A NOTE ON HYPONORMAL TOEPLITZ OPERATORS

AN-HYUN KIM

ABSTRACT. In this note we are concerned with the hyponormality of Toeplitz operators T_{ϕ} with polynomial symbols $\phi = \bar{g} + f$ $(f, g \in H^{\infty}(\mathbb{T}))$ when g divides f.

1. Introduction

A bounded linear operator A on a complex Hilbert space is said to be hyponormal if its selfcommutator $[A^*, A] = A^*A - AA^*$ is positive semidefinite. Recall that the Hilbert space $L^2(\mathbb{T})$ has a canonical orthonormal basis given by the trigonometric functions $e_n(z) = z^n$ for all $n \in \mathbb{Z}$, and that the Hardy space $H^2(\mathbb{T})$ is the closed linear span of $\{e_n : n = 0, 1, \ldots\}$. Recall that given $\phi \in L^{\infty}(\mathbb{T})$, the Toeplitz operator with symbol ϕ is the operator T_{ϕ} on $H^2(\mathbb{T})$ defined by

$$T_{\phi}f = P(\phi \cdot f) \quad \text{for } f \in H^2(\mathbb{T})$$

and P denotes the projection that maps $L^2(\mathbb{T})$ onto $H^2(\mathbb{T})$. Let $H^{\infty}(\mathbb{T}) := L^{\infty}(\mathbb{T}) \cap H^2(\mathbb{T})$. The hyponormality of Toeplitz operators has been studied by many authors (cf. [1-7, 9-16, 18]). In 1988, C. Cowen [3] characterized the hyponormality of a Toeplitz operator T_{ϕ} on $H^2(\mathbb{T})$ by properties of the symbol $\phi \in L^{\infty}(\mathbb{T})$. K. Zhu [18] reformulated Cowen's criterion and then showed that the hyponormality of T_{ϕ} with polynomial symbols ϕ can be decided by a method based on the classical interpolation theorem of I. Schur [17]. Also D. Farenick and W. Y. Lee [6] characterized the hyponormality of T_{ϕ} in terms of the Fourier coefficients of the trigonometric polynomial ϕ in the cases that the outer coefficients of ϕ have the same modulus. In [12], it was shown that the hyponormality of T_{ϕ} with polynomial symbols of the form $\phi(z) = \sum_{n=-m}^{N} a_n z^n$ can be determined by the zeros of the analytic polynomial $z^m \phi$. In this note we consider the hyponormality of Toeplitz operators T_{ϕ} with polynomial symbols $\phi = \bar{g} + f$ $(f, g \in H^{\infty}(\mathbb{T}))$ when g divides f.

 $\bigodot 2011$ The Korean Mathematical Society

Received October 27, 2009; Revised January 13, 2010.

²⁰¹⁰ Mathematics Subject Classification. Primary 47B20, 47B35.

Key words and phrases. Toeplitz operators, hyponormal.

This research is financially supported by Changwon National University in 2009-2010.

AN-HYUN KIM

2. Main results

We begin with:

Lemma 1 (Cowen's Theorem, [3, 16]). Let $\phi \in L^{\infty}(\mathbb{T})$. If $\mathcal{E}(\phi) := \{k \in H^{\infty}(\mathbb{T}) : ||k||_{\infty} \leq 1 \text{ and } \phi - k\overline{\phi} \in H^{\infty}(\mathbb{T})\}$, then T_{ϕ} is hyponormal if and only if $\mathcal{E}(\phi) \neq \emptyset$.

On the other hand, in 1993, T. Nakazi and K. Takahashi characterized the hyponormality of a Toeplitz operator in the cases that its self-commutator is of finite rank.

Lemma 2 (Nakazi-Takahashi Theorem, [16]). A Toeplitz operator T_{ϕ} is hyponormal and the rank of the selfcommutator $[T_{\phi}^*, T_{\phi}]$ is finite (e.g., ϕ is a trigonometric polynomial) if and only if there exists a finite Blaschke product $k \in \mathcal{E}(\phi)$ such that deg $(k) = \operatorname{rank}[T_{\phi}^*, T_{\phi}]$.

