SPECTRAL AREA ESTIMATES FOR NORMS OF COMMUTATORS

Muneo Chō * and Takahiko Nakazi **

ABSTRACT. Let A and B be commuting bounded linear operators on a Hilbert space. In this paper, we study spectral area estimates for norms of $A^*B - BA^*$ when A is subnormal or p-hyponormal.

1. Introduction

Let \mathcal{H} be a Hilbert space and $\mathcal{B}(\mathcal{H})$ the set of all bounded linear operators on \mathcal{H} . If T is a hyponormal operator in $\mathcal{B}(\mathcal{H})$ then C. R. Putnam [7] proved that $\parallel T^*T - TT^* \parallel \leq \operatorname{Area}(\sigma(T))/\pi$, where $\sigma(T)$ is the spectrum of T. The second named author [5] has proved that if T is a hyponormal operator and K is in $\mathcal{B}(\mathcal{H})$ with KT = TK then

$$||T^*K - KT^*|| \le 2\{\operatorname{Area}(\sigma(T))/\pi\}^{1/2}||K||.$$

We don't know whether the constant 2 in the inequality is best possible for a hyponormal operator. In §2, we show that the constant is not best possible for a subnormal operator.

When T is a p-hyponormal operator in $\mathcal{B}(\mathcal{H})$, A. Uchiyama [10] generalized the Putnam inequality, that is,

$$||T^*T - TT^*|| \le \phi\left(\frac{1}{p}\right) ||T||^{2(1-p)} \{\operatorname{Area}(\sigma(T))/\pi\}^p.$$

This inequality gives the Putnam inequality when p = 1. In §3, we generalize the above inequality for the spectral area estimate of $||T^*K - KT^*||$ when TK = KT. H. Alexander [1] proved the following inequality for a uniform algebra A. If f is in A then

$$\operatorname{dist}(\bar{f}, A) \leq \{\operatorname{Area}(\sigma(f))/\pi\}^{1/2}.$$

Received January 25, 2006.

²⁰⁰⁰ Mathematics Subject Classification. Primary 47A20.

Key words and phrases. subnormal, p-hyponormal, Putnam inequality.

^{*} This research is partially supported by Grant-in-Aid Scientific Research No.17540139.

^{**} This research is partially supported by Grant-in-Aid Scientific Research No.17540176.

The second named author [5] gave an operator version for the Alexander inequality. This was used in order to estimate $||T^*K - KT^*||$ when T is a hyponormal operator and KT = TK. We also give an Alexander inequality for a p-hyponormal and we use it to estimate $||T^*K - KT^*||$.

In §4, we try to estimate $||T^*K - KT^*||$ for arbitrary contraction. In §5, we show a few results about area estimates for p-quasihyponormal operators, restricted shifts and analytic Toeplitz operators.

For 0 , <math>T is said to be p-hyponormal if $(T^*T)^p - (TT^*)^p \ge 0$. A 1-hyponormal operator is hyponormal. For an algebra \mathcal{A} in $\mathcal{B}(\mathcal{H})$, let $lat\mathcal{A}$ be the lattice of all \mathcal{A} -invariant projections. For a compact subset X in \mathcal{L} , rat(X) denotes the set of all rational functions on X.

2. Subnormal operators

In order to prove Theorem 1, we use the original Alexander inequality.

Theorem 1. Let T be a subnormal operator in $\mathcal{B}(\mathcal{H})$ and f a rational function on $\sigma(T)$ whose poles are not on it. Then

$$||T^*f(T) - f(T)T^*|| \le \{\operatorname{Area}(\sigma(T))/\pi\}^{1/2}\{\operatorname{Area}(\sigma(f(T)))/\pi\}^{1/2}.$$

Proof. Suppose that $N \in \mathcal{B}(\mathcal{K})$ is a normal extension of $T \in \mathcal{B}(\mathcal{H})$ and P is an orthogonal projection from \mathcal{K} to \mathcal{H} . Then $T = PN \mid \mathcal{H}$ and so

$$T^*f(T) - f(T)T^*$$
= $PN^*Pf(N)P - Pf(N)PN^*P$
= $PN^*f(N)P - Pf(N)PN^*P$
= $Pf(N)N^*P - Pf(N)PN^*P$
= $Pf(N)(1 - P)N^*P$
= $Pf(N)(1 - P) \cdot (1 - P)N^*P$

because f(N)P = Pf(N)P and $f(N)N^* = N^*f(N)$.

