is invariant under every operator My, f €
C3(C), we infer that M is a C?-scalar operator with spectral distribution
.
Define
W?(D,H)
c(z — T)W?(D,H)
by V(h) = 1® h where 1 ® h denotes the constant function h.
Then

V:H—

VT = MV.
Indeed, VTh = (1® Th) = :®h = ]Vf(l/é/h) = MVh. In particular
ran V is an invariant subspace for M. In order to conclude the proof of
this theorem, it is enough to show the following lemma. O

LEMMA 3.5. ([Pu], Lemma 2.3) Let D be a bounded disk which con-
tains o(T). Then the operator V is one-to-one and has closed range.

Proof. We have to prove the following assertion; if h, in H and f, in
W2(D,H) are sequences such that

Tim (2 = T)fo + hallwe = 0 &
then lim,,_,o hn, = 0. The assumption (1) implies
lim (|(z = T)0fullo,p + 1(z = T)8* fall2,) =
By Corollary 3.3,
tim [|(7 = P)fulla.p = 0.

Then by (1),
nh_{go |(z = T)Pfyn + hall2,0 = 0.

Let " be a curve in D surrounding o(7). Then for z € T
lim [Pa(2) + (s = T) ] = 0
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uniformly by the preceding consequence of Proposition 3.2.
Hence,

1
5= [ Pha()dz +hall — 0.

But . Pf,dz = 0. Hence, lim,, ,o, h, =0 O

4. Main theorems

In this section we finally prove the central theorem of the paper, which
is the following.

THEOREM 4.1. Let H be a finite dimensional, complex space and let
A €L(H). Then A is a subscalar operator.

The proof of this theorem will be accomplished by making some pre-
liminary reductions and then proving a sequence of lemmas. The Jordan
structure theorem says that every square matrix A over the complex num-
bers C is similar to another matrix B which is a direct sum of Jordan
cells. That is, B can be written in the block form

@ B.=B

n=1
and each B, has the form
& 1 0 -
0 o, 1 0
e e s @, 1
0 -« o 0 an,
for some o, in C. The numbers {ay, -+ ,a;} can be identified as the

spectrum or set of eigenvalues of A.
By similarity, A is subscalar if and only if B is subscalar. Therefore,
it is enough to show that B is subscalar. The following is easy to prove.

PRrROPOSITION 4.2. Let H; and Hy be two Hilbert spaces. If B; €
L(H;) are subscalar, then &?_, B; is subscalar.

From Proposition 4.2, B is subscalar provided B, are for any n. To
show Theorem 4.1, it suffices to show that B, with «, = 0 is subscalar
by translation. We have reduced the Theorem 4.1 to the Theorem 4.3.
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THEOREM 4.3. Let T' be a matrix on n-dimensional, complex space
such that

Then T is a subscalar operator of order 2n.

LEMMA 44. If g € W?™(D, H) is such that || — zg||wzm < 6, then for
1=0,1,---,2m — 2, there exist h; € A*(D,H) such that

”(9759, e ;52m—29) — (ho, by, -+ ,h2m—2)H2,n < 2Cpé
where Cp, is a constant depending on D.

Proof. Let &,,H denote the direct sum of m copies of H. Let P denote
the orthogonal projection of @g,—1L?(D,H) onto the Bergman space
®om-14%(D, H). By Proposition 3.2 with &,,T = (0),

I(Z = P)(9,99,- - ,8*"2g)l2p < Cb(ll —2(8g, - . g)|l2p

+“ - Z(a2ga T ,a2mg)”2,D)
< 2CD5

Set P(g)ég) o ,52m—2g) = (hOahly tee ah2m——2)~ O

THEOREM 4.5. g is not in (T — z)W?2*(D,H) where go(z) = eo.

Proof. We want to show that g does not belong to (T’ — 2)W?2»(D, H).
If not, there exists f = (f1, f2, -+ , fn) € W?*(D,H) such that

(T = 2)f — gollwe <€

Note that
—zf1(2) + fo(2)
—2fua(2) + ful2)
—2fn(2)

(T —2)f(2) =
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That implies

| —z2fi+ fo=13p+ TNl - 20 /L + 8 follfp < € (1,1)
2ol =202 + 8 313 p < é (1,2)
ol - Zgifn“%,D < ¢ (1,n)

Claim: Fori=1,2,------ 7,

” - Z(gfi, e ,ézifz‘)“zu < (1 + R+ + R"—i)e

where R = 2Cp + (2C7DCD + 1)/¢, Cp is a constant depending on D,
Cp = sup.,ep|z|, and c is a Bergman constant from Proposition 2.2.

