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Abstract. If T is an unbounded hyponormal operator on an infinite dimensional complex

Hilbert space H with ρ(T) 6= φ, then it is shown that T satisfies Weyl’s theorem, generalized

Weyl’s theorem, Browder’s theorem and generalized Browder’s theorem. The equivalence

of generalized Weyl’s theorem with generalized Browder’s theorem, property (gw) with

property (gb) and property (w) with property (b) have also been established. It is also

shown that a-Browder’s theorem holds for T as well as its adjoint T∗.

1. Introduction

Throughout this paper H will be an infinite dimensional complex Hilbert space
and C(H) denotes the set of all closed linear operators from H to H. By D(T),
R(T) and N(T) we denote the domain, range and null space of T, respectively. If the
range of an operator T ∈ C(H) is closed and nullity of T, α(T) = dim N(T) < ∞
(respectively, defect of T, β(T) = codim R(T) < ∞) then T is called an upper semi-
Fredholm (respectively, lower semi-Fredholm) operator. A semi-Fredholm operator
is an upper or lower semi-Fredholm operator. If both α(T) and β(T) are finite then
T is called a Fredholm operator. By SF+(H) (respectively, SF−(H)) we denote the
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class of upper (respectively, lower) semi-Fredholm operators. For T ∈ SF+(H) ∪
SF−(H), index of T is defined as ind(T) = α(T) - β(T). An operator T ∈ C(H) is
called Weyl if it is Fredholm of index 0 and the Weyl spectrum of T is defined as
σW (T) = {λ ∈ C : T - λI is not Weyl}. Also we have

SF−+ (H) = {T ∈ C(H) : T ∈ SF+(H) and ind(T ) 6 0},
SF+

− (H) = {T ∈ C(H) : T ∈ SF−(H) and ind(T ) > 0}

and these operators generate the following spectrum

σSF−+
(T ) = {λ ∈ C : T − λI /∈ SF−+ (H)}

σSF+
−

(T ) = {λ ∈ C : T − λI /∈ SF+
− (H)}.

The concept of Fredholm operators was generalized by Berkani [5] to the class
of B-Fredholm operators in the following way: Let T ∈ C(H) and let

∆(T) = {n ∈ N : ∀m ∈ N, m > n ⇒ R(Tn) ∩N(T) ⊆ R(Tm) ∩N(T)}.

Then the degree of stable iteration of T is defined as dis(T) = inf ∆(T) where dis(T)
=∞ if ∆(T) = φ. Let T ∈ C(H) be densely defined on H. We say that T ∈ C(H) is
a semi B-Fredholm operator if it is either upper or lower semi B-Fredholm operator,
where T is an upper (respectively, lower) semi B-Fredholm operator if there exists
an integer d ∈ ∆(T) such that R(Td) is closed and dim {N(T) ∩ R(Td)} < ∞
(respectively, codim {R(T) + N(Td)} < ∞).

In this case, index of T is defined as the number

ind(T) = dim {N(T) ∩ R(Td)} − codim {R(T) + N(Td)}.

Also, we say that T is a B-Fredholm operator if T is both upper and lower semi
B-Fredholm operator, that is, there exists an integer d ∈ ∆(T) such that T satisfies
the following conditions:

(i) dim {N(T) ∩ R(Td)} < ∞
(ii) codim {R(T) + N(Td)} < ∞.

Let SBF+(H) denote the class of all upper semi B-Fredholm operators. Then

SBF−+ (H) = {T ∈ C(H) : T ∈ SBF+(H) and ind(T ) 6 0} and

σSBF−+
(H) = {λ ∈ C : T − λI /∈ SBF−+ (H)}.

An operator T ∈ C(H) is said to be B-Weyl if it is a B-Fredholm operator of
index zero and the B-Weyl spectrum of T is then defined as σBW (T) = {λ ∈ C : T
- λI is not B-Weyl}.
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The ascent p(T) and descent q(T) of an operator T ∈ C(H) are given by

p(T) = inf{n : N(Tn) = N(Tn+1)} and

q(T) = inf{n : R(Tn) = R(Tn+1)}.

