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ON RANK ONE PERTURBATIONS OF

THE UNILATERAL SHIFT

Eungil Ko and Ji Eun Lee

Abstract. In this paper we study some properties of rank one perturba-
tions of the unilateral shift operators T = S+u⊗v. In particular, we give
some criteria for eigenvalues of T . Also we characterize some conditions

for T to be hyponormal.

1. Introduction

Let H be a separable complex Hilbert space and let L(H) denote the algebra
of all bounded linear operators on H. If T ∈ L(H), we write σ(T ), and σp(T )
for the spectrum, and the point spectrum of T , respectively.

An operator T ∈ L(H) is said to be quasinormal if T and T ∗T commute.
Also, if T = U |T | is the polar decomposition of T , then T is quasinormal if
and only if U and |T | commute. An operator T ∈ L(H) is said to be hyponor-
mal if T ∗T ≥ TT ∗ where T ∗ is the adjoint of T . It is known that the class
of hyponormal operators is a larger class containing normal and quasinormal
operators. A spectral operator is an operator with a countably additive reso-
lution of the identity defined on the Borel sets of the plane (see [6]) and an
operator T ∈ L(H) is hypercyclic if there is a vector x ∈ H with dense orbit
{x, Tx, T 2x, . . .} (see [10]).

If u and v are nonzero vectors in H, we write u ⊗ v for the operator of the
rank one defined by

(u⊗ v)x = ⟨x, v⟩u, x ∈ H,

where ⟨, ⟩ denotes the inner product of the Hilbert space H.
Let {en}∞n=0 denote an orthonormal basis for H which will remain fixed

throughout this paper and let S ∈ L(H) be the unilateral shift of multiplicity
one defined by Sen = en+1 for n = 0, 1, . . .. Throughout the paper we suppose
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that u and v are nonzero vectors in H and their expansions with respect to the
orthonormal basis {en}∞n=0 are

u =
∞∑

n=0

anen and v =
∞∑

n=0

bnen,

where an and bn are nonzero coefficients for all nonnegative integer n.
We say that an operator T ∈ L(H) is a rank one perturbation of an operator

if there exist the vectors u and v (defined above) in the Hilbert space H such
that T = S + u ⊗ v. E. Ionascu has studied the several properties of rank
one perturbations of diagonal operators (see [8]). It is natural to consider the
rank one perturbations of subnormal operators. Also, it is unknown whether
these operators have nontrivial invariant subspaces. As the special case of these
operators, we study some properties of rank one perturbations of the unilateral
shift T = S + u ⊗ v. In particular, we give some criteria for eigenvalues of T .
Also we characterize some conditions for T to be hyponormal.

2. Main results

First, we give some criteria for eigenvalues of T = S + u⊗ v.

Theorem 2.1. Let T = S + u⊗ v. Then 0 /∈ σp(T ). Furthermore, a nonzero
point µ ∈ C is an eigenvalue of T if and only if

(i)
∑∞

n=0

∑n
j=0

an−jbn
µj+1 = 1 and

(ii)
∑∞

n=0 |
∑n

j=0
an−j

µj+1 |2 < ∞.

Proof. If Tx = 0, then (S + u ⊗ v)x = Sx + ⟨x, v⟩u = 0. Hence we obtain the
following equation

∞∑
n=0

xnen+1 + ⟨x, v⟩
∞∑

n=0

anen = 0,

where x =
∑∞

n=0 xnen. If we solve this equation, then we get ⟨x, v⟩ = 0.
Therefore

∑∞
n=0 xnen+1 = 0. Thus x = 0. Hence 0 /∈ σp(T ).

Assume that µ ̸= 0. If µ ∈ σp(T ), then there exists a nonzero vector y such
that Ty = µy. Thus

⟨y, v⟩u = (µ− S)y.

If ⟨y, v⟩ = 0, then Sy = µy. It is a contradiction since σp(S) = ∅. Thus
⟨y, v⟩ ̸= 0. Set x = − 1

⟨y,v⟩y. Then x ̸= 0 and

(S − µ)x = − 1

⟨y, v⟩
(S − µ)y = u.

