JOINT WEAK SUBNORMALITY OF OPERATORS

Jun Ik Lee* and Sang Hoon Lee**

Abstract

We introduce jointly weak subnormal operators. It is shown that if $\mathbf{T}=\left(T_{1}, T_{2}\right)$ is subnormal then \mathbf{T} is weakly subnormal and if $\mathrm{f} \mathbf{T}=\left(T_{1}, T_{2}\right)$ is weakly subnormal then \mathbf{T} is hyponormal. We discuss the flatness of weak subnormal operators.

1. Introduction

Let \mathcal{H} be a complex Hilbert space and let $\mathcal{B}(\mathcal{H})$ denote the algebra of bounded linear operators on \mathcal{H}. An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be normal if $T^{*} T=T T^{*}$, hyponormal if $T^{*} T \geq T T^{*}$ and subnormal if $T=\left.N\right|_{\mathcal{H}}$, where N is normal on some Hilbert space $\mathcal{K} \supseteq \mathcal{H}$. Thus the operator T is subnormal if and only if there exist operators A and B such that $\widehat{T}:=\left(\begin{array}{cc}T & A \\ 0 & B\end{array}\right)$ is normal, i.e.,

$$
\left\{\begin{array}{l}
{\left[T^{*}, T\right]:=T^{*} T-T T^{*}=A A^{*}} \tag{1.1}\\
A^{*} T=B A^{*} \\
{\left[B^{*}, B\right]+A^{*} A=0}
\end{array}\right.
$$

An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be weakly subnormal ([5]) if there exist operators $A \in \mathcal{B}\left(\mathcal{H}, \mathcal{H}^{\prime}\right)$ and $B \in \mathcal{B}\left(\mathcal{H}^{\prime}\right)$ such that the first two conditions in (1.1) hold: $\left[T^{*}, T\right]:=T^{*} T-T T^{*}=A A^{*}$ and $A^{*} T=B A^{*}$, or equivalently, there is an extension \widehat{T} of T such that

$$
\begin{equation*}
\widehat{T}^{*} \widehat{T} f=\widehat{T} \widehat{T}^{*} f \quad \text { for all } \quad f \in \mathcal{H} \tag{1.2}
\end{equation*}
$$

[^0]The operator \widehat{T} is said to be a partially normal extension (briefly, p.n.e.) of T. Note that the condition (1.2) implies $\|\widehat{T} f\|=\left\|\widehat{T}^{*} f\right\|$ for all $f \in \mathcal{H}$, and that if (1.2) holds for all $f \in \mathcal{H} \oplus \mathcal{H}^{\prime}$, then \widehat{T} becomes normal, so T is in that case subnormal. We also say that $\widehat{T} \in \mathcal{B}(\mathcal{K})$ is a minimal partially normal extension (briefly, m.p.n.e.) of a weakly subnormal operator T if \mathcal{K} has no proper subspace containing \mathcal{H} to which the restriction of \widehat{T} is also a partially normal extension of T. It is known ([5, Lemma 2.5]) that if \widehat{T} is a partially normal extension of $T \in \mathcal{B}(\mathcal{H})$ on \mathcal{K} then \widehat{T} is minimal if and only if $\mathcal{K}=\bigvee\left\{\widehat{T}^{* k} h: h \in \mathcal{H}, \quad k=0,1\right\}$. Clearly, subnormal \Longrightarrow weakly subnormal \Longrightarrow hyponormal; however, the converses are not true in general (cf. [5]).

2. Weak subnormality

For $S, T \in \mathcal{B}(\mathcal{H})$, let $[S, T]:=S T-T S$. We say that an n-tuple $\mathbf{T}=$ $\left(T_{1}, \cdots, T_{n}\right)$ of operators on \mathcal{H} is (jointly) hyponormal if the operator matrix

$$
\left[\mathbf{T}^{*}, \mathbf{T}\right]:=\left(\begin{array}{cccc}
{\left[T_{1}^{*}, T_{1}\right]} & {\left[T_{2}^{*}, T_{1}\right]} & \cdots & {\left[T_{n}^{*}, T_{1}\right]} \\
{\left[T_{1}^{*}, T_{2}\right]} & {\left[T_{2}^{*}, T_{2}\right]} & \cdots & {\left[T_{n}^{*}, T_{2}\right]} \\
\vdots & \vdots & \ddots & \vdots \\
{\left[T_{1}^{*}, T_{n}\right]} & {\left[T_{2}^{*}, T_{n}\right]} & \cdots & {\left[T_{n}^{*}, T_{n}\right]}
\end{array}\right)
$$

is positive on the direct sum of n copies of \mathcal{H} (cf. [1], [6]). The n-tuple \mathbf{T} is said to be normal if \mathbf{T} is commuting and each T_{i} is normal, and \mathbf{T} is subnormal if \mathbf{T} is the restriction of a normal n-tuple to a common invariant subspace. Clearly, normal \Rightarrow subnormal \Rightarrow hyponormal. But the converses are not true in general. We now introduce:

Definition 2.1. An n-tuple $\mathbf{T}=\left(T_{1}, \cdots, T_{n}\right)$ of operators on \mathcal{H} is said to be jointly weak subnormal if each T_{i} is weakly subnormal and has a doubly commuting partially normal extension.

