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JOINT WEAK SUBNORMALITY OF OPERATORS

Jun Ik Lee* and Sang Hoon Lee**

Abstract. We introduce jointly weak subnormal operators. It is
shown that if T = (T1, T2) is subnormal then T is weakly subnormal
and if f T = (T1, T2) is weakly subnormal then T is hyponormal.
We discuss the flatness of weak subnormal operators.

1. Introduction

Let H be a complex Hilbert space and let B(H) denote the algebra
of bounded linear operators on H. An operator T ∈ B(H) is said to
be normal if T ∗T = TT ∗, hyponormal if T ∗T ≥ TT ∗ and subnormal if
T = N |H, where N is normal on some Hilbert space K ⊇ H. Thus the
operator T is subnormal if and only if there exist operators A and B

such that T̂ :=
(

T A
0 B

)
is normal, i.e.,

(1.1)


[T ∗, T ] := T ∗T − TT ∗ = AA∗

A∗T = BA∗

[B∗, B] + A∗A = 0.

An operator T ∈ B(H) is said to be weakly subnormal ([5]) if there
exist operators A ∈ B(H,H′) and B ∈ B(H′) such that the first two
conditions in (1.1) hold: [T ∗, T ] := T ∗T −TT ∗ = AA∗ and A∗T = BA∗,
or equivalently, there is an extension T̂ of T such that

(1.2) T̂ ∗T̂ f = T̂ T̂ ∗f for all f ∈ H.
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The operator T̂ is said to be a partially normal extension (briefly, p.n.e.)
of T . Note that the condition (1.2) implies ||T̂ f || = ||T̂ ∗f || for all f ∈ H,
and that if (1.2) holds for all f ∈ H⊕H′, then T̂ becomes normal, so T is
in that case subnormal. We also say that T̂ ∈ B(K) is a minimal partially
normal extension (briefly, m.p.n.e.) of a weakly subnormal operator T if
K has no proper subspace containing H to which the restriction of T̂ is
also a partially normal extension of T . It is known ([5, Lemma 2.5]) that
if T̂ is a partially normal extension of T ∈ B(H) on K then T̂ is minimal
if and only if K =

∨
{T̂ ∗kh : h ∈ H, k = 0, 1}. Clearly, subnormal =⇒

weakly subnormal =⇒ hyponormal; however, the converses are not true
in general (cf. [5]).

2. Weak subnormality

For S, T ∈ B(H), let [S, T ] := ST −TS. We say that an n-tuple T =
(T1, · · · , Tn) of operators on H is (jointly) hyponormal if the operator
matrix

[T∗,T] :=


[T ∗

1 , T1] [T ∗
2 , T1] · · · [T ∗

n , T1]
[T ∗

1 , T2] [T ∗
2 , T2] · · · [T ∗

n , T2]
...

...
. . .

...
[T ∗

1 , Tn] [T ∗
2 , Tn] · · · [T ∗

n , Tn]


is positive on the direct sum of n copies of H (cf. [1], [6]). The n-tuple
T is said to be normal if T is commuting and each Ti is normal, and
T is subnormal if T is the restriction of a normal n-tuple to a common
invariant subspace. Clearly, normal ⇒ subnormal ⇒ hyponormal. But
the converses are not true in general. We now introduce:

Definition 2.1. An n-tuple T = (T1, · · · , Tn) of operators on H is
said to be jointly weak subnormal if each Ti is weakly subnormal and
has a doubly commuting partially normal extension.

If T = (T1, · · · , Tn) is weakly subnormal, then there exist T̂ =
(T̂1, · · · , T̂n) such that (i) T̂iT̂j = T̂jT̂i, (ii) T̂iT̂j

∗
= T̂j

∗
T̂i, (iii) T̂i =

p.n.e(Ti) for each i, j. We then have:

Theorem 2.2. (i) If T = (T1, T2) is subnormal, then T is weakly
subnormal.

(ii) If T = (T1, T2) is weakly subnormal, then T is hyponormal.
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Proof. (i) If T is subnormal, then there is a commuting normal ex-
tension of T. By Fuglede’s Theorem, it clearly is a double commuting
extension. For (ii), observe that

[T∗,T] =
(

[T ∗
1 , T1] [T ∗

2 , T1]
[T ∗

1 , T2] [T ∗
2 , T2]

)
=

(
A1A

∗
1 A1A

∗
2

A2A
∗
1 A2A

∗
2

)
,

where T̂i :=
(

Ti Ai

0 Bi

)
is a p.n.e of Ti for i = 1, 2. By [5], we can

take A1 := [T ∗
1 , T1]

1
2 . Using Smul’jan’s theorem ([9]) which stats that if

A ≥ 0 and B = A
1
2 V, then

(
A B
B∗ C

)
≥ 0 ⇔ C ≥ V ∗V , we can see

that [T∗,T] ≥ 0.

A tuple T = (T1, · · · , Tn) is said to be jointly quasinormal if Ti com-
mutes with T ∗

j Tj for all i, j ([7]), which is equivalent to requiring that the
different parts of the polar decompositions of the individual operators
to all commute. Observe that [T∗,T]T = 0 for quasinormal operator T,
and hence Ker[T∗,T] is invariant for T. For a single weakly subnormal
operator, the same property hold ([5]).