Hence u ∈ ran(S − µ) and ⟨x, v⟩+ 1 = 0. Thus

(1) 0 = ⟨x, v⟩+ 1 = ⟨
∞∑

n=0

xnen,
∞∑

m=0

bmem⟩+ 1 =
∞∑

n=0

xnbn + 1.
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Since u = (S−µ)x, the equation
∑∞

n=0 anen = (S−µ)
∑∞

n=0 xnen holds. Hence{
a0 = −µx0

an = xn−1 − µxn, n = 1, 2, . . . .

If we solve this system with respect to xn, then we obtain the following equa-
tions:

(2) xn = −
n∑

j=0

an−j

µj+1
, n = 0, 1, 2, . . . .

If we substitute (2) into (1), we get that

1 =
∞∑

n=0

n∑
j=0

an−jbn
µj+1

.

In order to get (ii), from ∥x∥ < ∞ and (2) we have

∞ > ∥x∥2 =
∞∑

n=0

|xn|2 =
∞∑

n=0

|
n∑

j=0

an−j

µj+1
|2.

Conversely, if (i) and (ii) hold, set

x = −
∞∑

n=0

 n∑
j=0

an−j

µj+1

 en.

Then we obtain the following equations

⟨x, v⟩+ 1 = ⟨−
∞∑

n=0

 n∑
j=0

an−j

µj+1

 en,
∞∑

m=0

bmem⟩+ 1

= −
∞∑

n=0

 n∑
j=0

an−j

µj+1

 bn + 1 = 0.

Hence x ̸= 0 and

(S − µ)x = (S − µ)

−
∞∑

n=0

 n∑
j=0

an−j

µj+1

 en

 = u.

Therefore

Tx = Sx+ ⟨x, v⟩u = µx.

Thus µ ∈ σp(T ). □

Corollary 2.2. Let T = S + u⊗ v. If µ ∈ σ(T ) and |µ| > 1, then µ ∈ σp(T ).
Hence (i) and (ii) in Theorem 2.1 hold.
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Proof. Assume that µ ∈ σ(T ) and |µ| > 1. Since σ(S) = D where D is the
unit disc, it follows that µ /∈ σ(S). Hence S − µ is invertible. Since T − µ =
S − µ + u ⊗ v = (S − µ)[1 + (S − µ)−1u ⊗ v], (S − µ)−1u ⊗ v is a rank one
operator, and T − µ is not invertible, it follows that −1 ∈ σp((S − µ)−1u⊗ v).
Thus there exists a nonzero eigenvector x such that ((S − µ)−1u⊗ v)x = −x.
So we get that (u⊗v)x = −(S−µ)x. Thus (T −µ)x = (S−µ)x+(u⊗v)x = 0.
Hence µ ∈ σp(T ). Thus (i) and (ii) in Theorem 2.1 hold. □

Corollary 2.3. Let T = S + u⊗ v. If

F (µ) =
∞∑

n=0

n∑
j=0

an−jbn
µj+1

for all nonzero µ ∈ σp(T ), then F (µ) converges absolutely.

Proof. Since

∞∑
n=0

∣∣∣∣∣∣
n∑

j=0

an−jbn
µj+1

∣∣∣∣∣∣ ≤
 ∞∑

n=0

∣∣∣∣∣∣
n∑

j=0

an−j

µj+1

∣∣∣∣∣∣
2


1
2 ( ∞∑

n=0

|bn|2
) 1

2

< ∞

for all nonzero µ ∈ σp(T ) by Theorem 2.1, F (µ) converges absolutely. □

As an application of Theorem 2.1, we obtain the following example.

Example 2.4. Let

T = S +

( ∞∑
n=0

1

2n
en

)
⊗

( ∞∑
n=0

1

n+ 1
en

)
.

Then {2} ⊂ σp(T ).

Proof. We want to show that (i) and (ii) in Theorem 2.1 hold.
∞∑

n=0

n∑
j=0

1
2n−j

1
n+1

2j+1
=

∞∑
n=0

n∑
j=0

1

(n+ 1)2n+1
= 1.

