HYPONORMAL TOEPLITZ OPERATORS ON THE BERGMAN SPACE

IN SUNG HWANG

ABSTRACT. In this note we consider the hyponormality of Toeplitz operators B_{φ} on the Bergman space $L^2_a(\mathbb{D})$ with symbol in the class of functions $f + \overline{g}$ with polynomials f and g

1. Introduction

A bounded linear operator A on a Hilbert space is said to be hyponormal if its selfcommutator $[A^*,A]:=A^*A-AA^*$ is positive semidefinite. Let $\mathbb D$ denote the open unit disk in the complex plane, dA the area measure on the plane. The space $L^2(\mathbb D)$ is a Hilbert space with the inner product

$$\langle f, g \rangle = rac{1}{\pi} \int_{\mathbb{D}} f(z) \overline{g(z)} dA(z).$$

The Bergman space $L_a^2(\mathbb{D})$ is the subspace of $L^2(\mathbb{D})$ consisting of functions analytic on \mathbb{D} . Let $L^{\infty}(\mathbb{D})$ be the space of bounded area measureable function on \mathbb{D} . For $\varphi \in L^{\infty}(\mathbb{D})$, the multiplication operator M_{φ} on the Bergman space are defined by $M_{\varphi}(f) = \varphi \cdot f$, where f is in L_a^2 . If P denotes the orthogonal projection of $L^2(\mathbb{D})$ onto the Bergman space L_a^2 , the Toeplitz operator B_{φ} on the Bergman space is defined by $B_{\varphi}(f) = P(\varphi \cdot f)$, where φ is measurable and f is in L_a^2 . It is clear that those operators are bounded if φ is in $L^{\infty}(\mathbb{D})$. The Hankel operator on the Bergman space is defined by

$$H_{\varphi}: L_a^2 \longrightarrow L_a^{2^{\perp}}$$

 $H_{\varphi}(f) = (I - P)(\varphi \cdot f).$

Received March 4, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 47B20, 47B35.

Key words and phrases: Bergman space, Toeplitz operators, hyponormal operators. This work was supported by the Post-doctorial Fellowship Program of Korea Science and Engineering Foundation.

Let $H^2(\mathbb{T})$ denote the Hardy space of the unit circle $\mathbb{T} = \partial \mathbb{D}$. Recall that given $\varphi \in L^{\infty}(\mathbb{T})$, the Toeplitz operator on the Hardy space is the operator T_{φ} on $H^2(\mathbb{T})$ defined by $T_{\varphi}f = P_+(\varphi \cdot f)$, where f is in $H^2(\mathbb{T})$ and P_+ denotes the orthogonal projection that maps $L^2(\mathbb{T})$ onto $H^2(\mathbb{T})$.

Basic properties of the Bergman space and the Hardy space can be found in [1], [5] and [6]. The hyponormality of Toeplitz operators on the Hardy space has been studied by C. Cowen [2], [3], P. Fan [7], C. Gu [9], [10], T. Nakazi and K. Takahashi [13], K. Zhu [16], W.Y. Lee [4], [8], [11], [12] and others. In [3], Cowen characterized the hyponormality of Toeplitz operator T_{φ} on $H^2(\mathbb{T})$ by properties of the symbol $\varphi \in L^{\infty}(\mathbb{T})$. The solution is based on a dilation theorem of Sarason [15]. It also exploited the fact that functions in $H^{2^{\perp}}$ are conjugates of functions in zH^2 . For the Bergman space, $L_a^{2^{\perp}}$ is much larger than the conjugates of functions in zL_a^2 , and no dilation theorem(similar to Sarason's theorem) is available. Indeed it is quite difficult to determine the hyponormality of B_{φ} . In fact the study of hyponormal Toeplitz operators on the Bergman space seems to be scarce from the literature. Very recently, in [14], it was shown that

- (i) If $n \ge m$, $B_{z^n + \alpha \overline{z}^m}$ is hyponormal if and only if $|\alpha| \le \sqrt{\frac{m+1}{n+1}}$.
- (ii) If $m \ge n$, $B_{z^n + \alpha \overline{z}^m}$ is hyponormal if and only if $|\alpha| \le \frac{\dot{n}}{m}$.

We record here some results on the hyponormality of Toeplitz operators on the Hardy space with polynomial symbols, which have been recently developed in [4], [8], and [16].

PROPOSITION 1.1. Suppose that φ is a trigonometric polynomial of the form $\varphi(z) = \sum_{n=-m}^{N} a_n z^n$, where a_{-m} and a_N are nonzero.