If $\mathbf{T}=\left(T_{1}, \cdots, T_{n}\right)$ is weakly subnormal, then there exist $\widehat{\mathbf{T}}=$ $\left(\widehat{T_{1}}, \cdots, \widehat{T_{n}}\right)$ such that (i) $\widehat{T}_{i} \widehat{T}_{j}=\widehat{T}_{j} \widehat{T}_{i}$, (ii) $\widehat{T}_{i} \widehat{T}_{j}^{*}=\widehat{T}_{j}^{*} \widehat{T}_{i}$, (iii) $\widehat{T}_{i}=$ p.n.e $\left(T_{i}\right)$ for each i, j. We then have:

Theorem 2.2. (i) If $\mathbf{T}=\left(T_{1}, T_{2}\right)$ is subnormal, then \mathbf{T} is weakly subnormal.
(ii) If $\mathbf{T}=\left(T_{1}, T_{2}\right)$ is weakly subnormal, then \mathbf{T} is hyponormal.

Proof. (i) If T is subnormal, then there is a commuting normal extension of T. By Fuglede's Theorem, it clearly is a double commuting extension. For (ii), observe that

$$
\left[\mathbf{T}^{*}, \mathbf{T}\right]=\left(\begin{array}{cc}
{\left[T_{1}^{*}, T_{1}\right]} & {\left[T_{2}^{*}, T_{1}\right]} \\
{\left[T_{1}^{*}, T_{2}\right]} & {\left[T_{2}^{*}, T_{2}\right]}
\end{array}\right)=\left(\begin{array}{cc}
A_{1} A_{1}^{*} & A_{1} A_{2}^{*} \\
A_{2} A_{1}^{*} & A_{2} A_{2}^{*}
\end{array}\right)
$$

where $\widehat{T}_{i}:=\left(\begin{array}{cc}T_{i} & A_{i} \\ 0 & B_{i}\end{array}\right)$ is a p.n.e of T_{i} for $i=1,2$. By [5], we can take $A_{1}:=\left[T_{1}^{*}, T_{1}\right]^{\frac{1}{2}}$. Using Smul'jan's theorem ([9]) which stats that if $A \geq 0$ and $B=A^{\frac{1}{2}} V$, then $\left(\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right) \geq 0 \Leftrightarrow C \geq V^{*} V$, we can see that $\left[\mathbf{T}^{*}, \mathbf{T}\right] \geq 0$.

A tuple $\mathbf{T}=\left(T_{1}, \cdots, T_{n}\right)$ is said to be jointly quasinormal if T_{i} commutes with $T_{j}^{*} T_{j}$ for all $i, j([7])$, which is equivalent to requiring that the different parts of the polar decompositions of the individual operators to all commute. Observe that $\left[\mathbf{T}^{*}, \mathbf{T}\right] \mathbf{T}=0$ for quasinormal operator \mathbf{T}, and hence $\operatorname{Ker}\left[\mathbf{T}^{*}, \mathbf{T}\right]$ is invariant for \mathbf{T}. For a single weakly subnormal operator, the same property hold ([5]).

3. Flatness

If $A=A^{*} \in \mathcal{B}\left(\mathcal{H}_{1}\right)$, then an operator matrix (whose entries have possibly infinite-matrix representations)

$$
\widetilde{A}=\left(\begin{array}{cc}
A & B \\
B^{*} & C
\end{array}\right): \mathcal{H}_{1} \oplus \mathcal{H}_{2} \longrightarrow \mathcal{H}_{1} \oplus \mathcal{H}_{2}
$$

is called an extension of A. If A is of finite rank, we refer to a rankpreserving extension \widetilde{A} of A as a flat extension of A. It is known ([CF2]) that if A is of finite rank and $A \geq 0$, then \widetilde{A} is a flat extension of A if and only if \widetilde{A} is of the form

$$
\widetilde{A}=\left(\begin{array}{cc}
A & A V \\
V^{*} A & V^{*} A V
\end{array}\right)
$$

for an operator $V: \mathcal{H}_{2} \longrightarrow \mathcal{H}_{1}$. Moreover \widetilde{A} is positive whenever A is positive. We shall introduce the notion of flatness for a pair of operators.