Moreover,

∞∑
n=0

∣∣∣∣∣∣
n∑

j=0

1
2n−j

2j+1

∣∣∣∣∣∣
2

=

∞∑
n=0

(
n+ 1

2n+1

)2

< ∞.

Hence 2 ∈ σp(T ) by Theorem 2.1. □

Next, we show that a rank one perturbation of the unilateral shift S is not
quasinormal. In [7, Problem 184] Halmos initiated that if U is the unilateral
shift, does there exist a compact operator C such that U + C is normal? He
has proved that there is no rank one operator u ⊗ v such that T = S + u ⊗ v
is normal where S is the unilateral shift. Next we will consider the case of
quasinormality of T .
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Proposition 2.5. Let T = S + u⊗ v. Then T is not quasinormal.

Proof. If T = S + u⊗ v is quasinormal, then

S∗S = T ∗T − (T ∗u⊗ v)− (v ⊗ T ∗u)+ ∥ u ∥2 (v ⊗ v)
= T ∗T −D,

where D = (T ∗u ⊗ v) + (v ⊗ T ∗u)− ∥ u ∥2 (v ⊗ v). Then D is an operator
of finite rank. Since T ∗T − I = D, it ensures that σ(T ∗T )\{1} ⊂ σp(T

∗T )
by [7]. Since a Hermitian operator on a separable Hilbert space can have only
countably many eigenvalues, it holds that σp(T

∗T ) is countable. Since σ(S) is
the closed unit disc and σp(S) = ∅, σ(T ) can differ from the closed unit disc

by the set of eigenvalues of T only (i.e., σ(T ) \ D = σp(T )) by [7]. It is known
from [1] that if T is quasinormal, then T is unitarily equivalent to N ⊕ (P ⊗S)
where P is positive and N is normal. Then σp(T ) = σp(N)∪ σp(P ⊗S). Since
σp(P ⊗ S) = σp(P )σp(S) by [2] and σp(S) = ∅, it follows that σp(P ⊗ S) = ∅.
Thus σp(T ) = σp(N). Since a normal operator on a separable Hilbert space

can have only countably many eigenvalues, σp(N) is countable. Hence σ(T )\D
is countable and σ(T ∗T ) \ [0, 1] is countable. Thus σ(T ∗T ) = [0, 1] module
countable sets. It contradicts to the countability of σ(T ∗T ). □

Corollary 2.6. If T = S + u ⊗ v, then (i) neither T ∗ nor T is spectral, and
(ii) T is not hypercyclic.

Proof. (i) Since σp(T
∗) contains D by [14], it is uncountable. Hence by [6], T ∗

is not spectral. Assume that T = S + u ⊗ v is spectral. Then T ∗T − I = F
where F = v ⊗ T ∗u + S∗u ⊗ v is an operator of finite rank. With the same
argument as in the proof of Theorem 2.5, we get a contradiction.

(ii) If T is hypercyclic, then σp(T
∗) = ∅ by [10]. But since σp(T

∗) contains
D by [14], we have a contradiction. □

An arbitrary operator T ∈ L(H) has a unique polar decomposition T =

U |T |, where |T | = (T ∗T )
1
2 and U is the appropriate partial isometry. Asso-

ciated with T there is a related operator T̃ = |T | 12U |T | 12 , called the Aluthge
transform of T (see [9]).

Corollary 2.7. If T = S + u⊗ v, then T ̸= T̃ .

Proof. If T = T̃ , then T must be quasinormal by [9]. So we have a contradic-
tion. □

Next we give a sufficient and necessary condition for rank one perturbations
of the unilateral shift to be hyponormal.

Theorem 2.8. (i) Let u and v be linearly dependent. Then T = S + u⊗ v is
hyponormal if and only if

Re(⟨x, v⟩⟨w, x⟩) ≥ −1

2
|⟨x, e0⟩|2
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holds where w = αS∗v − ᾱSv and α = ⟨u,v⟩
∥v∥2 .