- (i) If T_{φ} is a hyponormal operator then $m \leq N$ and $|a_{-m}| \leq |a_N|$.
- (ii) If T_{φ} is a hyponormal operator then $N-m \leq \operatorname{rank}[T_{\varphi}^*, T_{\varphi}] \leq N$.
- (iii) The hyponormality of T_{φ} is independent of the particular values of the Fourier coefficients a_0, a_1, \dots, a_{N-m} of φ . Moreover the rank of the self-commutator $[T_{\varphi}^*, T_{\varphi}]$ is also independent of those coefficients.
- (iv) If $|a_{-m}| = |a_N|$, then T_{φ} is hyponormal if and only if the follow-

ing equation holds:

(1.1)
$$\overline{a_N} \begin{pmatrix} a_{-1} \\ a_{-2} \\ \vdots \\ \vdots \\ a_{-m} \end{pmatrix} = a_{-m} \begin{pmatrix} \overline{a_{N-m+1}} \\ \overline{a_{N-m+2}} \\ \vdots \\ \overline{a_N} \end{pmatrix}.$$

In this case, the rank of $[T_{\varphi}^*, T_{\varphi}]$ is N - m.

(v) T_{φ} is normal if and only if m = N, $|a_{-m}| = |a_N|$, and (1.1) holds with m = N.

We will now consider the hyponormality of Toeplitz operators on the Bergman space with a symbol in the class of functions $\overline{g}+f$, where f and g are polynomials. Since the hyponormality of operators is translation invariant we may assume that f(0) = g(0) = 0. We shall list the well-known properties of Toeplitz operators B_{φ} on the Bergman space.

If f, g are in $L^{\infty}(\mathbb{D})$ then we can easily check that

- $1) B_{f+g} = B_f + B_g$
- 2) $B_f^* = B_{\overline{f}}$
- 3) $B_{\overline{f}}B_g = B_{\overline{f}g}$ if f or g is analytic.

These properties enable us establish several consequences of hyponormality.

PROPOSITION 1.2. [14] Let f, g be bounded and analytic. Then the followings are equivalent.

- (i) $B_{\overline{g}+f}$ is hyponormal.
- (ii) $H_{\overline{g}}^* H_{\overline{g}} \le H_{\overline{f}}^* H_{\overline{f}}$.
- (iii) $||(I-P)(\overline{g}k)|| \le ||(I-P)(\overline{f}k)||$ for any k in L_a^2 .
- (iv) $||\overline{g}k||^2 ||P(\overline{g}k)||^2 \le ||\overline{f}k||^2 ||P(\overline{f}k)||^2$ for any k in L_a^2 .
- (v) $H_{\overline{g}} = CH_{\overline{f}}$ where C is of norm less than or equal to one.

PROPOSITION 1.3. Let f, g be bounded and analytic. If $B_{\overline{g}+f}$ is hyponormal then $||f|| \ge ||g||$.

Proof. Put
$$k = 1$$
 in Proposition 1.2 (iii).

2. An extremal case

In this section we establish a necessary and sufficient condition for the hyponormality of Toeplitz operator B_{φ} on the Bergman space under certain additional assumption concerning the symbol φ .

A straightforward calculation shows that for any s, t nonnegative integers,

(2.1)
$$P(\overline{z}^t z^s) = \begin{cases} \frac{s-t+1}{s+1} z^{s-t} & \text{if } s \ge t \\ 0 & \text{if } s < t. \end{cases}$$

For $0 \le i \le N - 1$, write

$$k_i(z) := \sum_{n=0}^{\infty} c_{Nn+i} z^{Nn+i}.$$

The following two lemmas will be used for proving the main result of this section.

LEMMA 2.1. For 0 < m < N, we have

(i)
$$||\overline{z}^m k_i(z)||^2 = \sum_{n=0}^{\infty} \frac{1}{Nn+i+m+1} |c_{Nn+i}|^2$$
;

(ii)
$$||P(\overline{z}^m k_i(z))||^2 = \begin{cases} \sum_{n=0}^{\infty} \frac{Nn+i-m+1}{(Nn+i+1)^2} |c_{Nn+i}|^2 & \text{if } m \leq i \\ \sum_{n=1}^{\infty} \frac{Nn+i-m+1}{(Nn+i+1)^2} |c_{Nn+i}|^2 & \text{if } m > i. \end{cases}$$

Proof. Let $0 \le m \le N$. Then we have

$$||\overline{z}^{m}k_{i}(z)||^{2} = \langle \overline{z}^{m}k_{i}(z), \overline{z}^{m}k_{i}(z) \rangle$$

$$= \langle z^{m}k_{i}(z), z^{m}k_{i}(z) \rangle$$

$$= \langle \sum_{n=0}^{\infty} c_{Nn+i}z^{Nn+i+m}, \sum_{n=0}^{\infty} c_{Nn+i}z^{Nn+i+m} \rangle$$

$$= \sum_{n=0}^{\infty} \frac{1}{Nn+i+m+1} |c_{Nn+i}|^{2}.$$

This proves the equation (i). For the equation (ii) if $m \leq i$ then by (2.1)

we have

$$||P(\overline{z}^{m}k_{i}(z))||^{2}$$

$$= \left\langle \sum_{n=0}^{\infty} c_{Nn+i} \frac{Nn+i-m+1}{Nn+i+1} z^{Nn+i-m} \right\rangle$$