Let F be a rational function in $\operatorname{rat}(\sigma(T))$. Put \mathcal{B}_F = the norm closure of $\{g(F(N)) \; ; \; g \in \operatorname{rat}(\sigma(F(N))\} \text{ then } P \text{ belongs to } lat\mathcal{B}_F$. Hence

$$\| (1 - P)F(N)^*P \|$$

$$\leq \operatorname{dist}(F(N)^*, \mathcal{B}_F) \leq \operatorname{dist}(\bar{z}, \operatorname{rat}(\sigma(F(N))))$$

$$\leq \{\operatorname{Area}(\sigma(F(N)))/\pi\}^{1/2}$$

by the Alexander's theorem [1]. Hence, applying F to F=z or F=f

$$|| T^* f(T) - f(T) T^* ||$$

$$\leq || (1 - P) f(N)^* P || \cdot || (1 - P) N^* P ||$$

$$\leq || (\operatorname{Area}(\sigma(f(N))) / \pi)^{1/2} {\operatorname{Area}(\sigma(N)) / \pi}^{1/2}$$

$$\leq || (\operatorname{Area}(\sigma(f(T))) / \pi)^{1/2} {\operatorname{Area}(\sigma(T)) / \pi}^{1/2}$$

If T is a cyclic subnormal operator and KT = TK then using a theorem of T. Yoshino [12] we can prove that

$$||T^*K - KT^*|| \le \{\operatorname{Area}(\sigma(T))/\pi\}^{1/2}\{\operatorname{Area}(\sigma(K))/\pi\}^{1/2}.$$

The proof is almost same to one of Theorem 1.

3. p-hyponormal operators

In order to prove Theorem 2, we use an operator version of the Alexander inequality for a p-hyponormal operator. Unfortunately Lemma 3 is not best possible for p = 1 (see [5]). Lemma 1 is due to W. Arveson [2, Lemma 2] and Lemma 2 is due to A. Uchiyama [11, Theorem 3].

We need the following notation to give Theorem 2 and Proposition 1. Let ϕ be a positive function on $(0, \infty)$ such that

$$\phi(t) = \begin{cases} t & \text{if } t \text{ is an integer} \\ t+2 & \text{if } t \text{ is not an integer.} \end{cases}$$

We write $\ell^2 \otimes \mathcal{H}$ for the Hilbert space direct sum $\mathcal{H} \oplus \mathcal{H} \oplus \cdots$, and $1 \otimes T$ denotes the operator $T \oplus T \oplus \cdots \in \mathcal{B}(\ell^2 \otimes \mathcal{H})$ for each operator $T \in \mathcal{B}(\mathcal{H})$.

Lemma 1. Let \mathcal{A} be an arbitrary ultra-weakly closed subalgebra of $\mathcal{B}(\mathcal{H})$ containing 1, and let $T \in \mathcal{B}(\mathcal{H})$. Then

$$dist(T, \mathcal{A}) = \sup\{\|(1 - P)(1 \otimes T)P\| ; P \in lat(1 \otimes \mathcal{A})\}.$$

Lemma 2. If T is a p-hyponormal operator, then

$$||T^*T - TT^*|| \le \phi\left(\frac{1}{p}\right) ||T||^{2(1-p)} \{\operatorname{Area}(\sigma(T))/\pi\}^p.$$

Lemma 3. If T is a p-hyponormal operator then

$$\operatorname{dist}(T^*,\mathcal{A}) \leq \sqrt{2\phi\left(\frac{1}{p}\right)} \|T\|^{1-p} \{\operatorname{Area}(\sigma(T))/\pi\}^{p/2},$$

where A is the strong closure of $\{f(T) ; f \in rat(\sigma(T))\}.$

Proof. Let $S=1\otimes T$. Then S is p-hyponormal. In order to prove the lemma, by Lemma 1 it is enough to estimate $\sup\{\|(1-P)SP\| \; ; \; P\in lat(1\otimes \mathcal{A})\}$. If $P\in lat(1\otimes \mathcal{A})$ then SP=PSP and so

