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WHICH WEIGHTED SHIFTS ARE FLAT ?

HAILONG SHEN AND CHUNJI LI∗

Abstract. The flatness property of a unilateral weighted shifts is impor-

tant to study the gaps between subnormality and hyponormality. In this
paper, we first summerize the results on the flatness for some special kinds

of a weighted shifts. And then, we consider the flatness property for a

local-cubically hyponormal weighted shifts, which was introduced in [2].

Let α :
√
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3
,
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,
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n=2

and let Wα be the associated weighted

shift. We prove that Wα is a local-cubically hyponormal weighted shift

Wα of order θ = π
4

by numerical calculation.
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1. Introduction and preliminaries

Let H be a separable, infinite dimensional, complex Hilbert space and let
B(H) denote the algebra of all bounded linear operators on H. An operator
T ∈ B(H) is said to be normal if T ∗T = TT ∗, hyponormal if T ∗T ≥ TT ∗, and
subnormal if there exists a normal operator N on some Hilbert space K ⊇ H
such that T = N |H. To discuss gaps between hyponormality and subnormality,
several classes of operators have been introduced, for example, k-hyponormal
and weakly k-hyponormal operators (cf. [4]), whose definitions will be given
below. An n-tuple (T1, · · · , Tn) of operators on B(H) is hyponormal if the oper-
ator matrix ([T ∗j , Ti])

n
i,j=1 is positive on the direct sum of n copies of H, where

[X,Y ] = XY − Y X for X,Y ∈ B(H). An n-tuple (T1, · · · , Tn) is weakly hy-
ponormal if λ1T1 + · · · + λnTn is hyponormal for every λi ∈ C, i = 1, · · · , n,
where C is the set of complex numbers. An operator T ∈ B(H) is said to be
polynomially hyponormal if p (T ) is hyponormal for all complex polynomials p.
For a positive integer k ≥ 1 and T ∈ B(H), T is k-hyponormal if (I, T, · · · , T k) is
hyponormal. An operator T ∈ B(H) is weakly k-hyponormal if (T, T 2, · · · , T k)
is weakly hyponormal. It is well known that subnormal ⇒ k-hyponormal ⇒
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weakly k-hyponormal, for every k ≥ 1. In particular, weak 2- and weak 3-
hyponormality are often referred to as quadratic- and cubic-hyponormality ([6],
[7], [10], [11], [12]). In [9], the classes of semi-weakly k-hyponormal operators
have been studied in an attempt to bridge the gap between subnormality and
hyponormality. An operator T ∈ B(H) is called semi-weakly k-hyponormal if
T +sT k is hyponormal for all s ∈ C. It is trivial that semi-weak 2-hyponormality
is equivalent to weak 2-hyponormality. In particular, T is said to be completely
semi-weakly hyponormal if is semi-weakly k-hyponormal for all k ≥ 2. The fol-
lowings are the relations of all above operators.

subnormal
⇒
: poly. hypo ⇒ completely semi-weakly hypo

⇓ ⇓
...

...
⇓ ⇓

n-hypo ⇒ weakly n-hypo ⇒ semi-weakly n-hypo
⇓ ⇓
...

...
⇓ ⇓

3-hypo ⇒ cub. hypo ⇒ semi-weakly 3-hypo
⇓ ⇓ /

2-hypo ⇒ quad. hypo ⇔ semi-weakly 2-hypo
⇓ ⇓ ⇓

hypo hypo hypo

In [8], Curto-Putinar proved that there exists an operator that is polynomially
hyponormal but not 2-hyponormal. This solved a long standing open problem
(cf. [8]): “if T ∈ B(H) is polynomially hyponormal, must T be subnormal ?”
Although the existence of a weighted shift which is polynomially hyponormal
but not subnormal was established in [8], concrete examples of such weighted
shifts have not yet been found.

Let α = {αi}∞i=0 be a bounded weight sequence in the set R+ of the positive
real numbers. The weighted shift Wα acting on `2 (N0) , with an orthonormal
basis {ei}∞i=0, is defined by Wαej = αjej+1 for all j ∈ N0 := N ∪ {0}. The
weighted shifts have played a fundamental role in studying properties of weak
subnormality. Indeed the flatness of weighted shift operators makes an impor-
tant role to detect the structure of k-hyponormality and weak k-hyponormality
of weighted shifts ([1], [3], [5], [6], [7], etc.).