$$= \sum_{n=0}^{\infty} c_{Nn+i} \frac{Nn+i-m+1}{Nn+i+1} z^{Nn+i-m} \right\rangle$$

$$= \sum_{n=0}^{\infty} \frac{Nn+i-m+1}{(Nn+i+1)^{2}} |c_{Nn+i}|^{2}.$$

If instead m > i, again by (2.1) we get

$$||P(\overline{z}^{m}k_{i}(z))||^{2}$$

$$= \left\langle \sum_{n=1}^{\infty} c_{Nn+i} \frac{Nn+i-m+1}{Nn+i+1} z^{Nn+i-m}, \sum_{n=1}^{\infty} c_{Nn+i} \frac{Nn+i-m}{Nn+i+1} z^{Nn+i-m+1} \right\rangle$$

$$= \sum_{n=1}^{\infty} \frac{Nn+i-m+1}{(Nn+i+1)^{2}} |c_{Nn+i}|^{2}.$$

LEMMA 2.2. Let $f(z) = a_m z^m + a_N z^N$ and $g(z) = a_{-m} z^m + a_{-N} z^N$ (0 < m < N). If $a_m \overline{a_N} = a_{-m} \overline{a_{-N}}$, then for $i \neq j$, we have $\left\langle H_{\overline{f}} k_i(z), H_{\overline{f}} k_j(z) \right\rangle = \left\langle H_{\overline{g}} k_i(z), H_{\overline{g}} k_j(z) \right\rangle$

Proof. Observe that

$$M_{\overline{f}}k_{i}(z) = \overline{a_{m}} \sum_{n=0}^{\infty} c_{Nn+i} z^{Nn+i} \overline{z}^{m} + \overline{a_{N}} \sum_{n=0}^{\infty} c_{Nn+i} z^{Nn+i} \overline{z}^{N}$$
and for $0 \le i \ne j \le N-1$,
$$\left\langle \sum_{n=0}^{\infty} c_{Nn+i} z^{Nn+i} \overline{z}^{m}, \sum_{n=0}^{\infty} c_{Nn+j} z^{Nn+j} \overline{z}^{m} \right\rangle$$

$$= \left\langle \sum_{n=0}^{\infty} c_{Nn+i} z^{Nn+i} \overline{z}^{N}, \sum_{n=0}^{\infty} c_{Nn+j} z^{Nn+j} \overline{z}^{N} \right\rangle$$

which implies that for $i \neq j$

$$\left\langle M_{\overline{f}}k_{i}(z), M_{\overline{f}}k_{j}(z)\right\rangle
= \overline{a_{m}}a_{N}\left\langle \sum_{n=0}^{\infty} c_{Nn+i}z^{Nn+i}\overline{z}^{m}, \sum_{n=0}^{\infty} c_{Nn+j}z^{Nn+j}\overline{z}^{N}\right\rangle
+ a_{m}\overline{a_{N}}\left\langle \sum_{n=0}^{\infty} c_{Nn+i}z^{Nn+i}\overline{z}^{N}, \sum_{n=0}^{\infty} c_{Nn+j}z^{Nn+j}\overline{z}^{m}\right\rangle$$

Similarly, for $i \neq j$, we get

$$\left\langle M_{\overline{g}}k_{i}(z), M_{\overline{g}}k_{j}(z) \right\rangle \\
= \overline{a_{-m}}a_{-N} \left\langle \sum_{n=0}^{\infty} c_{Nn+i} z^{Nn+i} \overline{z}^{m}, \sum_{n=0}^{\infty} c_{Nn+j} z^{Nn+j} \overline{z}^{N} \right\rangle \\
+ a_{-m} \overline{a_{-N}} \left\langle \sum_{n=0}^{\infty} c_{Nn+i} z^{Nn+i} \overline{z}^{N}, \sum_{n=0}^{\infty} c_{Nn+j} z^{Nn+j} \overline{z}^{m} \right\rangle$$

Combining (2.2), (2.3) and the assumption $a_m \overline{a_N} = a_{-m} \overline{a_{-N}}$, we get

(2.4)
$$\left\langle M_{\overline{f}}k_i(z), M_{\overline{f}}k_j(z) \right\rangle = \left\langle M_{\overline{g}}k_i(z), M_{\overline{g}}k_j(z) \right\rangle$$
 for $i \neq j$.