$$||(1-P)SP||^{2}$$

$$= ||PSS^{*}P - PSPS^{*}P||$$

$$= ||PSS^{*}P - PS^{*}SP + PS^{*}SP - PSPS^{*}P||$$

$$\leq ||P(S^{*}S - SS^{*})P|| + ||(PSP)^{*}(PSP) - (PSP)(PSP)^{*}||$$

$$\leq ||S^{*}S - SS^{*}|| + ||(PSP)^{*}(PSP) - (PSP)(PSP)^{*}||.$$

By [11, Lemma 4], PSP is p-hyponormal and so by Lemma 2 we have

$$\begin{split} &\|PSS^*P - PSPS^*P\|^2 \\ &\leq & \phi\left(\frac{1}{p}\right) \|T\|^{2(1-p)} \{\operatorname{Area}(\sigma(T))/\pi\}^p \\ &+ \phi\left(\frac{1}{p}\right) \|PSP\|^{2(1-p)} \{\operatorname{Area}(\sigma(PSP))/\pi\}^p \\ &\leq & 2\phi\left(\frac{1}{p}\right) \|T\|^{2(1-p)} \{\operatorname{Area}(\sigma(T))/\pi\}^p \end{split}$$

because $||PSP|| \le ||S|| = ||T||$ and $\sigma(PSP) \subset \sigma(S) = \sigma(T)$. By Lemma 1,

$$\operatorname{dist}(T^*,\mathcal{A}) \leq \sqrt{2\phi\left(\frac{1}{p}\right)} \|T\|^{1-p} \{\operatorname{Area}(\sigma(T))/\pi\}^{p/2}.$$

Theorem 2. If T is a p-hyponormal operator in $\mathcal{B}(\mathcal{H})$ and if K is in $\mathcal{B}(\mathcal{H})$ with KT = TK, then

$$||T^*K - KT^*|| \le 2\sqrt{2\phi\left(\frac{1}{p}\right)}||T||^{1-p}\{\operatorname{Area}(\sigma(T))/\pi\}^{p/2}||K||.$$

Proof. When \mathcal{A} is the strong closure of $\{f(T): f \in \operatorname{rat}(\sigma(T))\}$, for any $A \in \mathcal{A}$ $\|T^*K - KT^*\| = \|(T^* - A)K + AK - KT^*\| \le 2\|T^* - A\|\|K\|.$

Now Lemma 3 implies the theorem.

In Theorem 2, if p=1, that is, T is hyponormal then $\|T^*K-KT^*\| \le 2\sqrt{2}\{\operatorname{Area}(\sigma(T))/2\}^{1/2}\|K\|$. The constant $2\sqrt{2}$ is not best because the second author [5] proved that $\|T^*K-KT^*\| \le 2\{\operatorname{Area}(\sigma(T))/2\}^{1/2}\|K\|$. If $p=\frac{1}{2}$, that is, T is semi-hyponormal then

$$||T^*K - KT^*|| \le 4||T||^{1/2} \{\operatorname{Area}(\sigma(T))/\pi\}^{1/4} ||K||.$$

4. Norm estimates

In general, it is easy to see that $||T^*T - TT^*|| \le ||T||^2$. By Theorem 1, if T is subnormal and f is an analytic polynomial then

$$||T^*f(T) - f(T)T^*|| \le ||T|| ||f(T)||.$$

In this section, we will prove that $||T^*T^n - T^nT^*|| \le ||T||^{n+1}$ for arbitrary T in $\mathcal{B}(\mathcal{H})$.

Theorem 3. If T is a contraction on \mathcal{H} and f is an analytic function on the closed unit disc \bar{D} then $||T^*f(T) - f(T)T^*|| \le \sup_{z \in D} |f(z)|$.

П

П

Proof. By a theorem of Sz.-Nagy [6], there exists a unitary operator U on \mathcal{K} such that \mathcal{K} is a Hilbert space with $\mathcal{K} \supseteq \mathcal{H}$ and $T^n = PU^n \mid \mathcal{K}$ for $n \ge 0$, where P is an orthogonal projection from \mathcal{K} to \mathcal{H} . Then it is known that $U^*P = PU^*P$ and $f(T) = Pf(U) \mid \mathcal{H}$. Hence

$$T^*f(T) - f(T)T^*$$

$$= PU^*Pf(U)P - Pf(U)PU^*P$$

$$= PU^*Pf(U)P - Pf(U)U^*P$$

$$= PU^*(I - P)f(U)P$$

because $U^*P = PU^*P$ and $f(U)U^* = U^*f(U)$. Therefore

$$\parallel T^* f(T) - f(T) T^* \parallel$$
= $\parallel P U^* (I - P) f(U) P \parallel \le \sup_{z \in D} \mid f(z) \mid$.