We say that Wα is flat, if α0 ≤ α1 = α2 = · · · . In particular, if α0 = α1 =
α2 = α3 = · · · , we say Wα is completely flat. Obviously, if Wα is flat, then Wα

is subnormal. Thus, we must avoid the flatness of the weighted shift Wα to solve
the above problem.

Suppose:
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(I) α0 = α1;
(II) αn = αn+1, for some n ∈ N.
Then we have the following well-known results on the flatness.

• Under condition (I), if Wα is subnormal, then Wα is completely flat
([15]).

• Under condition (II), if Wα is subnormal, then Wα is flat ([15]).
• Under condition (I), if Wα is 2-hyponormal, then Wα is completely flat

([5]).
• Under condition (II), if Wα is 2-hyponormal, then Wα is flat ([5]).
• Under condition (I), if Wα is quadratically hyponormal, then Wα is not

flat. It is well known that the associated weighted shift Wα with a weight
sequence α :

√
2/3,

√
2/3,

√
(k + 1)/(k + 2) (k ≥ 2) is quadratically

hyponormal ([5]).
• Under condition (II), if Wα is quadratically hyponormal, then Wα is flat

([3]).
• Under condition (I), if Wα is semi-weakly 3-hyponormal, then Wα is

not flat. It is well known that the associated weighted shift Wα with
a weight sequence α :

√
2/3,

√
2/3,

√
(k + 1)/(k + 2) (k ≥ 2) is semi-

weakly 3-hyponormal ([9]).
• Under condition (II), if Wα is semi-weakly 3-hyponormal, then Wα is

flat ([9]).
• Under condition (I), if Wα is cubically hyponormal, then Wα is com-

pletely flat ([9]).
• Under condition (II), if Wα is cubically hyponormal, then Wα is flat

(Trivial).

In [2], the authors introduced a local-cubically hyponormal weighted shift of
order θ with 0 ≤ θ ≤ π

2 , which is a new notion of operators between cubic
hyponormality and quadratic hyponormality and showed that a local-cubically
hyponormal weighted shift Wα with first three equal weights of order θ ∈

(
0, π2

)
satisfies the flatness property ([2, Th. 4.2]). In [13, Th. 3.3], the author improved
this result that a local-cubically hyponormal weighted shift Wα with two (except
first two) equal weights of order θ ∈

(
0, π2

)
satisfies the flatness property. Under

condition (I), if Wα is local-cubically hyponormal, is Wα completely flat or not
? In this article, we consider a problem that suggested in [2, Prob. 3.4] as
following:

Problem 1.1. Let α :
√

2
3 ,
√

2
3 ,
{√

n+1
n+2

}∞
n=2

and let Wα be the associated

weighted shift. For arbitrary θ ∈ (0, π2 ), is it true that Wα is not a local-cubically
hyponormal weighted shift of order θ?

The authors in [2, Prob. 3.4] showed that there exists a subinterval J of(
0, π2

)
such that, for any θ ∈ J, Wα can not be local-cubically hyponormal of

order θ. In particular, they found θ = 9π
200 ∈ J. In this paper, we prove that Wα
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is a local-cubically hyponormal weighted shift Wα of order θ = π
4 by numerical

calculation.
This paper consists of four sections. In Section 2, we introduce the local cubic

hyponormal weighted shifts of order θ. In Section 3 we answer Problem 1.1. In
Section 4, we show the detail calculations of some pentadiagonal matrices that
support our results.

2. The local-cubically hyponormal weighted shifts of order θ

Definition 2.1. ([2]) Let α = {αi}∞i=0 be a sequence of positive real numbers
and let Wα be the associated weighted shift with a sequence α. For θ ∈ [0, π2 ],
a weighted shift Wα is called a local-cubically hyponormal of order θ if Wα +
s(cos θ)W 2

α + s(sin θ)W 3
α is hyponormal for all s ∈ C, i.e.,[(

Wα + s cos θW 2
α + s sin θW 3

α

)∗
,Wα + s cos θW 2

α + s sin θW 3
α

]
≥ 0, s ∈ C.

It is easy to know that Wα is local-cubically hyponormal of order 0 if and
only if it is quadratically hyponormal; and Wα is local-cubically hyponormal of
order π

2 if and only if it is semi-cubically hyponormal.