On the other hand, it follows from (2.1) that

$$\begin{split} \left\langle P(\overline{z}^p k_i(z)), P(\overline{z}^p k_j(z)) \right\rangle &= 0 \ \text{for all } 0 \leq i \neq j \leq N-1, \\ p &= 0, 1, 2, \cdots, \text{ so that for } 0 \leq i \neq j \leq N-1, \\ \left\langle B_{\overline{f}} k_i(z), B_{\overline{f}} k_j(z) \right\rangle \\ &= \left\langle \overline{a_m} P(\overline{z}^m k_i(z)) + \overline{a_N} P(\overline{z}^N k_i(z)), \\ \overline{a_m} P(\overline{z}^m k_j(z)) + \overline{a_N} P(\overline{z}^N k_j(z)) \right\rangle \\ &= \overline{a_m} a_N \left\langle P(\overline{z}^m k_i(z)), \ P(\overline{z}^N k_j(z)) \right\rangle \\ &+ a_m \overline{a_N} \left\langle P(\overline{z}^N k_i(z)), \ P(\overline{z}^m k_j(z)) \right\rangle \end{split}$$

Similarly, we also have that for $0 \le i \ne j \le N-1$

$$\left\langle B_{\overline{g}}k_{i}(z), B_{\overline{g}}k_{j}(z) \right\rangle = \overline{a_{-m}}a_{-N} \left\langle P(\overline{z}^{m}k_{i}(z)), P(\overline{z}^{N}k_{j}(z)) \right\rangle$$
$$+ a_{-m}\overline{a_{-N}} \left\langle P(\overline{z}^{N}k_{i}(z)), P(\overline{z}^{m}k_{j}(z)) \right\rangle$$

Hence, again by assumption $a_m \overline{a_N} = a_{-m} \overline{a_{-N}}$, we get (2.5)

$$\left\langle B_{\overline{f}}k_i(z), B_{\overline{f}}k_j(z) \right\rangle = \left\langle B_{\overline{g}}k_i(z), B_{\overline{g}}k_j(z) \right\rangle \quad \text{for } 0 \leq i \neq j \leq N-1.$$

Combining (2.4) and (2.5) it follows that for $0 \le i \ne j \le N-1$

$$\left\langle H_{\overline{f}}k_{i}(z), H_{\overline{f}}k_{j}(z) \right\rangle = \left\langle M_{\overline{f}}k_{i}(z), M_{\overline{f}}k_{j}(z) \right\rangle - \left\langle B_{\overline{f}}k_{i}(z), B_{\overline{f}}k_{j}(z) \right\rangle$$
$$= \left\langle H_{\overline{g}}k_{i}(z), H_{\overline{g}}k_{j}(z) \right\rangle$$

This completes the proof.

Our main result now follows:

THEOREM 2.3. Let
$$\varphi(z) = \overline{q(z)} + f(z)$$
, where

$$f(z) = a_m z^m + a_N z^N$$
 and $g(z) = a_{-m} z^m + a_{-N} z^N$ $(0 < m < N)$.

If $a_m \overline{a_N} = a_{-m} \overline{a_{-N}}$, then B_{φ} is hyponormal

$$\iff \begin{cases} \frac{1}{N+1}(|a_N|^2 - |a_{-N}|^2) \ge \frac{1}{m+1}(|a_{-m}|^2 - |a_m|^2) & \text{if } |a_{-N}| \le |a_N| \\ N^2(|a_{-N}|^2 - |a_N|^2) \le m^2(|a_m|^2 - |a_{-m}|^2) & \text{if } |a_N| \le |a_{-N}|. \end{cases}$$

Proof. Put $K_i := \{k_i(z) \in L_a^2 : k_i(z) = \sum_{n=0}^{\infty} c_{Nn+i} z^{Nn+i}\}$ for $i = 0, 1, 2, \dots, N-1$. By Proposition 1.2 (ii), B_{φ} is hyponormal if and only if

(2.6)
$$\left\langle (H_{\overline{f}}^* H_{\overline{f}} - H_{\overline{g}}^* H_{\overline{g}}) \sum_{i=0}^{N-1} k_i(z), \sum_{i=0}^{N-1} k_i(z) \right\rangle \ge 0$$

for all $k_i \in K_i$ $(i = 0, 1, 2, \dots, N-1)$. Also we have that

(2.7)
$$\langle H_{\overline{f}}^* H_{\overline{f}} \sum_{i=0}^{N-1} k_i(z), \sum_{i=0}^{N-1} k_i(z) \rangle$$

$$= \sum_{i=0}^{N-1} \langle H_{\overline{f}} k_i(z), H_{\overline{f}} k_i(z) \rangle + \sum_{i \neq j, i, j > 0}^{N-1} \langle H_{\overline{f}} k_i(z), H_{\overline{f}} k_j(z) \rangle$$

and

$$(2.8) \qquad \left\langle H_{\overline{g}}^* H_{\overline{g}} \sum_{i=0}^{N-1} k_i(z), \sum_{i=0}^{N-1} k_i(z) \right\rangle$$

$$= \sum_{i=0}^{N-1} \left\langle H_{\overline{g}} k_i(z), H_{\overline{g}} k_i(z) \right\rangle + \sum_{i \neq i, i, i > 0}^{N-1} \left\langle H_{\overline{g}} k_i(z), H_{\overline{g}} k_j(z) \right\rangle.$$