Definition 3.1. Let $\mathbf{T}=\left(T_{1}, T_{2}\right)$ be a pair of operators on \mathcal{H}. Then we shall say that \mathbf{T} is a flat pair if $\left[\mathbf{T}^{*}, \mathbf{T}\right]$ is flat relative to $\left[T_{1}^{*}, T_{1}\right]$ or $\left[T_{2}^{*}, T_{2}\right]$.

Remark 3.2. ([4]) The following facts are evident from the definition.
(i) Flatness of $\left(T_{1}, T_{2}\right)$ is not affected by permuting the operators T_{i}.
(ii) If $\left(T_{1}, T_{2}\right)$ is flat, then so is $\left(\lambda_{1} T_{1}, \lambda_{2} T_{2}\right)$ for every $\lambda_{1}, \lambda_{2} \in \mathbb{C}$.
(iii) If (T_{1}, T_{2}) is flat, then so is ($\left.T_{1}-\lambda_{1} I, T_{2}-\lambda_{2} I\right)$ for every $\lambda_{1}, \lambda_{2} \in \mathbb{C}$.
(iv) If $S \in \mathcal{B}(\mathcal{H})$ is hyponormal with finite-rank self-commutator then $\left(\mu_{1} S-\mu_{2} I, \lambda_{1} S-\lambda_{2} I\right)$ is flat for every $\mu_{1}, \mu_{2}, \lambda_{1}, \lambda_{2} \in \mathbb{C}$.
(v) If T_{1} or T_{2} is hyponormal and if (T_{1}, T_{2}) is flat, then $\left(T_{1}, T_{2}\right)$ is hyponormal.

Proposition 3.3. (cf. [4]) Let $A \geq 0$ be of finite rank. Then $\widetilde{A}=\left(\begin{array}{cc}A & B \\ B^{*} & C\end{array}\right)$ is flat if and only if $R(B) \subseteq R(A)$ and $C=B^{*} A^{\#} B$, where $A^{\#}$ is the Moore-Penrose inverse of A, in the sense that $A A^{\#} A=$ $A, A^{\#} A A^{\#}=A^{\#},\left(A^{\#} A\right)^{\#}=A^{\#} A$, and $\left(A A^{\#}\right)^{\#}=A A^{\#}$.

Proof. Write $A=\left(\begin{array}{cc}A_{0} & 0 \\ 0 & 0\end{array}\right): R(A) \oplus N(A) \longrightarrow R(A) \oplus N(A)$, where A_{0} is invertible. Then $A^{\#}=\left(\begin{array}{cc}A_{0}^{-1} & 0 \\ 0 & 0\end{array}\right)$. If \widetilde{A} is flat, it follows from [Smu] that there exists $V: \mathcal{H}_{2} \longrightarrow R(A)$ such that $B=A V$. Since $R(V) \subseteq R(A), V$ is uniquely determined by $V=A^{\#} B$, so $C=V^{*} A V=$ $B^{*} A^{\#^{*}} A A^{\#} B=B^{*} A^{\#} B$. The converse is trivial.(cf. [4, Lemma1.2]).

Corollary 3.4. If $\mathbf{T}=\left(T_{1}, T_{2}\right)$ is a hyponormal pair and if $\left[T_{1}^{*}, T_{1}\right]$ is of finite rank, then \mathbf{T} is flat if and only if $\left[T_{2}^{*}, T_{2}\right]=\left[T_{1}^{*}, T_{2}\right]\left[T_{1}^{*}, T_{1}\right] \#\left[T_{2}^{*}, T_{1}\right]$.

Proof. This follows from Proposition 3.3.
Theorem 3.5. Every weakly subnormal pair $\mathbf{T}=\left(T_{1}, T_{2}\right)$ satisfying the inclusion $R\left(\left[T_{2}^{*}, T_{2}\right]\right) \subseteq R\left(\left[T_{1}^{*}, T_{1}\right]\right)$ and $\operatorname{rank}\left[T_{1}^{*}, T_{1}\right]<\infty$ is flat.

Proof. Let $\widehat{T}_{i}:=\left(\begin{array}{cc}T_{i} & A_{i} \\ 0 & B_{i}\end{array}\right)$ be a p.n.e of T_{i} for $i=1,2$. Then

$$
\left[\mathbf{T}^{*}, \mathbf{T}\right]=\left(\begin{array}{cc}
{\left[T_{1}^{*}, T_{1}\right]} & {\left[T_{2}^{*}, T_{1}\right]} \\
{\left[T_{1}^{*}, T_{2}\right]} & {\left[T_{2}^{*}, T_{2}\right]}
\end{array}\right)=\left(\begin{array}{cc}
A_{1} A_{1}^{*} & A_{1} A_{2}^{*} \\
A_{2} A_{1}^{*} & A_{2} A_{2}^{*}
\end{array}\right) .
$$