(ii) Let u and v be linearly independent. Then T = S + u⊗ v is hyponormal
if and only if for all x = y + z with y ∈ ∨{u, v} and z ∈ (∨{u, v})⊥

Re⟨t, x⟩+ 1

2

(
∥u∥2|⟨y, v⟩|2 − ∥v∥2|⟨y, u⟩|2

)
≥ −1

2
|⟨x, e0⟩|2

holds where t = ⟨x, S∗u⟩v − ⟨x, u⟩Sv.

Proof. (i) If u and v are linearly dependent, then there exists α ∈ C such that

u = αv. Since α = ⟨u,v⟩
∥v∥2 ,

∥ v ∥2u⊗ u = | α |2∥ v ∥2v ⊗ v = ∥ u ∥2v ⊗ v.

Set w = αS∗v − ᾱSv. Then

⟨(T ∗T − TT ∗)x, x⟩ = ⟨(S∗S − SS∗)x, x⟩+ ⟨(w ⊗ v)x, x⟩+ ⟨(v ⊗ w)x, x⟩
= ⟨(S∗S − SS∗)x, x⟩+ 2Re⟨(w ⊗ v)x, x⟩
= ⟨(S∗S − SS∗)x, x⟩+ 2Re(⟨x, v⟩⟨w, x⟩)

for all x ∈ H. Hence T is hyponormal if and only if

Re(⟨x, v⟩⟨w, x⟩) ≥ −1

2
⟨(S∗S − SS∗)x, x⟩ = −1

2
|⟨x, e0⟩|2.

(ii) Suppose that u and v are linearly independent. Set t = ⟨x, S∗u⟩v −
⟨x, u⟩Sv. Then T = S + u⊗ v is hyponormal if and only if for any x ∈ H

⟨(T ∗T − TT ∗)x, x⟩
= ⟨[(S∗S − SS∗)x+ (S∗u⊗ v)x+ (v ⊗ S∗u)x+ (∥ u ∥2 v ⊗ v)x

− (Sv ⊗ u)x− (u⊗ Sv)x− (∥ v ∥2 u⊗ u)x], x⟩
= ⟨(S∗S − SS∗)x, x⟩+ ⟨x, S∗u⟩⟨v, x⟩ − ⟨x, u⟩⟨Sv, x⟩

+ ⟨x, v⟩⟨S∗u, x⟩ − ⟨u, x⟩⟨x, Sv⟩+ ∥u∥2|⟨x, v⟩|2 − ∥v∥2|⟨x, u⟩|2

= ⟨(S∗S − SS∗)x, x⟩+ ⟨⟨x, S∗u⟩v − ⟨x, u⟩Sv, x⟩

+ ⟨x, ⟨S∗u, x⟩v − ⟨u, x⟩Sv⟩+ ∥u∥2|⟨x, v⟩|2 − ∥v∥2|⟨x, u⟩|2

= ⟨(S∗S − SS∗)x, x⟩+ 2Re⟨t, x⟩+
(
∥u∥2|⟨x, v⟩|2 − ∥v∥2|⟨x, u⟩|2

)
= |⟨x, e0⟩|2 + 2Re⟨t, x⟩+

(
∥u∥2|⟨x, v⟩|2 − ∥v∥2|⟨x, u⟩|2

)
≥ 0.

(3)

Let H = ∨{u, v} ⊕ (∨{u, v})⊥ where ∨{u, v} := span{u, v}. If x = y + z with
some y ∈ ∨{u, v} and z ∈ (∨{u, v})⊥, then it clear that ⟨u, z⟩ = ⟨v, z⟩ = 0.
Hence from (3) we get that T = S + u⊗ v is hyponormal if and only if

|⟨x, e0⟩|2 + 2Re⟨t, x⟩+
(
∥u∥2|⟨y, v⟩|2 − ∥v∥2|⟨y, u⟩|2

)
≥ 0.

So we complete our proof. □

Corollary 2.9. Let u and v be linearly independent with ∥ u ∥=∥ v ∥= 1 and
let x = cu+ dv + z for some constant c, d with | d |≥| c |, and z ∈ (∨{u, v})⊥.
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If ⟨x, S∗u⟩v = ⟨x, u⟩Sv or x = ⟨x, S∗u⟩v − ⟨x, u⟩Sv, then T = S + u ⊗ v is
hyponormal.