We record here results on the hyponormality of Toeplitz operators with polynomial symbols, which have been recently developed in the literature. The statement (vii) appears to be new.

Lemma 3. Suppose that ϕ is a trigonometric polynomial of the form $\phi(z) = \sum_{n=-m}^{N} a_n z^n$, where a_{-m} and a_N are nonzero.

- (i) If T_{ϕ} is a hyponormal operator, then $m \leq N$ and $|a_{-m}| \leq |a_N|$.
- (ii) If T_{ϕ} is a hyponormal operator, then $N m \leq \operatorname{rank} [T_{\phi}^*, T_{\phi}] \leq N$.
- (iii) The hyponormality of T_{ϕ} is independent of the particular values of $a_0, a_1, \ldots, a_{N-m}$ of ϕ . Moreover the rank of the selfcommutator $[T_{\phi}^*, T_{\phi}]$ is also independent of those coefficients.
- (iv) Write $\phi = \overline{g} + f$ $(f, g \in H^{\infty})$ and put $\phi = \overline{g} + T_{\overline{z}^r} f$ $(r \leq N m)$. Then T_{ϕ} is hyponormal if and only if T_{ϕ} is.
- (v) If $|a_{-m}| = |a_N| \neq 0$, then T_{ϕ} is hyponormal if and only if the following symmetric condition holds:

(3.1)
$$\overline{a_N}a_{-j} = a_{-m}\overline{a_{N-m+j}} \quad (1 \le j \le m)$$

In this case, the rank of $[T_{\phi}^*, T_{\phi}]$ is N - m and

$$\mathcal{E}(\phi) = \{a_{-m}(\overline{a_N})^{-1} z^{N-m}\}.$$

- (vi) T_{ϕ} is normal if and only if m = N, $|a_{-m}| = |a_N|$, and (3.1) holds with m = N.
- (vii) Write $\phi := \bar{g} + f$, where f and g are in $H^{\infty}(\mathbb{T})$ and put $\tilde{\phi} := \alpha \bar{g} + f$ $(|\alpha| \leq 1)$. If T_{ϕ} is hyponormal, then so is $T_{\tilde{\phi}}$.

Proof. The assertions (i) – (vi) were shown from [4, 6, 7, 10, 11, 12, 13, 16]. For the assertion (vii), suppose that there exists a function $k \in H^{\infty}(\mathbb{T})$ such that $\phi - k \bar{\phi} \in H^{\infty}(\mathbb{T})$ and $||k||_{\infty} \leq 1$. Thus $\bar{g} - k \bar{f} \in H^{\infty}(\mathbb{T})$. Since $|\alpha| \leq 1$ it follows that if we let $\tilde{k} = \alpha k$, then $\alpha \bar{g} - \tilde{k} \bar{f} = \alpha (\bar{g} - k \bar{f}) \in H^{\infty}(\mathbb{T})$ and $||\tilde{k}||_{\infty} = |\alpha| \, ||k||_{\infty} \leq 1$. Therefore by Lemma 1, $T_{\bar{\phi}}$ is hyponormal.

Suppose $\phi = \bar{g} + f$, where $f = \sum_{n=1}^{N} a_n z^n$ and $g = \sum_{n=1}^{N} b_n z^n$. If T_{ϕ} is normal, then g divides f: indeed, by Lemma 3 (v),(vi), $g = e^{i\theta} \sum_{n=1}^{N} a_n z^n$ for some $\theta \in [0, 2\pi)$, so that g divides f. But if T_{ϕ} is hyponormal, then g need not divide f. For example, consider

$$g(z) = (z + \frac{1}{2})^2$$
 and $f(z) = 3(z+1)^2$.