An operator T ∈ C(H) is said to be upper semi-Browder (respectively, lower
semi-Browder) if T is upper semi-Fredholm with p(T) < ∞ (respectively, lower
semi-Fredholm with q(T) < ∞). If T is both upper and lower semi-Browder, that
is, if T is a Fredholm operator with ascent and descent both finite, then T is Browder.
The upper-Browder, lower-Browder and Browder spectra are defined as

σub(T ) = {λ ∈ C : T − λI not upper semi-Browder},
σlb(T ) = {λ ∈ C : T − λI not lower semi-Browder} and
σb(T ) = {λ ∈ C : T − λI not Browder}, respectively.

Clearly, σSF−+
(T) ⊆ σub(T) and σw(T) ⊆ σb(T).

In [15], Weyl asserts that if T is a hermitian operator then σw(T ) consists
precisely of all points in σ(T ) except the isolated eigenvalues of finite multiplicity.
Weyl’s theorem has been extended from hermitian operators to the class of bounded
normal, hyponormal and Toeplitz operators [8]. Further in [3], Berkani proved that
if T is a bounded normal operator acting on a Hilbert space H, then σBW (T) =
σ(T) \ E(T), where E(T) is the set of all isolated eigenvalues of T. This gives the
generalization of the Weyl’s theorem. Also, in [4] he proved this generalized version
of classical Weyl’s theorem for bounded hyponormal operators.

In this paper, we denote by <(H) = {T ∈ C(H): T is an unbounded hyponormal
operator with resolvent set ρ(T) 6= φ} and we study several Weyl-type theorems and
properties for operators T ∈ <(H). The second section deals with the spectrum of
an unbounded hyponormal operator where we show that operators T ∈ <(H) are
polaroid (every isolated spectral point is a pole) with ascent less than or equal to
1. In the third section, we show that T satisfies Weyl’s theorem, generalized Weyl’s
theorem and Browder’s theorem. Also, it is shown that a-Browder’s theorem holds
for T as well as its adjoint T∗. In the fourth section, the results of section 2 are
used to establish the equivalence of generalized Weyl’s theorem with generalized
Browder’s theorem, Weyl’s theorem with Browder’s theorem and property (gw) ([2])
with property (gb) ([7]). Moreover, the two variants of Weyl’s theorem, property
(w) ([13]) and property (b) ([7]) are also shown to be equivalent. Finally, as a
conclusion, we summarize the relations between Weyl-type theorems, Browder-type
theorems and various properties in a diagram.

2. Spectrum of an Unbounded Hyponormal Operator

A linear operator T is called hyponormal if (i) T is closed, (ii) D(T) = D(T∗),
D(T) is dense in H, and (iii) T∗T - TT∗ > 0. Also, we have a characterization
for unbounded hyponormal operators, namely, an operator T is hyponormal iff it
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satisfies (i) T∗ exists, D(T) = D(T∗) and D(T) is dense in H and (ii) ‖Tx‖ > ‖T∗x‖,
for all x ∈ D(T) = D(T∗).

Theorem 2.1. Let T ∈ C(H) be an unbounded hyponormal operator. Then p(T -
λI) = 0 or 1 for every λ ∈ C.

Proof. Since T is hyponormal, so is T - λI. Then for x ∈ D(T - λI)2, we have

‖(T − λI)x‖2 = |〈(T − λI)x, (T − λI)x〉|
= |〈x, (T − λI)∗(T − λI)x〉|
6 ‖x‖ ‖(T − λI)∗(T − λI)x‖
6 ‖x‖ ‖(T − λI)2x‖.

Therefore, ‖x‖‖(T − λI)2x‖ > ‖(T − λI)x‖2, and hence N(T - λI)2 ⊆ N(T - λI).
Since the reverse inclusion always holds, we have p(T - λI) 6 1. 2

One of the interesting properties in Fredholm theory is the single valued exten-
sion property (SVEP). This property was first introduced by Dunford [9]. Mainly
we concern with the localized version of SVEP, the SVEP at a point, introduced
by Finch [10] and relate it to the finiteness of the ascent of an operator. Let T :
D(T) ⊂ H → H be a closed linear mapping and let λo be a complex number. The
operator T has the single valued extension property (SVEP) at λo if f = 0 is the
only solution to (T- λI)f(λ) = 0 that is analytic in a neighborhood of λo. Also, T
has SVEP if it has this property at every point λo in the complex plane.