Now we verify the above claim. If i = n, it is clear from (1,n) assuming
of course that € < 1. Using the induction, assume that it is true for ¢ = ¢.
We want to show that

[| - z(éft—ly et ’52(t—1)ft_1)”2’D < (1 -+ R 4o 4 R’n—(t—l))e

Setvw=14+R+---+ R".
By the induction assumption,

| = 2(0fs,- -+, 0" fi)lla.p < me (2,1)
{ | = 2(0%fe,- -+, 0% fi)lla,p < me (2,2)
By Lemma 4.4, for (hy, -, hy—2) € @1 A%(D, H)
1(0fe, -+ ,0%72f) = (h1y -+ s hor—2)|l2,p < 2CDyse. (3)
12(8fe, - ,0%72f) — 2(h1, -+, har—a)|l2.p < 2CpCpyse. (3)
By (3)" and (2,1),
|z(ha, -, hat—2)l2,p < (2C7DCD + 1)ye.
By Proposition 2.2, there exists ¢ > 0 such that
cllhillz,p < llzhill2,p.

Therefore,

s, Bl < 222 E L @
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By (3) and (4),

_ o 2CpCp + 1
10fe,- 0" fllep < 2Cpme + ="y

= R’}’tf. (5)
Using (5) and (1,t-1),
| = 2(0fi-1,-- . 0" Vi )lep < (1+ Ry)e
(1+ R+ + RN

= Yt-1¢€.

The claim has been proved. Now we want to complete the proof of
Theorem 4.5. By the claim,

| — 2(8f1,8*f1)|l2,p < e (6,1)
| = 2(0f2,0" fa, 8 f2, 0" f2)ll2,p < Y2e. (6,2)
| = 2(0fns -, 0" fa)lla.p < Yme. (6,m)
By (6,1) and Proposition 2.2, for t = 0,1,------ T
(1 = P)fill2,p < 2Cpye. (7)
where P denotes the orthogonal projection of L?(D) onto the Bergman
space A%(D). Set h = (Pf), Pf,0,------ , Pfn)t. Then by (7) ,
If =hllap < Ifi = Phillap+----- + lfn = Pfall2p
< 201)(")’1 +Yo+ -+ ’)’n)é.

Then, for o(T) C B(0,r) C B(0,r) C D, we know that ||(T — z)f —
eolle,p < € since ||(T — 2)f — eol]lw2 < € and

~

I(T = 2)h —eollzap < (T = 2)h = (T = 2)f
+I(T - 2)f — eoll2,p

(supzenlIT = 2|)Ilh = fllap + €
2CpF(mi+ -+ m)ete

2,0

AN A
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where F' = sup,epl||T — z||. By Lemma 3.1, there exists a constant d > 0
such that

T = 2)h = eolloo,pomy < dll(T = 2)h — eollap
< QdCDF(’)/l + v+ +’Yn)f+df
Therefore,

1 -1
3 T 7)o
1 B .
= U5z oo (T = 2) "0 = hi))dz]
1 _ L
= Nz fopo, (7= 27 (60 = (T = 2)h())ez]|
1

2me
< T = b~ eollooony [T =) dz

< 2dEFCD(’71 +v 4+ ’)’n)f + dFEe

1= el = 1|l

where E = —23;]33(0#) I(T — z)7||dz. Since € was arbitrary, we have a
contradiction. Thus g is not in (T — z)W?*(D, H). O

Proof of Theorem 4.3: Let D be a bounded disk which cotains o(T).
Consider the quotient space

WZ"(D H)
D) = .
H(D) (T — z)W?2»(D,H)
where ¢l denotes the norm closure.

Let M, be a multiplication operator with z on W?*(D, H). Then M,
is a C*"-scalar subnormal operator and its spectral distribution is

®: Cg*(C) — L(W™(D,H)), &(f) = M;

Since ran(T — z) is invariant under M,, M, is still a scalar operator of
order 2n, with ® as spectral distribution.

Let V be the operator V(h) = fgb/h, from H into H(D), denoting by
1® h the constant function h. Then VT = M:V. In particular the range

of V is an invariant subspace for M,. Thus the proof is completed by the
following lemma.

LEMMA 4.6. The operator V is one-to-one and has close range.
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Proof. Since V' is the operator on n-dimensional space, ran V is closed.
Assume that VA =0 and h # 0 where h = Z,’;—Ol hie;. Since h # 0, there
exist at least one ¢ such that h; # 0. Let 5(0 < j < n ~ 1) be the largest
index among such 7’s. Since ker V € Lat T, ker V € Lat T9~1. Therefore,

h;
) 0
T 1h =
0
But, since 77'h € ker V, by Theorem 4.5, we have a contradiction.
Thus ker V' = {0}. 0

Lemma 4.6 concludes the proof of Theorem 4.3, because the range of
V' is a closed invariant subspace for the scalar operator M,. O

LEMMA 4.7. ( [RR], Proposition 06) If A is a finite rank operator,
then A is unitarily equivalent to an operator of the form B & 0, where B
is an operator on a finite dimensional space.

COROLLARY 4.8. If A is a finite rank operator, then A is a subscalar
operator.
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