Let Pn denote the orthogonal projection onto ∨ni=0{ei}. For n ≥ 0 and s ∈ C
and θ ∈

(
0, π2

)
, define

Dn := Dn(s, θ) ≡ Pn
[(
Wα + sW 2

α + s tan θW 3
α

)∗
,Wα + sW 2

α + s tan θW 3
α

]
Pn

=



q0 r0 z0 0 0 0
r0 q1 r1 z1 0 0
z0 r1 q2 r2 z2 0

0 z1 r2 q3 r3 z3
. . .

. . .
. . .

. . .
. . .

. . .
. . . 0

. . .
. . .

. . .
. . .

. . . zn−2

. . .
. . .

. . .
. . . rn−1

0 zn−2 rn−1 qn


where 

qn := α2
n − α2

n−1 + (α2
nα

2
n+1 − α2

n−2α
2
n−1)|s|2

+(α2
nα

2
n+1α

2
n+2 − α2

n−3α
2
n−2α

2
n−1)|s|2∆2,

rn := αn(α2
n+1 − α2

n−1)s+ αn(α2
n+1α

2
n+2 − α2

n−1α
2
n−2)|s|2∆,

zn := αnαn+1(α2
n+2 − α2

n−1)s∆,

with ∆ = tan θ and α−3 = α−2 = α−1 = 0. It is obvious that if Wα is
local-cubically hyponormal of order θ ∈

(
0, π2

)
if and only if Dn(s,∆) ≥ 0 for

every s ∈ C, ∆ ∈ (0,+∞) and n ≥ 0. We consider the determinant for the
pentadiagonal matrix Dn(s,∆), dn ≡ dn(s,∆) := detDn(s,∆).
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3. The local-cubically hyponormal weighted shifts of order θ = π
4

For convenience, we change some notations. Let α = {αi}∞i=0 be a sequence
of positive real numbers and let Wα be the associated weighted shift with a
sequence α. First, we know that Wα is local-cubically hyponormal of order θ = π

4

if W 3
α +W 2

α + tWα is hyponormal for all t ∈ C, i.e.,[(
W 3
α +W 2

α + tWα

)∗
,W 3

α +W 2
α + tWα

]
≥ 0, t ∈ C.

Let Pn denote the orthogonal projection onto ∨ni=0{ei}. For n ≥ 0 and t ∈ C,
we define

Mn (t) := Pn

[(
W 3
α +W 2

α + tWα

)∗
,W 3

α +W 2
α + tWα

]
Pn

=



q0 r0 z0 0 0 0
r0 q1 r1 z1 0 0
z0 r1 q2 r2 z2 0

0 z1 r2 q3 r3 z3
. . .

. . .
. . .

. . .
. . .

. . .
. . . 0

. . .
. . .

. . .
. . .

. . . zn−2

. . .
. . .

. . .
. . . rn−1

0 zn−2 rn−1 qn


where 

qn :=
(
α2
nα

2
n+1α

2
n+2 − α2

n−3α
2
n−2α

2
n−1

)
+
(
α2
nα

2
n+1 − α2

n−2α
2
n−1

)
+ |t|2

(
α2
n − α2

n−1

)
,

rn := αn
(
α2
n+1α

2
n+2 − α2

n−1α
2
n−2

)
+ tαn

(
α2
n+1 − α2

n−1

)
,

zn := tαnαn+1

(
α2
n+2 − α2

n−1

)
,

(3.1)

with α−3 = α−2 = α−1 = 0. It is obvious that if Wα is local-cubically hyponor-
mal of order θ = π

4 if and only if Mn(t) ≥ 0 for every t ∈ C and n ≥ 0. We
consider the determinant for the pentadiagonal matrix Mn(t), dn := detMn(t).
The followings are the main results of this article.

Theorem 3.1. Let α :
√

2
3 ,
√

2
3 ,
{√

n+1
n+2

}∞
n=2

and let Wα be the associated

weighted shift. Then Wα is local-cubically hyponormal weighted shift of order
θ = π

4 .

Corollary 3.2. Let Wα be a weighted shift with α0 = α1. Then Wα is local-
cubically hyponormal for some θ, and not for some other θ. That is, the flatness
of local-cubic hyponormality with first two equal weights is not satisfied.

Let α :
√

2
3 ,
√

2
3 ,
{√

n+1
n+2

}∞
n=2

. We have known that Wα is not local-cubic

hyponormal for θ = 9π
200 . Theorem 3.1 means the flatness is not satisfied for local-

cubic hyponormality of order θ = π
4 . Naturally, we can consider the following

problems but we leave it to interested readers.