Using an argument of P. Fan [5, Theorem 1] – for every trigonometric polynomial ϕ of the form $\phi(z) = \sum_{n=-2}^{2} a_n z^n$,

(3.2)
$$T_{\phi}$$
 is hyponormal $\iff \left|\det\left(\frac{a_{-1}}{a_1}, \frac{a_{-2}}{a_2}\right)\right| \le |a_2|^2 - |a_{-2}|^2,$

a straightforward calculation shows that T_{ϕ} is hyponormal. How is the converse? That is, if g divides f, does it follow that T_{ϕ} is hyponormal? However we cannot also expect the hyponormality of T_{ϕ} when g divides f: for example, if $\phi = \overline{(z+1)^2} + (z+1)^3$, then by Lemma 3 (v), T_{ϕ} is not hyponormal.

We now consider the hyponormality of T_{ϕ} with $\phi = \bar{g} + f$ (f and g are analytic polynomials) when g divides f. If ψ is in $H^{\infty}(\mathbb{T})$, write $\mathcal{Z}(\psi)$ for the set of all zeros of ψ .

Theorem 4. Suppose $\phi = \overline{g} + f$ with $f, g \in H^{\infty}(\mathbb{T})$ and $\psi := \frac{f}{g}$ has a factorization $\psi = up$, where u is an inner function and p is an analytic polynomial. If

(i) $\mathcal{Z}(\psi) \subseteq \mathbb{D};$ (ii) ess inf $|\psi| \ge 1$, then T_{ϕ} is hyponormal.

Proof. By the condition (i), p is of the form

$$p(z) = c \prod_{j=1}^{n} (z - \zeta_j)$$
 with $|\zeta_j| < 1$ $(j = 1, ..., n).$

Then we have

$$\frac{1}{\bar{p}} = \frac{1}{\bar{c} \prod_{j=1}^{n} (\bar{z} - \bar{\zeta}_j)} = \frac{z^n}{\bar{c} \prod_{j=1}^{n} (1 - \bar{\zeta}_j z)},$$

which is in $H^{\infty}(\mathbb{T})$. Put $k := \frac{u}{\bar{p}}$. Then evidently, $k \in H^{\infty}(\mathbb{T})$. By the condition (ii),

$$||k||_{\infty} = \operatorname{ess \ sup} \left| \frac{u}{\bar{p}} \right| = \operatorname{ess \ sup} \frac{1}{|p|} = \frac{1}{\operatorname{ess \ inf} |p|} = \frac{1}{\operatorname{ess \ inf} |\psi|} \le 1.$$

Since $\bar{f} = \bar{g}\bar{u}\bar{p}$, it follows

$$\phi - k\,\bar{\phi} = (\bar{g} + f) - \frac{u}{\bar{p}}(g + \bar{g}\bar{u}\bar{p}) = f - \frac{u}{\bar{p}}g = f - kg \in H^{\infty}(\mathbb{T}).$$

Therefore by Cowen's theorem T_{ϕ} is hyponormal.

AN-HYUN KIM

The conditions (i) and (ii) in Theorem 4 need not be necessary for T_{ϕ} to be hyponormal. To see this consider the trigonometric polynomial $\phi = \bar{g} + f$, where

 $g(z) = (z-1)^2$ and $f(z) = 2(z-1)^2(z-\frac{3}{2}).$

Then $\phi(z) = z^{-2} - 2z^{-1} - 2 + 8z - 7z^2 + 2z^3$. Put $\tilde{\phi}(z) := z^{-2} - 2z^{-1} - 7z + 2z^2$. By Lemma 3 (iv), T_{ϕ} is hyponormal if and only if $T_{\tilde{\phi}}$ is. A straightforward calculation with (3.2) shows that $T_{\tilde{\phi}}$ is hyponormal and hence so is T_{ϕ} . But note that $\mathcal{Z}(\frac{f}{g}) \subseteq \mathbb{C} \setminus \mathbb{D}$. Also if $\phi(z) = z^{-1} + z(z - \frac{1}{2})$, then T_{ϕ} is hyponormal, whereas ess $\inf |\psi| = \frac{1}{2}$.