Corollary 1. If T is in $\mathcal{B}(\mathcal{H})$ then for any $n \geq 1 \parallel T^*T^n - T^nT^* \parallel \leq \parallel T \parallel^{n+1}$.

Proof. Put
$$A = T/\|T\|$$
 then A is a contraction and so by Theorem 2 $\|A^*A^n - A^nA^*\| \le 1$ and so $\|T^*T^n - T^nT^*\| \le \|T\|^{n+1}$.

5. Remarks

In this section, we give spectral area estimates for p-quasihyponomal operators, restricted shifts and analytic Toeplitz operators.

For 0 , <math>T is said to be p-quasihyponormal if $T^*\{(T^*T)^p - (TT^*)^p\}T \ge 0$. A 1-quasihyponormal operator is called quasihyponormal.

Lemma 4. Let T be p-quasihyponormal and P be a projection such that TP = PTP. Then PTP is also p-quasihyponormal.

Proof. Since T is p-quaihy ponormal, $T^*(T^*T)^pT \geq T^*(TT^*)^pT$. Hence, we have

$$PT^*(T^*T)^pTP \ge PT^*(TT^*)^pTP.$$

Since by the Hansen's inequality [4]

$$PT^*(T^*T)^pTP = (PTP)^*P(T^*T)^pP(PTP)$$

$$\leq (PTP)^*(PT^*TP)^p(PTP)$$

$$= (PTP)^*\{(PTP)^*(PTP)\}^p(PTP)$$

and by 0

$$PT^{*}(TT^{*})^{p}TP \ge (PT^{*}P)(TPT^{*})^{p}(PTP)$$

= $(PTP)^{*}\{(PTP)(PTP)^{*}\}^{p}(PTP),$

we have

$$(PTP)^*\{(PTP)^*(PTP)\}^p \geq (PTP)^*\{(PTP)(PTP)^*\}^p(PTP).$$

Hence, PTP is p-quasihyponormal.

Proposition 1. If T is a p-quasihyponormal operator in $\mathcal{B}(\mathcal{H})$ and if K is in $\mathcal{B}(\mathcal{H})$ with KT = TK, then

$$||T^*K - KT^*|| \le 4 \left[\phi\left(\frac{1}{p}\right)\right]^{1/4} ||T||^{1-p/2} \{\operatorname{Area}(\sigma(T))/\pi\}^{p/4} ||K||.$$

In particular, if T is quasihyponormal then

$$||T^*K - KT^*|| \le 4||T||^{1/2} \{\operatorname{Area}(\sigma(T))/\pi\}^{1/4} ||K||.$$

Proof. We can prove it as in the proof of Theorem 2. By [11, Theorem 6], $||T^*T - TT^*|| \le 2||T||^{2-p} \sqrt{\phi(\frac{1}{p})} \{\operatorname{Area}(\sigma(T))/\pi\}^{p/2}$. Hence by Lemma 4

$$\operatorname{dist}(T^*,\mathcal{A}) \leq 2\|T\|^{1-\frac{p}{2}}\phi\left(\frac{1}{p}\right)^{\frac{1}{4}}\{\operatorname{Area}(\sigma(T))/\pi\}^{p/4}.$$

This implies the proposition.

Let H^2 and H^{∞} be the usual Hardy spaces on the unit circle and z the coordinate function. M denotes an invariant subspace of H^2 under the multiplication by z. By the well known Beurling theorem, $M=qH^2$ for some inner function. Suppose N is the orthogonal complement of M in H^2 . For a function ϕ in H^{∞} , S_{ϕ} is an operator on N such that $S_{\phi}f = P(\phi f)$ ($f \in N$), where P is the orthogonal projection from H^2 to N. For a symbol ϕ in L^{∞} , T_{ϕ} denotes the usual Toeplitz operator on H^2 .