3. Flatness

If A = A∗ ∈ B(H1), then an operator matrix (whose entries have
possibly infinite-matrix representations)

Ã =
(

A B
B∗ C

)
: H1 ⊕H2 −→ H1 ⊕H2

is called an extension of A. If A is of finite rank, we refer to a rank-
preserving extension Ã of A as a flat extension of A. It is known ([CF2])
that if A is of finite rank and A ≥ 0, then Ã is a flat extension of A if
and only if Ã is of the form

Ã =
(

A AV
V ∗A V ∗AV

)
for an operator V : H2 −→ H1. Moreover Ã is positive whenever A is
positive. We shall introduce the notion of flatness for a pair of operators.

Definition 3.1. Let T = (T1, T2) be a pair of operators on H. Then
we shall say that T is a flat pair if [T∗,T] is flat relative to [T ∗

1 , T1] or
[T ∗

2 , T2].

Remark 3.2. ([4]) The following facts are evident from the definition.
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(i) Flatness of (T1, T2) is not affected by permuting the operators Ti.
(ii) If (T1, T2) is flat, then so is (λ1T1, λ2T2) for every λ1, λ2 ∈ C.
(iii) If (T1, T2) is flat, then so is (T1−λ1I, T2−λ2I) for every λ1, λ2 ∈ C.
(iv) If S ∈ B(H) is hyponormal with finite-rank self-commutator then

(µ1S − µ2I, λ1S − λ2I) is flat for every µ1, µ2, λ1, λ2 ∈ C.
(v) If T1 or T2 is hyponormal and if (T1, T2) is flat, then (T1, T2) is

hyponormal.

Proposition 3.3. (cf. [4]) Let A ≥ 0 be of finite rank. Then

Ã =
(

A B
B∗ C

)
is flat if and only if R(B) ⊆ R(A) and C = B∗A#B,

where A# is the Moore-Penrose inverse of A, in the sense that AA#A =
A,A#AA# = A#, (A#A)# = A#A, and (AA#)# = AA#.

Proof. Write A =
(

A0 0
0 0

)
: R(A)⊕N(A) −→ R(A)⊕N(A), where

A0 is invertible. Then A# =
(

A−1
0 0
0 0

)
. If Ã is flat, it follows from

[Smu] that there exists V : H2 −→ R(A) such that B = AV. Since
R(V ) ⊆ R(A), V is uniquely determined by V = A#B, so C = V ∗AV =
B∗A#∗

AA#B = B∗A#B. The converse is trivial.(cf. [4, Lemma1.2]).

Corollary 3.4. If T = (T1, T2) is a hyponormal pair and if [T ∗
1 , T1] is

of finite rank, then T is flat if and only if [T ∗
2 , T2] = [T ∗

1 , T2][T ∗
1 , T1]#[T ∗

2 , T1].

Proof. This follows from Proposition 3.3.

Theorem 3.5. Every weakly subnormal pair T = (T1, T2) satisfying
the inclusion R([T ∗

2 , T2]) ⊆ R([T ∗
1 , T1]) and rank [T ∗

1 , T1] < ∞ is flat.

Proof. Let T̂i :=
(

Ti Ai

0 Bi

)
be a p.n.e of Ti for i = 1, 2. Then

[T∗,T] =
(

[T ∗
1 , T1] [T ∗

2 , T1]
[T ∗

1 , T2] [T ∗
2 , T2]

)
=

(
A1A

∗
1 A1A

∗
2

A2A
∗
1 A2A

∗
2

)
.

Since R([T ∗
2 , T2]) ⊆ R([T ∗

1 , T1]), it follows that R(A2) ⊆ R(A1) and
rank(A2A

∗
2) ≤ rank(A1A

∗
1) < ∞. Since A1A

∗
1 is of finite rank, A1A

∗
1

has Moore-Penrose inverse (A1A
∗
1)

#, and hence so have both A1 and A∗
1.

Moreover, (A1A
∗
1)

# = (A#
1 )∗A#

1 . Since (A#
1 A1)∗ = A#

1 A1, it follows
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that

(A2A
∗
1)(A1A

∗
1)

#(A1A
∗
2) = A2(A∗

1A
#∗
1 )(A#

1 A1)A∗
2

= A2(A
#
1 A1A

#
1 A1)A∗

2

= A2(A
#
1 A1)A∗

2.

Since we can take A1 := [T ∗
1 , T1]

1
2 and A2 := [T ∗

2 , T2]
1
2 by [5], we have

R(A∗
2) ⊆ R(A∗

1). Since A#
1 A1 is the projection onto R(A∗

1), it follows
that A2(A

#
1 A1)A∗

2 = A2A
∗
2, which implies that

[T ∗
2 , T2] = [T ∗

1 , T2][T ∗
1 , T1]#[T ∗

2 , T1].

Therefore by Corollary 3.4, T = (T1, T2) is flat.
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