Corollary 5 ([1]). Suppose $\phi = \bar{g} + f$ with f and g inner. If g divides f, then T_{ϕ} is hyponormal.

Proof. Apply Theorem 4 with p = 1.

Corollary 6. Let $\phi = \overline{g} + f$ with $f, g \in H^{\infty}(\mathbb{T})$ and suppose

$$f(z) = c g(z) \prod_{j=1}^{n} (z - \zeta_j)$$

with $|\zeta_j| < 1$ (j = 1, ..., n). If $|c| \ge \frac{1}{\prod_{i=1}^n (1-|\zeta_j|)}$, then T_{ϕ} is hyponormal.

Proof. If $\psi := \frac{f}{q}$, then $\mathcal{Z}(\psi) \subseteq \mathbb{D}$. Further by assumption,

ess
$$\inf |\psi| = \operatorname{ess} \inf |c| \prod_{j=1}^n |z - \zeta_j| \ge \operatorname{ess} \inf \prod_{j=1}^n \left| \frac{z - \zeta_j}{1 - |\zeta_j|} \right| \ge 1.$$

Therefore by Theorem 4, T_{ϕ} is hyponormal.

For example if $\phi = \bar{g} + f$, where

$$g(z) = \prod_{j=1}^{n} (z - \zeta_j)$$
 and $f(z) = \left(\frac{1}{1 - \alpha}\right)^m (z - \alpha)^m \prod_{j=1}^{n} (z - \zeta_j)$ $(|\alpha| < 1),$

then by Corollary 6, T_{ϕ} is hyponormal.

If $\phi = \bar{g} + f$ (f and g are analytic polynomials), if g divides f, and if the modulus of the leading coefficient of $\psi := \frac{f}{g}$ is 1, then we can easily check the hyponormality of T_{ϕ} .

Theorem 7. Let $\phi = \overline{g} + f$, where f and g are analytic polynomials of degrees N and m $(m \ge 2)$, respectively. Suppose that g divides f and the modulus of the leading coefficient of $\psi := \frac{f}{q}$ is 1. Then T_{ϕ} is hyponormal if and only if $\hat{\psi}(n) = 0$ for $N - 2m + 1 \le n \le N - m - 1$, where $\hat{\psi}(n)$ is the n-th Fourier coefficient of ψ . Hence, in particular, if N < 2m, then T_{ϕ} is hyponormal if and only if $\psi(z) = e^{i\omega} z^{N-m}$ for some $\omega \in [0, 2\pi)$.

Proof. By assumption, we may write $\psi(z) = e^{i\omega} \prod_{j=1}^{N-m} (z - \zeta_j)$ for some $\omega \in [0, 2\pi)$. If T_{ϕ} is hyponormal, then by Lemma 3(v), the finite Blaschke product $k \in \mathcal{E}(\phi)$ should be of the form $k(z) = e^{i\theta} z^{N-m}$ for some $\theta \in [0, 2\pi)$. Thus we have

$$\begin{split} T_{\phi} \text{ hyponormal} & \Longleftrightarrow \phi - k \, \bar{\phi} \in H^{\infty} \quad \text{with } k(z) = e^{i\theta} z^{N-m} \\ & \Leftrightarrow \bar{g} - e^{i\theta} \, z^{N-m} \bar{f} \in H^{\infty} \\ & \Leftrightarrow \bar{g} - e^{i\theta} \, z^{N-m} \cdot \bar{g} \, e^{-i\omega} \, \prod_{j=1}^{N-m} (\bar{z} - \overline{\zeta_j}) \in H^{\infty} \\ & \Leftrightarrow \bar{g} \left(1 - e^{i(\theta - \omega)} \prod_{j=1}^{N-m} (1 - \overline{\zeta_j} z) \right) \in H^{\infty} \\ & \Leftrightarrow 1 - e^{i(\theta - \omega)} \, \prod_{j=1}^{N-m} (1 - \overline{\zeta_j} z) \in z^m \, H^{\infty}. \end{split}$$