Proof. Suppose that u and v are linearly independent with ∥ u ∥=∥ v ∥= 1.
Let x = cu+ dv+ z be with | d |≥| c | and z ∈ (∨{u, v})⊥. Then c = ⟨y, u⟩ and
d = ⟨y, v⟩ where y = cu+ dv. Since | d |≥| c |, it clear that |⟨y, v⟩|2 ≥ |⟨y, u⟩|2.
Set t = ⟨x, S∗u⟩v−⟨x, u⟩Sv. If ⟨x, S∗u⟩v = ⟨x, u⟩Sv or x = ⟨x, S∗u⟩v−⟨x, u⟩Sv,
then t = x or t = 0. Hence

Re⟨t, x⟩+ 1

2

(
|⟨y, v⟩|2 − |⟨y, u⟩|2

)
+

1

2
|⟨x, e0⟩|2 ≥ 0.

Therefore, T is hyponormal from Theorem 2.8. □
Corollary 2.10. Let T = S + u⊗ v be where u and v are linearly dependent.

If γv = αS∗v − ᾱSv with α = ⟨u,v⟩
∥v∥2 , then γ = i 2

∥v∥4 Im{⟨u, v⟩⟨v, Sv⟩} and T is

hyponormal.

Proof. If γv = αS∗v−ᾱSv with α = ⟨u,v⟩
∥v∥2 , then γ∥ v ∥2 = α⟨S∗v, v⟩−α⟨Sv, v⟩.

It follows that

γ∥ v ∥4 = ⟨u, v⟩⟨S∗v, v⟩ − ⟨u, v⟩⟨v, Sv⟩
= 2iIm{⟨u, v⟩⟨v, Sv⟩}.

So we have γ = 2i
∥v∥4 Im{⟨u, v⟩⟨v, Sv⟩}. Since u and v are linearly dependent, it

suffices to show that Re{⟨x, v⟩⟨γv, x⟩} ≥ 0. In fact, ⟨x, v⟩⟨γv, x⟩ = γ | ⟨x, v⟩ |2.
Hence Re{⟨x, v⟩⟨γv, x⟩} = 0. □
Example 2.11. Let u =

∑∞
n=0

1
n+1en and v =

∑∞
n=0

2i
n+1en. Then

γ = i
2

∥ v ∥4
Im{⟨u, v⟩⟨v, Sv⟩} = −i

6

π2

and S +
(∑∞

n=0
1

n+1en

)
⊗
(∑∞

n=0
2i

n+1en

)
is hyponormal.

Next we now turn to some properties of some operators in {T = S+u⊗ v}′

where {T}′
= {A ∈ L(H) | TA = AT}. We start with the following theorem.

Proposition 2.12. Let T = S + u ⊗ v. If A ∈ {T}′
is a diagonal normal

operator such that Aek = γkek for all k ≥ 0, then either A = γI for some
constant γ or there are at most finitely many j satisfying aj+1b̄j = −1.

Proof. Since A and T commute, i.e., AT = TA, we obtain that for all k ≥ 0

⟨(AS − SA)ek, ek+1⟩ = ⟨ek, A∗v⟩⟨u, ek+1⟩ − ⟨ek, v⟩⟨Au, ek+1⟩.
Since ⟨(AS − SA)ek, ek+1⟩ = ⟨Aek+1, ek+1⟩ − ⟨Aek, ek⟩, it follows that

(1 + ak+1b̄k)(γk+1 − γk) = 0 for all k ≥ 0.

Then γk = γk+1 or ak+1b̄k = −1 for all k ≥ 0. If γk = γk+1 for all k ≥ 0, then
A = γI for some constant γ. Otherwise, γj+1 ̸= γj for some j. If there are at
most finitely many j such that γj+1 ̸= γj , then aj+1b̄j = −1 for such j. If there
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are infinitely many j such that γj+1 ̸= γj , then aj+1b̄j = −1 for such infinitely
many j. But, since

∑∞
k=0 |ak|2 < ∞ and

∑∞
k=0 |bk|2 < ∞, aj+1b̄j ̸= −1 for

sufficiently large j. So we have a contradiction. Thus there are at most finitely
many j satisfying aj+1b̄j = −1. So we complete the proof. □

The following example is an application of Theorem 2.12.