Substituting (2.7) and (2.8) into (2.6), it follows from Lemma 2.2 that

 B_{φ} is hyponormal

$$\iff \sum_{i=0}^{N-1} \left\langle (H_{\overline{f}}^* H_{\overline{f}} - H_{\overline{g}}^* H_{\overline{g}}) k_i(z), k_i(z) \right\rangle \ge 0.$$

$$\iff \sum_{i=0}^{N-1} \left(||\overline{f} k_i||^2 - ||\overline{g} k_i||^2 + ||P(\overline{g} k_i)||^2 - ||P(\overline{f} k_i)||^2 \right) \ge 0.$$

Therefore it follows from Lemma 2.1 that B_{φ} is hyponormal if and only if

$$(|a_{m}|^{2} - |a_{-m}|^{2}) \left\{ \sum_{i=0}^{m-1} \left(\frac{1}{m+i+1} |c_{i}|^{2} + \sum_{n=1}^{\infty} \left(\frac{1}{Nn+i+m+1} - \frac{Nn+i-m+1}{(Nn+i+1)^{2}} \right) |c_{Nn+i}|^{2} \right) + \sum_{i=m}^{N-1} \sum_{n=0}^{\infty} \left(\frac{1}{Nn+i+m+1} - \frac{Nn+i-m+1}{(Nn+i+1)^{2}} \right) |c_{Nn+i}|^{2} \right\} + (|a_{N}|^{2} - |a_{-N}|^{2}) \sum_{i=0}^{N-1} \left(\frac{1}{N+i+1} |c_{i}|^{2} + \sum_{n=1}^{\infty} \left(\frac{1}{N(n+1)+i+1} - \frac{N(n-1)+i+1}{(Nn+i+1)^{2}} \right) |c_{Nn+i}|^{2} \right) \ge 0,$$

or equivalently

(2.8)
$$(|a_m|^2 - |a_{-m}|^2) \left(\sum_{n=0}^{m-1} \frac{1}{n+m+1} |c_n|^2 + \sum_{n=m}^{\infty} \left(\frac{1}{n+m+1} - \frac{n-m+1}{(n+1)^2} \right) |c_n|^2 \right)$$

$$+ (|a_N|^2 - |a_{-N}|^2) \Big(\sum_{n=0}^{N-1} \frac{1}{n+N+1} |c_n|^2 + \frac{\infty}{n-N+1} \Big)$$

$$\sum_{n=N}^{\infty} \left(\frac{1}{n+N+1} - \frac{n-N+1}{(n+1)^2} \right) |c_n|^2 \right) \ge 0.$$

Now if $|a_{-N}| \leq |a_N|$ and hence $|a_m| \leq |a_{-m}|$, define ζ by

$$\zeta(n) := \frac{\frac{1}{n+m+1} - \frac{n-m+1}{(n+1)^2}}{\frac{1}{n+N+1} - \frac{n-N+1}{(n+1)^2}} \qquad (n \ge 1).$$

Then ζ is a strictly decreasing function and

(2.9)
$$\lim_{n\to\infty} \zeta(n) = \frac{m^2}{N^2}.$$

Observe that

$$(2.10) \qquad \frac{N+1}{m+1} \ge \frac{n+N+1}{n+m+1} \ge \zeta(N) \qquad \text{for } n=1,2,3,\cdots,N-1.$$

Therefore (2.8) and (2.10) give that B_{φ} is hyponormal if and only if

$$\frac{1}{N+1}(|a_N|^2 - |a_{-N}|^2) \ge \frac{1}{m+1}(|a_{-m}|^2 - |a_m|^2).$$

If instead $|a_N| \leq |a_{-N}|$, define ξ by

$$\xi(n) := \frac{\frac{1}{n+m+1} - \frac{n-m+1}{(n+1)^2}}{\frac{1}{n+N+1}}$$
 for $n = m, m+1, m+2, \cdots, N-1$.

Since $\xi(n) \ge \frac{m^2}{N^2}$, it follows from (2.8), (2.9) and (2.10) that B_{φ} is hyponormal if and only if

$$N^2(|a_{-N}|^2 - |a_N|^2) \le m^2(|a_m|^2 - |a_{-m}|^2)$$

This completes the proof.

If $\varphi(z) = \sum_{n=-m}^{N} a_n z^n$, then the hyponormality of the Toeplitz operator T_{φ} on the Hardy space of the unit circle implies $|a_N| \geq |a_{-m}|$ (cf. Proposition 1.1). But the above theorem shows that it is not the case for the Toeplitz operator B_{φ} on the Bergman space.

COROLLARY 2.4. Let $\varphi(z) = \overline{g(z)} + f(z)$, where

$$f(z) = a_m z^m + a_N z^N, \ g(z) = a_{-m} z^m + a_{-N} z^N \quad (0 < m < N).$$

If $a_m \overline{a_N} = \alpha a_{-m} \overline{a_{-N}}$ for some $\alpha \geq 1$, then the following statements are sufficient condition for the hyponormality of B_{ω} .

(i)
$$\frac{1}{N+1}(|a_N|^2 - \sqrt{\alpha}|a_{-N}|^2) \ge \frac{1}{m+1}(\sqrt{\alpha}|a_{-m}|^2 - |a_m|^2)$$

if $\sqrt{\alpha}|a_{-N}| \le |a_N|$.