Since $R\left(\left[T_{2}^{*}, T_{2}\right]\right) \subseteq R\left(\left[T_{1}^{*}, T_{1}\right]\right)$, it follows that $R\left(A_{2}\right) \subseteq R\left(A_{1}\right)$ and $\operatorname{rank}\left(A_{2} A_{2}^{*}\right) \leq \operatorname{rank}\left(A_{1} A_{1}^{*}\right)<\infty$. Since $A_{1} A_{1}^{*}$ is of finite rank, $A_{1} A_{1}^{*}$ has Moore-Penrose inverse $\left(A_{1} A_{1}^{*}\right)^{\#}$, and hence so have both A_{1} and A_{1}^{*}. Moreover, $\left(A_{1} A_{1}^{*}\right)^{\#}=\left(A_{1}^{\#}\right)^{*} A_{1}^{\#}$. Since $\left(A_{1}^{\#} A_{1}\right)^{*}=A_{1}^{\#} A_{1}$, it follows
that

$$
\begin{aligned}
\left(A_{2} A_{1}^{*}\right)\left(A_{1} A_{1}^{*}\right)^{\#}\left(A_{1} A_{2}^{*}\right) & =A_{2}\left(A_{1}^{*} A_{1}^{\# *}\right)\left(A_{1}^{\#} A_{1}\right) A_{2}^{*} \\
& =A_{2}\left(A_{1}^{\#} A_{1} A_{1}^{\#} A_{1}\right) A_{2}^{*} \\
& =A_{2}\left(A_{1}^{\#} A_{1}\right) A_{2}^{*}
\end{aligned}
$$

Since we can take $A_{1}:=\left[T_{1}^{*}, T_{1}\right]^{\frac{1}{2}}$ and $A_{2}:=\left[T_{2}^{*}, T_{2}\right]^{\frac{1}{2}}$ by [5], we have $R\left(A_{2}^{*}\right) \subseteq R\left(A_{1}^{*}\right)$. Since $A_{1}^{\#} A_{1}$ is the projection onto $R\left(A_{1}^{*}\right)$, it follows that $A_{2}\left(A_{1}^{\#} A_{1}\right) A_{2}^{*}=A_{2} A_{2}^{*}$, which implies that

$$
\left[T_{2}^{*}, T_{2}\right]=\left[T_{1}^{*}, T_{2}\right]\left[T_{1}^{*}, T_{1}\right]^{\#}\left[T_{2}^{*}, T_{1}\right]
$$

Therefore by Corollary 3.4, $\mathbf{T}=\left(T_{1}, T_{2}\right)$ is flat.

References

[1] A. Athavale, On joint hyponormality of operators, Proc. Amer. Math. Soc. 103 (1988), 417-423.
[2] J. Bram, Subnormal operators, Duke Math. J. 22 (1955), 75-94. MR 16:835a
[3] J. Conway, The Theory of Subnormal Operators, Mathematical Surveys and Monographs, vol. 36, Amer. Math. Soc., Providence, 1991.
[4] R. Curto and W.Y. Lee, Joint hyponormality of Toeplitz pairs, Mem. Amer. Math. Soc., Providence, 2001.
[5] R. Curto and W.Y. Lee, Towards a model theory for 2 -hyponormal operators, Integral Equations Operator Theory 44 (2002), 290-315.
[6] R. Curto, P. Muhly and J. Xia, Hyponormal pairs of commuting operators, Operator Theory: Adv. Appl. 35 (1988), 1-22.
[7] A.R. Lubin, Weighted shifts and commuting normal extension, J. Austral. Math. Soc. Ser. A 27 (1979), 17-26.
[8] V. Paulsen, Completely bounded maps and dilations, Pitmam Research Notes in Mathematics Series 146, Longman Sci. Tech., New York, 1986. MR 88h:46111
[9] Ju. L. Smul'jan, An operator Hellinger integral, Mat. Sb. (N.S.) 49 (1959), 381-430 (in Russian).
*
Department of Mathematics Education
Sangmyung University
Seoul 110-743, Republic of Korea
E-mail: jilee@smu.ac.kr
**
Department of Mathematics
Chungnam National University
Daejeon 305-764, Republic of Korea
E-mail: shlee@math.cnu.ac.kr

[^0]: Received May 07, 2008; Accepted May 23, 2008.
 2000 Mathematics Subject Classification: Primary 47B20, 47B37, 47A13, 28A50; Secondary 44A60, 47-04, 47A20.

 Key words and phrases: jointly hyponormal pairs, subnormal pairs, weak subnormal pair, flatness.

 This work was supported by research fund of Chungnam National University in 2007.