Example 2.13. Suppose that u and v are nonzero vectors in H and their ex-
pansions with respect to the orthonormal basis {ek}∞k=0 are u = v =

∑∞
k=0

1
2k
en.

Since 1
2k+1

1
2k

̸= −1 for every nonnegative integer k, Theorem 2.12 implies that
the commutant of S + u⊗ v is γI for some constant γ.

The following proposition is very useful to decide whether the unilateral
weighted shift in the commutant of T = S + u⊗ v is hyponormal or not.

Proposition 2.14. Let W ∈ L(H) be the unilateral weighted shift with positive

weight sequence {γk} defined by Wek = γkek+1 for k = 0, 1, 2, . . .. If W ∈ {T}′

where T = S+u⊗v, then for every nonnegative integer k, the following equation
holds:

γk+1(1 + ak+1b̄k) = γk(1 + ak+2b̄k+1).

Proof. Since the equation WT = TW holds, we get that for every nonnegative
integer k

⟨(WS − SW )ek, ek+2⟩ = ⟨ek,W ∗v⟩⟨u, ek+2⟩ − ⟨ek, v⟩⟨Wu, ek+2⟩.
And we get that

⟨(WS − SW )ek, ek+2⟩ = ⟨Wek+1, ek+2⟩ − ⟨S(γkek+1), ek+2⟩
= γk+1 − γk.

Together,
γk+1 − γk = γkak+2b̄k+1 − γk+1ak+1b̄k.

Thus we have
γk+1(1 + ak+1b̄k) = γk(1 + ak+2b̄k+1)

for every nonnegative integer k. □
Corollary 2.15. Let W ∈ L(H) be the unilateral weighted shift with positive
weight sequence {γk} defined by Wek = γkek+1 for k = 0, 1, 2, . . .. Suppose
that T = S+u⊗ v satisfies 1+ak+1b̄k ̸= 0 for every nonnegative integer k and

W ∈ {T}′
. Then W is hyponormal if and only if ak+2b̄k+1 ≥ ak+1b̄k for every

nonnegative integer k.

Proof. If W is hyponormal, it is known that the weight sequence {γk}∞k=0 of W
is increasing. Hence from Proposition 2.14, we get that γk+1 ≥ γk if and only
if 1 + ak+2b̄k+1 ≥ 1 + ak+1b̄k for every nonnegative integer k. So we complete
the proof. □

Next examples show that the hyponormality of the unilateral weighted shift
in the commutant of T = S + u⊗ v depends on u and v.
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Example 2.16. Suppose that T = S + u ⊗ v where u = −
∑∞

k=0
1

k+1ek and

v =
∑∞

k=0
1

k+2ek and W ∈ L(H) is the unilateral weighted shift with positive

weight sequence {γk}. If W ∈ {T}′
, then from Proposition 2.14 we get that

γk+1

γk
=

1 + ak+2b̄k+1

1 + ak+1b̄k

=
1− ( 1

k+3 )
2

1− ( 1
k+2 )

2
> 1.

Thus the weight sequence {γk} is increasing. Hence W is hyponormal.

Example 2.17. Suppose that T = S + u ⊗ v where u =
∑∞

k=0
1
2k
ek and

v =
∑∞

k=0
1

2k+1 ek and W ∈ L(H) is the unilateral weighted shift with positive

weight sequence {γk}. If W ∈ {T}′
, then from Proposition 2.14 we obtain that

γk+1

γk
=

1 + ak+2b̄k+1

1 + ak+1b̄k

=
1 + ( 1

2k+2 )
2

1 + ( 1
2k+1 )2

< 1.

Thus the weight sequence {γk} is decreasing. Hence W is not hyponormal.
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