584 Hailong Shen and Chunji Li

Problem 3.3. Let α :
√

2
3 ,
√

2
3 ,
{√

n+1
n+2

}∞
n=2

and let Wα be the associated

weighted shift. Find the interval of θ such that Wα is local-cubically hyponormal
weighted shift of order θ.

4. Proof of Theorem 3.1

All of the calculations in this paper, we use the software tool Scientific Work-
Place [16]. Let

α :

√
2

3
,

√
2

3
,

√
3

4
,

√
4

5
,

√
5

6
, . . . .

By (3.1), we obtain (s = t̄)

 q0 = 2
3st+ 7

9 , q1 = 9
10 , q2 = 1

12st+ 59
90 ,

q3 = 1
20st+ 17

42 , q4 = 1
30st+ 19

56 , q5 = 1
42st+ 1

4 ,
q6 = 1

56st+ 121
630 , q7 = 1

72st+ 67
440 , q8 = 1

90st+ 49
396 ,

r0 = 1
6

√
6 + 2

9

√
6t,

r1 = 1
5

√
6 + 1

36

√
6t,

r2 = 1
9

√
3 + 1

15

√
3t,

r3 = 3
35

√
5 + 1

30

√
5t,

r4 = 1
40

√
30 + 1

105

√
30t,

r5 = 1
63

√
42 + 1

168

√
42t,

r6 = 3
140

√
14 + 1

126

√
14t,

r7 = 1
22

√
2 + 1

60

√
2t,

and 
z0 = 1

2 t,

z1 = 1
15

√
2t,

z2 = 1
28

√
6t,

z3 = 1
28

√
6t,

z4 = 3
280

√
35t,

z5 = 1
72

√
12t,

z6 = 1
70

√
7t.

Let t = x+ yi, s = x− yi. We know that dn is as follows

dn =

n∑
k=0

pn,k (x) y2k.

In particular, by direct calculation, we obtain

d1 =

(
41

135
x2 − 4

9
x+

8

15

)
+

41

135
y2,

d2 = p2,0 (x) + p2,1 (x) y2 + +
1

45
y4, with

p2,0 (x) = 1
45x

4 − 2
45x

3 + 121
810x

2 − 58
405x+ 22

135 ,

p2,1 (x) = 2
45x

2 − 2
45x+ 121

810 ,
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and

d3 = p3,0 (x) + p3,1 (x) y2 + p3,2 (x) y4 + 1
1620y

6, with

p3,0 (x) = 1
1620x

6 − 1
810x

5 + 59
4536x

4 − 193
5670x

3 + 2323
34020x

2 − 437
8505x+ 131

2835 ,

p3,1 (x) = 1
540x

4 − 1
405x

3 + 59
2268x

2 − 193
5670x+ 1651

34020 ,

p3,2 (x) = 1
540x

2 − 1
810x+ 59

4536 ,

and

d4 = p4,0 (x) + p4,1 (x) y2 + p4,2 (x) y4 + p4,3 (x) y6 + 1
48 600y

8, with

p4,0 (x) = 1
48600x

8 − 1
24300x

7 + 11
38880x

6 − 821
680400x

5 + 5287
907200x

4

− 8299
680400x

3 + 24 251
1360800x

2 − 571
48600x+ 157

16200 ,

p4,1 (x) = 1
12150x

6 − 1
8100x

5 + 11
12960x

4 − 821
340200x

3

+ 2083
194400x

2 − 8299
680400x+ 2189

194400 ,

p4,2 (x) = 1
8100x

4 − 1
8100x

3 + 11
12960x

2 − 821
680400x+ 13 301

2721600 ,

p4,3 (x) = 1
12150x

2 − 1
24300x+ 11

38880 ,

d5 = p5,0 (x) + p5,1 (x) y2 + p5,2 (x) y4 + p5,3 (x) y6 + p5,4 (x) y8 + 1
2041200y