Therefore if T_{ϕ} is hyponormal and N < 2m then $e^{i(\theta-\omega)} \prod_{j=1}^{N-m} (1-\overline{\zeta_j}z) = 1$, which implies $\zeta_j = 0$ for $1 \le j \le N-m$. Thus we have that $\psi(z) = e^{i\omega} z^{N-m}$. The converse immediately follows from applying Theorem 4 with p = 1. If instead $N \ge 2m$, write $\eta(z) := e^{i(\theta-\omega)} \prod_{j=1}^{N-m} (1-\overline{\zeta_j}z)$. Then we have

$$\begin{aligned} T_{\phi} \text{ hyponormal} \\ \iff \eta(z) &= 1 + \sum_{j=m}^{N-m} a_j z^j \quad \text{for some } a_j \ (j=m,\ldots,N-m) \\ \iff z^{N-m} \overline{\eta(z)} &= \sum_{j=0}^{N-2m} \overline{a_{N-m-j}} z^j + z^{N-m} \quad \text{for some } a_j \ (j=m,\ldots,N-m) \\ \iff e^{i(\omega-\theta)} \prod_{j=1}^{N-m} (z-\zeta_j) &= \sum_{j=0}^{N-2m} \overline{a_{N-m-j}} z^j + z^{N-m} \\ \text{for some } a_j \ (j=m,\ldots,N-m) \\ \iff \hat{\psi}(n) &= 0 \quad \text{for } N-2m+1 \le n \le N-m-1. \end{aligned}$$

This completes the proof.

Since the hyponormality is translation-invariant, it follows from Lemma 3(ii) and Theorem 4 that the conclusion of Theorem 7 via its proof can be rewritten as: $z^m T_{\bar{z}^{N-m}} f = \frac{a_N}{\bar{a}_{-m}} z^m g$, or equivalently, $T_{\bar{z}^{N-m}} f = \frac{a_N}{\bar{a}_{-m}} g$. Therefore we can recapture Lemma 3(v): if $\phi(z) = \sum_{n=-m}^{N} a_n z^n$ with $|a_{-m}| = |a_N| \neq 0$, then

 T_{ϕ} is hyponormal if and only if

$$a_N \begin{pmatrix} \overline{a_{-1}} \\ \overline{a_{-2}} \\ \vdots \\ \vdots \\ \overline{a_{-m}} \end{pmatrix} = \overline{a_{-m}} \begin{pmatrix} a_{N-m+1} \\ a_{N-m+2} \\ \vdots \\ \vdots \\ a_N \end{pmatrix}.$$

Example 8. If

$$\phi(z) = \prod_{j=1}^{m} \overline{(z - \alpha_j)} + \prod_{j=1}^{N} (z - \alpha_j) \quad (m < N < 2m, \ \alpha_N \neq 0),$$

then T_{ϕ} is not hyponormal.

Proof. This follows immediately from Theorem 7.

Theorem 7 is not true in general if the leading coefficient of $\frac{f}{g}$ does not have modulus 1. Hyponormality for such a case is very complicated.

Corollary 9. Let $\phi = \overline{g} + f$, where f and g are analytic polynomials of degrees N and m, respectively $(m \ge 2)$. Suppose that g divides f and the leading coefficient of $\psi \equiv \frac{f}{g}$ has modulus ≥ 1 . If $\mathcal{Z}(\psi) \subseteq \mathbb{T}$ and $\hat{\psi}(n) = 0$ for $n = 1, \ldots, m-1$, then T_{ϕ} is hyponormal.

