• Title/Summary/Keyword: k-hyponormal

Search Result 85, Processing Time 0.02 seconds

On Semi-cubically Hyponormal Weighted Shifts with First Two Equal Weights

  • Baek, Seunghwan;Jung, Il Bong;Exner, George R.;Li, Chunji
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.899-910
    • /
    • 2016
  • It is known that a semi-cubically hyponormal weighted shift need not satisfy the flatness property, in which equality of two weights forces all or almost all weights to be equal. So it is a natural question to describe all semi-cubically hyponormal weighted shifts $W_{\alpha}$ with first two weights equal. Let ${\alpha}$ : 1, 1, ${\sqrt{x}}$(${\sqrt{u}}$, ${\sqrt{v}}$, ${\sqrt{w}}$)^ be a backward 3-step extension of a recursively generated weight sequence with 1 < x < u < v < w and let $W_{\alpha}$ be the associated weighted shift. In this paper we characterize completely the semi-cubical hyponormal $W_{\alpha}$ satisfying the additional assumption of the positive determinant coefficient property, which result is parallel to results for quadratic hyponormality.

WHICH WEIGHTED SHIFTS ARE FLAT ?

  • SHEN, HAILONG;LI, CHUNJI
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.5_6
    • /
    • pp.579-590
    • /
    • 2020
  • The flatness property of a unilateral weighted shifts is important to study the gaps between subnormality and hyponormality. In this paper, we first summerize the results on the flatness for some special kinds of a weighted shifts. And then, we consider the flatness property for a local-cubically hyponormal weighted shifts, which was introduced in [2]. Let α : ${\sqrt{\frac{2}{3}}}$, ${\sqrt{\frac{2}{3}}}$, $\{{\sqrt{\frac{n+1}{n+2}}}\}^{\infty}_{n=2}$ and let Wα be the associated weighted shift. We prove that Wα is a local-cubically hyponormal weighted shift Wα of order ${\theta}={\frac{\pi}{4}}$ by numerical calculation.

ON n-TUPLES OF TENSOR PRODUCTS OF p-HYPONORMAL OPERATORS

  • Duggal, B.P.;Jeon, In-Ho
    • The Pure and Applied Mathematics
    • /
    • v.11 no.4
    • /
    • pp.287-292
    • /
    • 2004
  • The operator $A \; {\in} \; L(H_{i})$, the Banach algebra of bounded linear operators on the complex infinite dimensional Hilbert space $\cal H_{i}$, is said to be p-hyponormal if $(A^\ast A)^P \geq (AA^\ast)^p$ for $p\; \in \; (0,1]$. Let (equation omitted) denote the completion of (equation omitted) with respect to some crossnorm. Let $I_{i}$ be the identity operator on $H_{i}$. Letting (equation omitted), where each $A_{i}$ is p-hyponormal, it is proved that the commuting n-tuple T = ($T_1$,..., $T_{n}$) satisfies Bishop's condition ($\beta$) and that if T is Weyl then there exists a non-singular commuting n-tuple S such that T = S + F for some n-tuple F of compact operators.

  • PDF

OPERATORS WITH RANK ONE SELFCOMMUTATORS

  • Lee, Jun Ik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.1
    • /
    • pp.163-168
    • /
    • 2010
  • In this paper it is shown that if [$T^*$,T] is of rank one and ker [$T^*$,T] is invariant for T, then T is quasinormal. Thus, we can know that the hyponormal condition is superfluous in the Morrel's theorem.

JOINT WEAK SUBNORMALITY OF OPERATORS

  • Lee, Jun Ik;Lee, Sang Hoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.287-292
    • /
    • 2008
  • We introduce jointly weak subnormal operators. It is shown that if $T=(T_1,T_2)$ is subnormal then T is weakly subnormal and if f $T=(T_1,T_2)$ is weakly subnormal then T is hyponormal. We discuss the flatness of weak subnormal operators.

  • PDF

ON JOINT WEYL AND BROWDER SPECTRA

  • Kim, Jin-Chun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.53-62
    • /
    • 2000
  • In this paper we explore relations between joint Weyl and Browder spectra. Also, we give a spectral characterization of the Taylor-Browder spectrum for special classes of doubly commuting n-tuples of operators and then give a partial answer to Duggal's question.

  • PDF

ESSENTIAL SPECTRA OF ${\omega}-HYPONORMAL$ OPERATORS

  • Cha, Hyung-Koo;Kim, Jae-Hee;Lee, Kwang-Il
    • The Pure and Applied Mathematics
    • /
    • v.10 no.4
    • /
    • pp.217-223
    • /
    • 2003
  • Let $\cal{K}$ be the extension Hilbert space of a Hilbert space $\cal{H}$ and let $\Phi$ be the faithful $\ast$-representation of $\cal{B}(\cal{H})$ on $\cal{k}$. In this paper, we show that if T is an irreducible ${\omega}-hyponormal$ operators such that $ker(T)\;{\subset}\;ker(T^{*})$ and $T^{*}T\;-\;TT^{\ast}$ is compact, then $\sigma_{e}(T)\;=\;\sigma_{e}(\Phi(T))$.

  • PDF