10,

with
p5,0 (x) = 1

2041200x
10 − 1

1020600x
9 + 37

8164800x
8 − 53

4082400x
7 + 271

1814400x
6

− 521
816480x

5 + 4919
2721600x

4 − 127
45360x

3 + 1241
388800x

2 − 1283
680400x+ 353

226800 ,

p5,1 (x) = 1
408240x

8 − 1
255150x

7 + 37
2041200x

6 − 53
1360800x

5 + 7157
16329600x

4

− 521
408240x

3 + 257
90720x

2 − 571
226800x+ 5023

2721600 ,

p5,2 (x) = 1
204120x

6 − 1
170100x

5 + 37
1360800x

4 − 53
1360800x

3

+ 6997
16329600x

2 − 521
816480x+ 2791

2721600 ,

p5,3 (x) = 1
204120x

4 − 1
255150x

3 + 37
2041200x

2 − 53
4082400x+ 2279

16329600 ,

p5,4 (x) = 1
408240x

2 − 1
1020600x+ 37

8164800 ,
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d6 = p6,0 (x) + p6,1 (x) y2 + p6,2 (x) y4 + p6,3 (x) y6 + p6,4 (x) y8 + p6,5 (x) y10

+ 1
114307200y

12,

with
p6,0 (x) = 1

114307200x
12 − 1

57153600x
11 + 439

5143824000x
10 − 317

1285956000x
9 + 1387

857304000x
8

− 23 893
2571912000x

7 + 554 809
10287648000x

6 − 87 091
514382400x

5 + 84 737
244944000x

4

− 110 879
257191200x

3 + 2158 621
5143824000x

2 − 298 649
1285956000x+ 84 179

428652000 ,

p6,1 (x) = 1
19051200x

10 − 1
11430720x

9 + 439
1028764800x

8 − 317
321489000x

7 + 449
71442000x

6

− 23 893
857304000x

5 + 1501 547
10287648000x

4 − 85 171
257191200x

3

+ 51 061
102876480x

2 − 9451
26244000x+ 1178 029

5143824000 ,

p6,2 (x) = 1
7620480x

8 − 1
5715360x

7 + 439
514382400x

6 − 317
214326000x

5 + 1307
142884000x

4

− 23 893
857304000x

3 + 1338 667
10287648000x

2 − 1699
10497600x+ 773 573

5143824000 ,
p6,3 (x) = 1

5715360x
6 − 1

5715360x
5 + 439

514382400x
4 − 317

321489000x
3

+ 181
30618000x

2 − 23 893
2571912000x+ 130 643

3429216000 ,

p6,4 (x) = 1
7620480x

4 − 1
11430720x

3 + 439
1028764800x

2 − 317
1285956000x+ 409

285768000 ,

p6,5 (x) = 1
19051200x

2 − 1
57153600x+ 439

5143824000 ,

d7 = p7,0 (x) + p7,1 (x) y2 + p7,2 (x) y4 + p7,3 (x) y6 + p7,4 (x) y8 + p7,5 (x) y10

+p7,6 (x) y12 + 1
8230118400y

14, with

p7,0 (x) = 1
8230118400x

14 − 1
4115059200x

13 + 559
452656512000x

12 − 29
808152000x

11

+ 557
28291032000x

10 − 5653
75442752000x

9 + 180 601
301771008000x

8 − 753 971
226328256000x

7

+ 1420 369
113164128000x

6 − 821 123
28291032000x

5 + 6929 801
150885504000x

4 − 5485 391
113164128000x

3

+ 19 338 533
452656512000x

2 − 2598 433
113164128000x+ 750 571

37721376000 ,

p7,1 (x) = 1
1175731200x

12 − 1
685843200x

11 + 559
75442752000x

10 − 29
1616630400x

9

+ 677
7072758000x

8 − 5653
18860688000x

7 + 172 561
75442752000x

6 − 750 451
75442752000x

5
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+ 3512 819
113164128000x

4 − 748 679
14145516000x

3 + 13 781 147
226328256000x

2 − 4331 087
113164128000x

+ 1467 491
64665216000 ,

p7,2 (x) = 1
391910400x

10 − 1
274337280x

9 + 559
30177100800x

8 − 29
808315200x

7 + 877
4715172000x

6

− 5653
12573792000x

5 + 23 503
7185024000x

4 − 248 977
25147584000x

3

+ 5129
209952000x

2 − 19 321
808315200x+ 7381 147

452656512000 ,

p7,3 (x) = 1
235146240x

8 − 1
205752960x

7 + 559
22632825600x

6 − 29
808315200x

5 + 1277
7072758000x

4

− 5653
18860688000x

3 + 156 481
75442752000x

2 − 743 411
226328256000x+ 224 027

37721376000 ,

p7,4 (x) = 1
235146240x

6 − 1
274337280x

5 + 559
30177100800x

4 − 29
1616630400x

3

+ 2477
28291032000x

2 − 5653
75442752000x+ 148 441

301771008000 ,

p7,5 (x) = 1
391910400x

4 − 1
685843200x

3 + 559
75442752000x

2 − 29
8083152000x+ 1

58939650 ,

p7,6 (x) = 1
1175731200x

2 − 1
4115059200x+ 559

452656512000 .