Theorem 2.2.([10]) Let T ∈ C(H).

(i) If p(T - λI) is finite for some λ ∈ C, then T has SVEP at λ.

(ii) If T is onto and not one-one, then T does not have SVEP at λ = 0.

The second part of this theorem can also be rephrased as “If T has SVEP,
then T is invertible whenever it is onto, that is, σ(T) = σs(T), where σs(T) is the
surjective spectrum of T”.

It is well known that the resolvent operator Rλ(T) = (T - λI)−1 is an analytic
operator-valued function for all λ ∈ ρ(T) and the isolated points of σ(T) are either
poles or essential singularities of Rλ(T). For T ∈ C(H), an isolated point λ ∈ σ(T)
is said to be a pole of order p if p = p(T - λI) < ∞ and q(T - λI) < ∞ [12].

Theorem 2.3.([12]) Let T be a closed linear operator with ρ(T) 6= φ. If λo ∈ σ(T)
and there exists two closed subspaces M and N such that T - λoI is one-one mapping
of D(T) ∩ M onto M , T - λoI|N is nilpotent of order p and H = M ⊕ N , then
M = R(T - λoI)p, N = N(T - λoI)p and λo is a pole of the resolvent Rλ(T) of
order p. The above condition is also necessary.

Lemma 2.4. If T ∈ <(H), then λ is an isolated point of σ(T ) iff λ is a simple
pole of the resolvent of T.

Proof. If λ is a pole of resolvent of T then λ is an isolated point of σ(T ). 2
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Conversely, suppose λ is an isolated point of σ(T ). Then {λ} is a spectral set
of T and by [14, §V.10], there is a corresponding spectral projection operator Eo

such that H = N(Eo) ⊕ R(Eo) = X1⊕ X2, say. We have, T is completely reduced
by the pair of closed subspaces X1 and X2 and if T1 = T |X1 and T2 = T |X2 , then
σ(T1) = σ(T ) \ {λ} and σ(T2) = {λ} so that T − λI is a one-one mapping of X1

onto itself.

Also, R(T − λI) = X1 ⊕ (T − λI)X2

= X1 ⊕ 0 (∵ p(T - λI) 6 1 by Theorem 2.1).

Then, R(T − λI)2 = (T − λI)X1 ⊕ 0
= X1 ⊕ 0 = R(T − λI).

Thus, q(T - λI) = p(T - λI) 6 1 and hence λ is a simple pole of the resolvent
operator Rλ(T ). 2

Let σa(T) be the approximate point spectrum of T. By E(T) and Eo(T) we
denote the set of all isolated eigenvalues of T and the set of all isolated eigenvalues
of finite multiplicities in σ(T), respectively. Also, let π(T) and πo(T) denote the
set of all poles and the set of all poles of finite multiplicities of the resolvent of T,
respectively. We say that T ∈ C(H) satisfies:

(i) Weyl’s theorem if σ(T) \ σw(T) = Eo(T).

(ii) Generalized Weyl’s theorem if σ(T) \ σBW (T) = E(T).

(iii) Browder’s theorem if σw(T) = σb(T).

(iv) Generalized Browder’s theorem if σ(T) \ σBW (T) = π(T).

(v) a-Browder’s theorem if σSF−+
(T) = σub(T).

(vi) property (w) if σa(T) \ σSF−+
(T) = Eo(T).

(vii) property (gw) if σa(T) \ σSBF−+
(T) = E(T).

(viii) property (b) if σa(T) \ σSF−+
(T) = σ(T) \σb(T).

(ix) property (gb) if σa(T) \ σSBF−+
(T) = π(T).

3. Weyl-Type Theorems

In this section we prove several Weyl-type theorems for T ∈ <(H).

Theorem 3.1. If T ∈ <(H), then Weyl’s theorem holds for T.