(ii)
$$N^2(\sqrt{\alpha}|a_{-N}|^2 - |a_N|^2) \le m^2(|a_m|^2 - \sqrt{\alpha}|a_{-m}|^2)$$

if $|a_N| \le \sqrt{\alpha}|a_{-N}|$.

Proof. If $\varphi_{\alpha}(z) = \sqrt{\alpha g(z)} + f(z)$ then $\varphi_{\alpha}(z)$ satisfies the condition of Theorem 2.3. Hence (i) and (ii) are the necessary and sufficient condition for the hyponormality of $B_{\varphi_{\alpha}}$. Note that $\alpha \geq 1$ and apply Proposition 1.2 (ii) to get the result.

Corollary 2.5. [14]

- (i) If $n \ge m$, $B_{z^n + \alpha \overline{z}^m}$ is hyponormal if and only if $|\alpha| \le \sqrt{\frac{m+1}{n+1}}$.
- (ii) If $m \ge n$, $B_{z^n + \alpha \overline{z}^m}$ is hyponormal if and only if $|\alpha| \le \frac{\dot{n}}{m}$.

Proof. Immediate from Theorem 2.3. \Box

If $\varphi(z) = \sum_{n=-m}^{N} a_n z^n$, then the hyponormality of T_{φ} on the Hardy space implies $m \leq N$ (cf. Proposition 1.1), but it is not the case for the hyponormality of B_{φ} on the Bergman space. For example, if $\varphi(z) = \frac{1}{2}\overline{z}^2 + z$ then by Corollary 2.5 we can see that B_{φ} is hyponormal.

3. Necessary conditions for hyponormality

Let $\varphi(z) = \overline{g(z)} + f(z)$, where

$$f(z) = \sum_{n=1}^{N} a_n z^n$$
 and $g(z) = \sum_{n=1}^{N} a_{-n} z^n$.

Then for $m, n = 1, 2, \dots, N$, define

$$A_{m,n} := \det \begin{pmatrix} a_m & a_{-m} \\ \overline{a_{-n}} & \overline{a_n} \end{pmatrix}$$

and we abbreviate $A_{n,n}$ to A_n . In section 2, we investigated a necessary and sufficient condition for the hyponormality of the Toeplitz operator B_{φ} on the Bergman space when $A_{m,N} = 0$. In this section, we give a necessary condition which the hyponormality of B_{φ} gives $A_{m,n} = 0$.

We begin with:

Proposition 3.1. Let $\varphi(z) = \overline{g(z)} + f(z)$, where

$$f(z) = \sum_{n=1}^{N} a_n z^n$$
 and $g(z) = \sum_{n=1}^{N} a_{-n} z^n$.

Suppose B_{φ} is hyponormal. Then

(i) For each $i = 0, 1, 2 \cdots, N - 1$,

$$\sum_{n=1}^{i} \frac{n^2 A_n}{(i+n+1)(i+1)^2} + \sum_{n=i+1}^{N} \frac{A_n}{i+n+1} \ge 0.$$

(ii) For each $i \geq N$

$$\sum_{n=1}^{N} \frac{n^2 A_n}{(i+n+1)(i+1)^2} \ge 0.$$

(iii) If $|a_1| \leq |a_{-1}|$ and $|a_i| \geq |a_{-i}|$ for $i \geq 2$, then $||f|| \geq ||g||$ implies (i) and (ii).

Proof. For each $i=0,1,2,\cdots,N-1$, let $k_i(z)=\sum_{k=0}^{\infty}c_{Nk+i}z^{Nk+i}$. If B_{φ} is hyponormal, then Proposition 1.2 (iv) gives that

$$(3.1) ||\overline{f}k_i||^2 - ||\overline{g}k_i||^2 + ||P(\overline{g}k_i)||^2 - ||P(\overline{f}k_i)||^2 \ge 0$$

 $(i = 0, 1, 2, \dots, N - 1)$. Note that

(3.2)
$$||\overline{f(z)}k_{i}(z)||^{2} = \sum_{n=1}^{N} |a_{n}|^{2} ||\overline{z}^{n}k_{i}(z)||^{2},$$

$$||\overline{g(z)}k_{i}(z)||^{2} = \sum_{n=1}^{N} |a_{-n}|^{2} ||\overline{z}^{n}k_{i}(z)||^{2}$$

and

(3.3)
$$||P(\overline{f(z)}k_{i}(z))||^{2} = \sum_{n=1}^{N} |a_{n}|^{2} ||P(\overline{z}^{n}k_{i}(z))||^{2},$$

$$||P(\overline{g(z)}k_{i}(z))||^{2} = \sum_{n=1}^{N} |a_{-n}|^{2} ||P(\overline{z}^{n}k_{i}(z))||^{2}.$$