Proposition 2. Suppose $\Phi = q\bar{\phi}$ belongs to H^{∞} . Then

- $(1) \parallel S_{\phi}^* S_{\phi} S_{\phi} S_{\phi}^* \parallel \leq \operatorname{Area}(\overline{\Phi(D)})/\pi;$
- $(2) \parallel S_{\phi}^* S_{\phi}^n S_{\phi}^n S_{\phi}^* \parallel \le \{ \text{Area}(\overline{\Phi(D)}) / \pi \}^{n+1} \text{ for } n \ge 0.$

Proof. By a well known theorem of Sarason [8],

$$\parallel S_{\phi} \parallel = \parallel \phi + qH^{\infty} \parallel = \parallel \bar{q}\phi + H^{\infty} \parallel = \parallel \bar{\Phi} + H^{\infty} \parallel.$$

By Nehari's theorem [6], $\|\bar{\Phi} + H^{\infty}\| = \|H_{\bar{\Phi}}\|$, where $H_{\bar{\Phi}}$ denotes a Hankel operator from H^2 to $\bar{z}\bar{H}^2$. Since $\|H_{\bar{\Phi}}\|^2 = \|T_{\Phi}^*T_{\Phi} - T_{\Phi}T_{\Phi}^*\|$, where T_{Φ} denotes a Toeplitz operator on H^2 , by the Putnam inequality

$$\parallel T_{\Phi}^* T_{\Phi} - T_{\Phi} T_{\Phi}^* \parallel \leq \operatorname{Area}(\sigma(T_{\Phi}))/\pi = \operatorname{Area}(\overline{\Phi(D)})/\pi.$$

Now since $\parallel S_{\phi}^* S_{\phi} - S_{\phi} S_{\phi}^* \parallel \leq \parallel S_{\phi} \parallel^2$, (1) follows. (2) is also clear by the proof above and Corollary 1.

Proposition 3. Suppose f and g are in H^{∞} . Then

$$||T_f^*T_g - T_gT_f^*|| \leq \{\operatorname{Area}(\overline{f(D)})/\pi\}^{1/2}\{\operatorname{Area}(\overline{g(D)})/\pi\}^{1/2}.$$

Proof. It is easy to see that $T_f^*T_g - T_gT_f^* = H_{\bar{g}}^*H_{\bar{f}}$. Hence

$$||T_f^*T_g - T_gT_f^*|| \le ||H_{\bar{g}}|| \cdot ||H_{\bar{f}}||.$$

Since $H_{\tilde{f}}^*H_{\bar{f}}=T_f^*T_f-T_fT_f^*$, by the Putnam inequality

$$\|T_f^*T_g - T_gT_f^*\| \leq \{\operatorname{Area}(\overline{f(D)})/\pi\}^{1/2}\{\operatorname{Area}(\overline{g(D)})/\pi\}^{1/2}.$$

References

- [1] H. Alexander, Projections of polynomial hulls, J. Funct. Anal. 13 (1973), 13-19.
- [2] W. Arveson, Interpolation problems in nest algebras, J. Funct. Anal. 20 (1975), no. 3, 208-233.
- [3] M. Chō and M. Itoh, Putnam's inequality for p-hyponormal operators, Proc. Amer. Math. Soc. 123 (1995), no. 8, 2435-2440.
- [4] F. Hansen, An operator inequality, Math. Ann. 246 (1979/80), no. 3, 249-250.
- [5] T. Nakazi, Complete spectral area estimates and self-commutators, Michigan Math. J. 35 (1988), no. 3, 435–441.
- [6] Z. Nehari, On bounded bilinear forms, Ann. of Math. (2) 65 (1957), 153-162.
- [7] C. R. Putnam, An inequality for the area of hyponormal spectra, Math. Z. 116 (1970), 323-330.
- [8] D. Sarason, Generalized interpolation in H[∞], Trans. Amer. Math. Soc. 127 (1967), 179-203.
- [9] B. Sz.-Nagy and C. Foias, Harmonic Analysis Of Operators On Hilbert Space, American Elsevier, New York, 1970.
- [10] A. Uchiyama, Berger-Shaw's theorem for p-hyponormal operators, Integral Equations Operator Theory 33 (1999), 221–230.
- [11] ______, Inequalities of Putnam and Berger-Shaw for p-quasihyponormal operators, Integral Equations Operator Theory 34 (1999), no. 2, 91-106.
- [12] T. Yoshino, Subnormal operators with a cyclic vector, Tohoku Math. (2) 21 (1969), 47-55.

Muneo Chō

DEPARTMENT OF MATHEMATICS

KANAGAWA UNIVERSITY

Japan

E-mail address: chiyom01@kanagawa-u.ac.jp

Takahiko Nakazi

DEPARTMENT OF MATHEMATICS

FACULTY OF SCIENCE

HOKKAIDO UNIVERSITY

SAPPORO 060-0810, JAPAN

E-mail address: nakazi@math.sci.hokudai.ac.jp