Proof. Let λ ∈ σ(T) \ σw(T). Then R(T - λI) is closed and α(T - λI) = β(T - λI)
< ∞. If α(T - λI) = β(T - λI) = 0, T - λI is a one-one mapping of D(T) onto all
of H. The inverse (T - λI)−1 is then closed and hence bounded, thus λ /∈ σ(T),
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which is a contradiction. Hence, α(T - λI) > 0. Also, since p(T - λI) = 1 < ∞, [1,
Theorem 3.4(iv)] gives q(T - λI) = p(T - λI) < ∞. Therefore, λ ∈ Eo(T).

Conversely, suppose λ ∈ Eo(T). Then λ is a pole of order p(T - λI) = 1 so that
H = R(T - λI) ⊕ N(T - λI). Therefore, β(T - λI) = α(T - λI) < ∞ and hence,
λ ∈ σ(T) \ σw(T). Thus, Weyl’s theorem holds for T. 2

Theorem 3.2. If T ∈ <(H), then T satisfies generalized Weyl’s theorem.

Proof. Suppose λ ∈ σ(T) \ σBW (T). Then T - λI is a B-Fredholm operator of index
0. By [5, theorem 2.4], there exist two closed invariant subspaces M and N of H
such that H = M ⊕ N , To = (T - λI)|M is a closed Fredholm operator of index
0, and T1 = (T - λI)|N is a nilpotent operator. Since T is hyponormal and M is
a closed invariant subspace of T, so S = T|M is a hyponormal operator. Also (S
- λI)|M = To is a Fredholm operator of index 0 so that λ /∈ σw(S). We have the
following two cases:

Case (i): λ ∈ σ(S).
S being hyponormal satisfies Weyl’s theorem and λ /∈ σw(S), therefore λ ∈

Eo(S). In particular, λ is isolated in σ(S) or 0 is isolated in σ(To). Since T - λI
= To ⊕ T1 and T1 is a nilpotent operator, so σ(To) \ {0} = σ(T - λI) \ {0}.
Therefore, 0 is isolated in σ(T - λI) or equivalently, λ is isolated in σ(T). Also λ,
being an eigenvalue of S, is an eigenvalue of T. Hence, λ ∈ E(T).

Case (ii): λ /∈ σ(S).
In this case, T - λI = To ⊕ T1 = (S - λI)|M ⊕ T1 where (S - λI)|M is a one-one

mapping of D(T) ∩ M onto M and T1 is a nilpotent operator. Therefore, λ is a
pole of the resolvent operator Rλ(T). Hence, λ is an isolated eigenvalue of T so that
λ ∈ E(T).

Therefore, σ(T) \ σBW (T) ⊆ E(T).
Conversely, let λ ∈ E(T). Then, α(T - λI) > 0 and p(T - λI) = 1. λ being

an isolated point is a pole of order p(T - λI) = 1. Thus, H = R(T - λI) ⊕ N(T -
λI) = M ⊕ N , say. Now, (T - λI)|M is a one-one operator from D(T) ∩ M onto
M , and hence a closed Fredholm operator of index 0, and (T - λI)|N is a nilpotent
operator of index 1. By [5, Theorem 2.4], T - λI is a B-Fredholm operator of index
0. Therefore, λ ∈ σ(T) \ σBW (T). 2

Theorem 3.3. Every unbounded hyponormal operator satisfies Browder’s theorem.
Proof. Since for every unbounded hyponormal operator T we have p(T - λI) < ∞,
Browder’s theorem follows from [1, Theorem 3.4]. 2

Theorem 3.4. If T is an unbounded hyponormal operator, then T and T∗ satisfy
a-Browder’s theorem.

Proof. Suppose that λ /∈ σub(T). Then T - λI is upper semi-Fredholm operator and
p(T - λI) < ∞, [1, Theorem 3.4(i)] gives ind(T - λI) 6 0 so that λ /∈ σSF−+

(T).
Thus, σSF−+

(T) ⊆ σub(T).
Conversely, since p(T - λI) < ∞ for all λ ∈ C, so σub(T) ⊆ σSF−+

(T) and hence
T satisfies a-Browder’s theorem.