Substituting Lemma 2.1 (i) and (ii), respectively, into (3.2) and (3.3) and applying (3.1), we see that if B_{φ} is hyponormal then we have

$$\sum_{n=1}^{i} A_{n} \sum_{k=0}^{\infty} \left(\frac{1}{Nk+i+n+1} - \frac{Nk+i-n+1}{(Nk+i+1)^{2}} \right) |c_{Nk+i}|^{2}$$

$$+ \sum_{n=i+1}^{N} A_{n} \left(\frac{1}{i+n+1} |c_{i}|^{2} + \sum_{k=1}^{\infty} \left(\frac{1}{Nk+i+n+1} - \frac{Nk+i-n+1}{(Nk+i+1)^{2}} \right) |c_{Nk+i}|^{2} \right) \geq 0.$$

If we let $c_j=1$ for $0 \leq j \leq N-1$ and the other c_j 's be 0 into (3.4), then we have (i). If we also let $c_{Nk+i}=1$ for $0 \leq i \leq N-1, \ k=1,2,3,\cdots$ and the other c_j 's be 0 into (3.4), then we have

$$\sum_{n=1}^{N} \frac{n^2 A_n}{(Nk+i+n+1)(Nk+i+1)^2} \ge 0,$$

or equivalently,

$$\sum_{i=1}^{N} \frac{n^2 A_n}{(j+n+1)(j+1)^2} \ge 0 \quad \text{for each } j \ge N,$$

which proves (ii).

For $1 \le n \le N$, $k \ge 0$ and $0 \le i \le N - 1$, define D by

$$D(i,k,n) := \frac{1}{Nk+i+n+1} - \frac{Nk+i-n+1}{(Nk+i+1)^2}$$

and define Q by

$$Q(i,k,n) := \frac{D(i,k,n)}{D(i,k,n+1)}.$$

Then for each $1 \le n \le N-1$,

$$(3.5) Q(i,n,k) < 1.$$

Let $|a_1| \leq |a_{-1}|$ and $|a_i| \geq |a_{-i}|$ for $i \geq 2$. Note that

$$(3.6) \quad \frac{\frac{1}{2}}{\frac{1}{n+1}} \ge \frac{\frac{1}{i+2}}{\frac{1}{i+n+1}} \ge \frac{\frac{1}{i+2} - \frac{i}{(i+1)^2}}{\frac{1}{i+n+1}} \quad \text{for } 1 \le n \le N, \ 1 \le i \le N-1.$$

Since Q(i, n, k) is a strictly decreasing function of i and k, it follows from (3.5) and (3.6) that $||f|| \ge ||g||$ implies (i) and (ii). This proves (iii). \square

LEMMA 3.2. Let $\varphi(z) = \overline{g(z)} + f(z)$, where

$$f(z) = \sum_{n=1}^{N} a_n z^n$$
 and $g(z) = \sum_{n=1}^{N} a_{-n} z^n$.

Suppose that B_{φ} is hyponormal and

(3.7)
$$\sum_{n=1}^{i_0} \frac{n^2 A_n}{(i_0 + n + 1)(i_0 + 1)^2} + \sum_{n=i_0+1}^{N} \frac{A_n}{i_0 + n + 1} = 0$$

for some $i_0 = 0, 1, 2, \dots, N - 1$. Then

$$\left\langle \left(H_{\overline{f}}^* H_{\overline{f}} - H_{\overline{g}}^* H_{\overline{g}}\right) z^{i_0}, z^m \right\rangle = 0 \qquad (0 \le m \le N - 1).$$

Proof. Let B_{φ} be a hyponormal operator and suppose the equality (3.7) holds for some i_0 . Then for $0 \le m \ne i_0 \le N-1$ and $c_{i_0}, c_m \in \mathbb{C}$, we have

$$\left\langle \left(H_{\overline{f}}^* H_{\overline{f}} - H_{\overline{g}}^* H_{\overline{g}} \right) (c_{i_0} z^{i_0} + c_m z^m), c_{i_0} z^{i_0} + c_m z^m \right\rangle \ge 0,$$

or equivalently,

$$|c_{i_{0}}|^{2} \left\langle \left(H_{\overline{f}}^{*} H_{\overline{f}} - H_{\overline{g}}^{*} H_{\overline{g}}\right) z^{i_{0}}, z^{i_{0}} \right\rangle$$

$$+ |c_{m}|^{2} \left\langle \left(H_{\overline{f}}^{*} H_{\overline{f}} - H_{\overline{g}}^{*} H_{\overline{g}}\right) z^{m}, z^{m} \right\rangle$$

$$+ 2\operatorname{Re} \left(c_{i_{0}} \overline{c_{m}} \left\langle \left(H_{\overline{f}}^{*} H_{\overline{f}} - H_{\overline{g}}^{*} H_{\overline{g}}\right) z^{i_{0}}, z^{m} \right\rangle \right) \geq 0.$$