Let mn,k = min pn,k (x) . Then

dn =

n∑
k=0

pn,k (x) y2k ≥
n∑
k=0

mn,ky
2k.

Numerically, we can obtain some of the values mn,k as following

k →
n ↓

0 1 2 3 4 5 6

1 76
205

41
135 � � � � �

2 0.12398 56
405

1
45 � � � �

3
3.4077

×10−2

3.7032

×10−2
871

68 040
1

1620 � � �

4
7.0696

×10−3

7. 3336

×10−3

4.4455

×10−3
1

3600
1

48600 � �

5
1.1559

×10−3

1.1305

×10−3

7.7941

×10−4

1.3713

×10−4
181

40824000
1

2041200 �

6
1.483

×10−4

1.3692

×10−4

9.3125

×10−5

3.4282

×10−5

1.3944

×10−6
863

10287648000
1

114307200
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Since mn,k > 0 for all n, k, we know that dn > 0 for all n ∈ N. Hence, Wα is
local-cubically hyponormal weighted shift of order θ = π

4 .

Remark. We have known that

dn =

n∑
k=0

pn,k (x) y2k, (4.1)

where

pn,k (x) =

2n−2k∑
i=0

(−1)
i
aix

2n−2k−i, with ai > 0, for 0 ≤ i ≤ 2 (n− k) . (4.2)

Without loss of generality, we consider the polynomial as following

qn (x) = a0x
2n − a1x

2n−1 + a2x
2n−2 − · · · − a2n−1x+ a2n, (4.3)

with ai > 0, for all 0 ≤ i ≤ 2n.

1. For n = 1, since

q1 (x) = a0x
2 − a1x+ a2 = a0

(
x− a1

2a0

)2

+ a2 −
a2

1

4a0
,

we have q1 (x) > 0 for all x ∈ R if and only if ∆1 := a2 − a21
4a0

> 0.

2. For n = 2, since

q2 (x) = a0x
4 − a1x

3 + a2x
2 − a3x+ a4

= x2
(
a0x

2 − a1x+ a2

)
− a3x+ a4

= x2

(
a0

(
x− a1

2a0

)2
)

+ ∆1x
2 − a3x+ a4

= x2

(
a0

(
x− a1

2a0

)2
)

+ ∆1

(
x− a3

2∆1

)2

+ a4 −
a2

3

4∆1
,

we know that if ∆2 := a4 − a23
4∆1

> 0, then q2 (x) > 0 for all x ∈ R.

Thus, in general, we have obtain a sufficient condition of positivity for qn (x)
as in (4.3).

Theorem 4.1. If ∆k := a2k −
a22k−1

4∆k−1
> 0 for k = 1, 2, ..., n, then qn (x) > 0 for

all x ∈ R.
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By Theorem 4.1, we can prove the positivity of pn,k (x) as shown in (4.2). For
example,

d3 = p3,0 (x) + p3,1 (x) y2 + p3,2 (x) y4 + 1
1620y

6, with

p3,0 (x) = 1
1620x

6 − 1
810x

5 + 59
4536x

4 − 193
5670x

3 + 2323
34020x

2 − 437
8505x+ 131

2835 ,

p3,1 (x) = 1
540x

4 − 1
405x

3 + 59
2268x

2 − 193
5670x+ 1651

34020 ,

p3,2 (x) = 1
540x

2 − 1
810x+ 59

4536 .

(i) Define a0 = 1
540 , a1 = 1

810 , a2 = 59
4536 . Then ∆1 = a2 − a21

4a0
= 871

68040 > 0. Thus

p3,2 (x) =
1

540
x2 − 1

810
x+

59

4536
> 0.

(ii) Define a0 = 1
540 , a1 = 1

405 , a2 = 59
2268 , then ∆1 = 871

68040 > 0. And define

∆1 = 871
68040 , a3 = 193

5670 , a4 = 1651
34020 , then ∆2 = 767539

29631420 > 0. Thus,

p3,1 (x) =
1

540
x4 − 1

405
x3 +

59

2268
x2 − 193

5670
x+

1651

34020
> 0.