Weyl Type Theorems for Unbounded Hyponormal Operators 537

Now suppose λ /∈ σSF−+
(T∗) = σSF+

−
(T). Then T - λI is lower semi-Fredholm

with ind(T - λI) > 0. Since T - λI is hyponormal, we have p(T - λI) < ∞ so that
by [1, Theorem 3.4(i)], ind(T - λI) 6 0. Thus, ind(T - λI) = 0 and hence, q(T -
λI) = p(T - λI) < ∞. Therefore, λ /∈ σlb(T) = σub(T∗). Since the reverse inclusion
holds for every operator, we have that T∗ satisfies a-Browder’s theorem. 2

The following example of an operator T ∈ <(H) illustrates all the above theo-
rems:

Example 3.5. Let H = l2 and let T be defined as:

T (x1, x2, x3, . . . ) = (0, x1, 2x2, 3x3, 4x4, . . . )
= (0, a1x1, a2x2, a3x3, a4x4, . . . )

where, an = n for all n ∈ N and D(T) =
{

(xn) ∈ l2 :
∑∞

j=1 |ajxj |2 < ∞
}

.

If coo ={x = (xn) : xn 6= 0 for only finitely many n ∈ N}, then coo is dense in l2.
Since coo ⊆ D(T), so that D(T) is dense in H. Also, since |an| 6 |an+1|, T is an
unbounded hyponormal operator.

Consider an operator S on H defined as:

S(x1, x2, x3, . . . ) = (x2, 2x3, 3x4, 4x5, . . . )
= (a1x2, a2x3, a3x4, a4x5, . . . )

with D(S) =
{

(xn) ∈ l2 :
∑∞

j=1 |ajxj |2 < ∞
}

. Then S=T∗, the adjoint of T.

Clearly, σp(T) = φ. Therefore, E(T) = Eo(T) = φ.

From [11], since M = limn→∞ |an| = ∞, we have
σ(T) = {λ : |λ| 6 M} i.e. σ(T) = C ∪ {∞}, the extended complex plane,
σa(T) = {λ : |λ| = M} i.e. σa(T) = {∞} and
σp(T∗) = {λ : |λ| < M} i.e. σp(T∗) = C.

Case (i): λ ∈ σ(T), λ 6= ∞.
Then, λ /∈ σa(T) implies that α(T - λI) = 0, hence p(T - λI) = 0, and R(T -

λI) is closed so that λ /∈ σSF−+
(T) and λ /∈ σub(T). Also, λ ∈ σp(T∗) implies that

β(T - λI) = α(T∗ - λI) 6= 0 so that ind(T - λI) 6= 0 and hence λ ∈ σw(T) ⊆ σb(T).
Further, α(T - λI) = 0 implies that dim {N(T - λI) ∩ R(T - λI)d} = 0. Also

p(T - λI) = 0 implies that codim {R(T - λI) + N(T - λI)d} = codim R(T - λI) =
β(T - λI) 6= 0. Thus B-Fredholm index of T - λI is non-zero and hence λ ∈ σBW (T).

Case (ii): λ = ∞.
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Then, λ /∈ σp(T) and λ ∈ σa(T) implies that α(T - λI) = 0 but R(T - λI) is not
closed. Hence, λ = ∞ belongs to σSF−+

(T), σub(T), σw(T) and σb(T).

Also, codim {R(T - λI) + N(T - λI)d} = codim R(T - λI) = β(T - λI) ≮ ∞
(because otherwise R(T - λI) must be closed). Hence, λ ∈ σBW (T).

From the above cases, we have
σw(T) = C ∪ {∞} = σb(T) and hence T satisfies Browder’s theorem,
σSF−+

(T) = {∞} = σub(T) and hence T satisfies a-Browder’s theorem,
σ(T) \σw(T) = φ = Eo(T) and hence T satisfies Weyl’s theorem, and
σ(T) \σBW (T) = φ = E(T) and hence T satisfies generalized Weyl’s theorem.

4. Equivalent Variants of Weyl-Type Theorems and Hyponormal Oper-
ators

It is known that property (gw) implies property (gb) and property (w) implies
property (b) for every T ∈ B(H), but the converses of these results do not hold
true in general [7]. In this section we prove the equivalence of property (gw) with
(gb) and property (w) with (b) for an operator T ∈ <(H). Further, we also prove
that for such a T, generalized Weyl’s theorem is equivalent to generalized Browder’s
theorem and Weyl’s theorem is equivalent to Browder’s theorem.