Proof. Without loss of generality we may write $g(z) = \prod_{j=1}^{m} (z - \gamma_j)$. Define

$$k(z) := \frac{\psi(z)}{\psi(0)\overline{\psi(z)}}.$$

Since $\mathcal{Z}(\psi) \subset \mathbb{T}$, it follows that $|\psi(0)| = 1$. But since $\frac{\psi}{\psi}$ is unimodular it follows that $k \in H^{\infty}$ and $||k||_{\infty} \leq 1$. Thus

$$\bar{g} - k \bar{f} = \prod_{j=1}^{m} (\bar{z} - \overline{\gamma_j}) \left(1 - \frac{\psi(z)}{\psi(0)\overline{\psi(z)}} \overline{\psi(z)} \right)$$
$$= \frac{1}{z^m} \prod_{j=1}^{m} (1 - \overline{\gamma_j}z) \left(1 - \frac{\psi(z)}{\psi(0)} \right)$$
$$\in H^{\infty} \quad (\text{because } \hat{\psi}(n) = 0 \text{ for } n = 1, \dots, m - 1),$$

which implies that $\phi - k \bar{\phi} \in H^{\infty}$, and hence T_{ϕ} is hyponormal.

References

- M. B. Abrahamse, Subnormal Toeplitz operators and functions of bounded type, Duke Math. J. 43 (1976), no. 3, 597–604.
- [2] C. Cowen, Hyponormal and subnormal Toeplitz operators, Surveys of some recent results in operator theory, Vol. I, 155–167, Pitman Res. Notes Math. Ser., 171, Longman Sci. Tech., Harlow, 1988.

- [3] _____, Hyponormality of Toeplitz operators, Proc. Amer. Math. Soc. 103 (1988), no. 3, 809–812.
- [4] R. E. Curto and W. Y. Lee, Joint hyponormality of Toeplitz pairs, Mem. Amer. Math. Soc. 150 (2001), no. 712, x+65 pp.
- [5] P. Fan, Remarks on hyponormal trigonometric Toeplitz operators, Rocky Mountain J. Math. 13 (1983), no. 3, 489–493.
- [6] D. R. Farenick and W. Y. Lee, Hyponormality and spectra of Toeplitz operators, Trans. Amer. Math. Soc. 348 (1996), no. 10, 4153–4174.
- [7] _____, On hyponormal Toeplitz operators with polynomial and circulant-type symbols, Integral Equations Operator Theory 29 (1997), no. 2, 202–210.
- [8] J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
- C. Gu, A generalization of Cowen's characterization of hyponormal Toeplitz operators, J. Funct. Anal. 124 (1994), no. 1, 135–148.
- [10] T. Ito and T. K. Wong, Subnormality and quasinormality of Toeplitz operators, Proc. Amer. Math. Soc. 34 (1972), 157–164.
- [11] I. H. Kim and W. Y. Lee, On hyponormal Toeplitz operators with polynomial and symmetric-type symbols, Integral Equations Operator Theory 32 (1998), no. 2, 216– 233.
- [12] I. S. Hwang, I. H. Kim, and W. Y. Lee, Hyponormality of Toeplitz operators with polynomial symbols, Math. Ann. 313 (1999), no. 2, 247–261.
- [13] _____, Hyponormality of Toeplitz operators with polynomial symbols: An extremal case, Math. Nachr. 231 (2001), 25–38.
- [14] I. S. Hwang and W. Y. Lee, Hyponormality of trigonometric Toeplitz operators, Trans. Amer. Math. Soc. 354 (2002), no. 6, 2461–2474.
- [15] _____, Hyponormality of Toeplitz operators with rational symbols, Math. Ann. 335 (2006), no. 2, 405–414.
- [16] T. Nakazi and K. Takahashi, Hyponormal Toeplitz operators and extremal problems of Hardy spaces, Trans. Amer. Math. Soc. 338 (1993), no. 2, 753–767.
- [17] I. Schur, Über Potenzreihen die im Innern des Einheitskreises beschränkt sind, J. Reine Angew. Math. 147 (1917), 205–232.
- [18] K. Zhu, Hyponormal Toeplitz operators with polynomial symbols, Integral Equations Operator Theory 21 (1995), no. 3, 376–381.

DEPARTMENT OF MATHEMATICS CHANGWON NATIONAL UNIVERSITY CHANGWON 641-773, KOREA *E-mail address*: ahkim@changwon.ac.kr