(iii) Define a0 = 1
1620 , a1 = 1

810 , a2 = 59
4536 , then ∆1 = 281

22680 > 0. And define

∆1 = 281
22680 , a3 = 193

5670 , a4 = 2323
34020 , then ∆2 = 429269

9559620 > 0. And define ∆2 =
429269
9559620 , a5 = 437

8505 , a6 = 131
2835 , then ∆3 = 115040428

3650932845 > 0. Thus,

p3,0 (x) =
1

1620
x6− 1

810
x5 +

59

4536
x4− 193

5670
x3 +

2323

34020
x2− 437

8505
x+

131

2835
> 0.

Finally, we know that d3 > 0. Similarly, we can show that dn > 0, for any
n ∈ N.
Conclusion. This paper summerized the flatness of k-hyponormal or weakly k-
hyponormal weighted shifts, discussed the local-cubic hyponormality for Bergman
shift operator, and showed that Bergman shift with first two equal weights is
local-cubic hyponormal for θ = π

4 , which means the flatness is not always satis-
fied for local-cubic hyponormal weighted shifts.

References

1. S. Baek, G. Exner, I.B. Jung and C. Li, On semi-cubically hyponormal weighted shifts

with first two equal weights, Kyungpook Math. J. 56 (2016), 899-910.

2. S. Baek, H. Do, M. Lee and C. Li, The flatness property of local-cubically hyponormal
weighted shifts, Kyungpook Math. J. 59 (2019), 315-324.

3. Y.B. Choi, A propagation of quadratically hyponormal weighted shifts, Bull. Korean Math.
Soc. 37 (2000) 347-352.

4. R. Curto, Joint hyponormality: A bridge between hyponormality and subnormality, Proc.

Sym. Math. 51 (1990), 69-91.
5. R. Curto, Quadratically hyponormal weighted shifts, Integr. Equ. Oper. Theory 13 (1990),

49-66.

6. R. Curto and L. Fialkow, Recursively generated weighted shifts and the subnormal com-
pletion problem, Integr. Equ. Oper. Theory 17 (1993), 202-246.



590 Hailong Shen and Chunji Li

7. R. Curto and L. Fialkow, Recursively generated weighted shifts and the subnormal com-

pletion problem, II, Integral Equ. Oper. Theory 18 (1994), 369-426.
8. R. Curto and M. Putinar, Existence of non-subnormal polynomially hyponormal operators,

Bull. Amer. Math. Soc. 25 (1991), 373-378.

9. Y. Do, G. Exner, I.B. Jung and C. Li, On semi-weakly n-hyponormal weighted shifts,
Integr. Equ. Oper. Theory 73 (2012), 93-106.

10. G. Exner, I.B. Jung, and D.W. Park, Some quadratically hyponormal weighted shifts,

Integr. Equ. Oper. Theory 60 (2008), 13-36.
11. I.B. Jung and S.S. Park, Quadratically hyponormal weighted shifts and their examples,

Integr. Equ. Oper. Theory 36 (2000), 480-498.

12. I.B. Jung and S.S. Park, Cubically hyponormal weighted shifts and their examples, J.
Math. Anal. Appl. 247 (2000), 557-569.

13. C. Li, A note on the local-cubic hyponormal weighted shifts, J. Appl. & Pure Math. 2
(2020), 1-7.

14. C. Li, M. Cho and M.R. Lee, A note on cubically hyponormal weighted shifts, Bull.

Korean Math. Soc. 51 (2014), 1031-1040.
15. J. Stampfli, Which weighted shifts are subnormal, Pacific J. Math. 17 (1966), 367-379.

16. MacKichan Software, Inc. Scientific WorkPlace, Version 4.0, MacKichan Software, Inc.,

2002.

Hailong Shen received Ph.D. degree from Northeastern University, R. R. China. His

research interests focus on the numerical computation and matrix analysis.

Department of Mathematics, Northeastern University, Shenyang 110004, R. R. China.

e-mail: shenhailong@mail.neu.edu.cn

Chunji Li received Ph.D. degree from Kyungpook National University, Korea. His re-

search interests focus on the control theory, moment method and unilateral weighted shifts.

Department of Mathematics, Northeastern University, Shenyang 110004, R. R. China.

e-mail: lichunji@mail.neu.edu.cn