Theorem 4.1. Let T ∈ <(H). Then property (b) holds for T iff property (w) holds
for T.

Proof. Suppose T satisfies property (b).
Let λ ∈ σa(T) \ σSF−+

(T). Since T satisfies property (b), λ ∈ σ(T) \ σb(T) so
that T - λI is a Fredholm operator of index 0, p(T - λI) < ∞ and q(T - λI) < ∞.
Then, λ is an isolated point of σ(T). Also 0 < α(T - λI) < ∞ (otherwise α(T - λI)
= β(T - λI) = 0 and λ /∈ σ(T)). Therefore, λ ∈ Eo(T).

Conversely, suppose λ /∈ σa(T) \ σSF−+
(T). Since T is hyponormal, p(T - λI)

< ∞. By [1, Theorem 3.4(i)], ind(T - λI) 6 0. We have to show that λ /∈ Eo(T).
We have the following two cases:
Case (i): α(T - λI) = ∞.

Then λ /∈ Eo(T).
Case (ii): α(T - λI) < ∞.

Since T - λI is not upper semi-Fredholm operator, therefore, R(T - λI) is not
closed. If λ ∈ Eo(T), then λ is a pole of order p(T - λI) = 1. Then, H = R(T - λI)
⊕ N(T - λI) so that R(T - λI) is closed which is a contradiction. Therefore, λ /∈
Eo(T).

Thus, Eo(T) ⊆ σa(T) \ σSF−+
(T) and hence T satisfies property (w).

Conversely, suppose T satisfies property (w).
Let λ ∈ σ(T) \ σb(T). By definition, σ(T) \ σb(T) ⊆ Eo(T). Since T satisfies

property (w), λ ∈ Eo(T) = σ(T) \ σSF−+
(T).
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Conversely, suppose λ ∈ σa(T) \ σSF−+
(T). Since T satisfies property (w), λ ∈

Eo(T). Then, λ is a pole of order p(T - λI) = 1 so that H = R(T - λI) ⊕ N(T - λI)
and hence β(T - λI) = α(T - λI) < ∞. By [1, Theorem 3.4(iv)], q(T - λI) = p(T -
λI) = 1. Therefore, λ ∈ σ(T) \ σb(T) so that T satisfies property (b). 2

The following theorem is a direct consequence of Lemma 2.4.

Theorem 4.2. For every T ∈ <(H), E (T) = π(T). In particular, Eo(T) = πo(T).

Remark 4.3. Since σ(T) \ σb(T) = πo(T) for every T ∈ C(H), the above theorem
implies that Weyl’s theorem is equivalent to Browder’s theorem for every T ∈ <(H).
Now, Theorem 3.3 can be viewed as a corollary to Theorem 3.1.

Corollary 4.4. Let T ∈ <(H). Then:

(i) generalized Weyl’s theorem is equivalent to generalized Browder’s theorem

(ii) property (gw) is equivalent to property (gb).

Remark 4.5. By above corollary and Theorem 3.2, we get that every T ∈ <(H)
satisfies generalized Browder’s theorem.

5. Conclusion

To summarize, we use the abbreviations gW, W, (gw) and (w) to signify that an
operator T ∈ <(H) satisfies generalized Weyl’s theorem, Weyl’s theorem, property
(gw), property (w), respectively. Analogous abbreviations aB, gB, B, (gb) and
(b) have been used with respect to a-Browder’s theorem, generalized Browder’s
theorem, Browder’s theorem, property (gb) and property (b), respectively.

The following diagram shows the relations between Weyl-type theorems,
Browder-type theorems and properties for an operator T ∈ <(H). The arrows
signify implications between the theorems and properties. The numbers near the
arrows are references to the results proved in the present paper. We notice that sev-
eral one-sided implications that hold for an operator T ∈ B(H) become equivalences
when we consider T ∈ <(H).

gW (gw)oo ks4.4(ii) +3

²²

(gb) //

²²

gB ks 4.4(i) +3

²²

gW

(w) ks 4.1 +3

²²

(b) // B ks 4.3 +3 W

W aB

OO
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