Observe that

$$(3.9) \qquad \left\langle M_{\overline{f}}z^{i_0}, M_{\overline{f}}z^{i_0} \right\rangle = \left\langle M_f z^{i_0}, M_f z^{i_0} \right\rangle$$
$$= \left\langle \sum_{n=1}^N a_n z^{n+i_0}, \sum_{n=1}^N a_n z^{n+i_0} \right\rangle$$
$$= \sum_{n=1}^N \frac{1}{n+i_0+1} |a_n|^2$$

and

$$\left\langle B_{\overline{f}}z^{i_0}, B_{\overline{f}}z^{i_0} \right\rangle = \left\langle P\left(\sum_{n=1}^N \overline{a_n} \overline{z^n} z^{i_0}\right), P\left(\sum_{n=1}^N \overline{a_n} \overline{z^n} z^{i_0}\right) \right\rangle.$$

Therefore it follows from (2.1) that

$$\langle B_{\overline{f}}z^{i_0}, B_{\overline{f}}z^{i_0} \rangle$$

$$= \left\langle \sum_{n=1}^{i_0} \frac{i_0 - n + 1}{i_0 + 1} \overline{a_n} z^{i_0 - n}, \sum_{n=1}^{i_0} \frac{i_0 - n + 1}{i_0 + 1} \overline{a_n} z^{i_0 - n} \right\rangle$$

$$= \sum_{n=1}^{i_0} \frac{i_0 - n + 1}{(i_0 + 1)^2} |a_n|^2.$$

Combining (3.9) and (3.10) it follows that

$$(3.11) \left\langle H_{\overline{f}}^* H_{\overline{f}} z^{i_0}, z^{i_0} \right\rangle = \sum_{n=1}^{i_0} \frac{n^2 |a_n|^2}{(i_0 + n + 1)(i_0 + 1)^2} + \sum_{n=i_0+1}^{N} \frac{|a_n|^2}{i_0 + n + 1}.$$

Similarly, we also have that

$$(3.12) \left\langle H_{\overline{g}}^* H_{\overline{g}} z^{i_0}, z^{i_0} \right\rangle = \sum_{n=1}^{i_0} \frac{n^2 |a_{-n}|^2}{(i_0 + n + 1)(i_0 + 1)^2} + \sum_{n=i_0+1}^{N} \frac{|a_{-n}|^2}{i_0 + n + 1}.$$

Combining (3.7), (3.11) and (3.12) we have

(3.13)
$$\left\langle \left(H_{\overline{f}}^* H_{\overline{f}} - H_{\overline{g}}^* H_{\overline{g}} \right) z^{i_0}, z^{i_0} \right\rangle = \sum_{n=1}^{i_0} \frac{n^2 A_n}{(i_0 + n + 1)(i_0 + 1)^2} + \sum_{n=i_0+1}^N \frac{A_n}{i_0 + n + 1} = 0.$$

Since c_{i_0} and c_m are arbitrary, it follows from (3.8) and (3.13) that

$$\left\langle \left(H_{\overline{f}}^* H_{\overline{f}} - H_{\overline{g}}^* H_{\overline{g}}\right) z^{i_0}, z^m \right\rangle = 0.$$

This completes the proof.

We are ready for:

THEOREM 3.3. Let $\varphi(z) = \overline{g(z)} + f(z)$, where

$$f(z) = \sum_{n=1}^{N} a_n z^n$$
 and $g(z) = \sum_{n=1}^{N} a_{-n} z^n$.

If B_{φ} is hyponormal and ||f|| = ||g||, then we have

$$\begin{pmatrix} A_{1,1} & A_{2,2} & \dots & \dots & A_{N,N} \\ 0 & A_{1,2} & A_{2,3} & \dots & \dots & A_{N-1,N} \\ 0 & 0 & A_{1,3} & \dots & \dots & A_{N-2,N} \\ 0 & 0 & 0 & \ddots & & \vdots \\ \vdots & \vdots & & \ddots & A_{1,N-1} & A_{2,N} \\ 0 & 0 & \dots & \dots & 0 & A_{1,N} \end{pmatrix} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{3} \\ \frac{1}{4} \\ \vdots \\ \frac{1}{N+1} \end{pmatrix} = 0.$$

Proof. The assumption ||f|| = ||g|| implies that the equality (3.7) holds for $i_0 = 0$. Therefore by Lemma 3.2 we have that

(3.14)
$$\left\langle \left(H_{\overline{f}}^* H_{\overline{f}} - H_{\overline{g}}^* H_{\overline{g}}\right) 1, z^m \right\rangle = 0 \qquad (0 \le m \le N - 1).$$

Observe that

(3.15)

$$\left\langle H_{\overline{f}}^* H_{\overline{f}} 1, z^m \right\rangle = \left\langle M_{\overline{f}}^* M_{\overline{f}} 1, z^m \right\rangle - \left\langle B_{\overline{f}}^* B_{\overline{f}} 1, z^m \right\rangle$$

$$= \left\langle M_{\overline{f}} 1, M_{\overline{f}} z^m \right\rangle$$

$$= \left\langle \sum_{n=1}^N a_n z^n, \sum_{n=1}^N a_n z^{n+m} \right\rangle$$

$$=\sum_{m=1}^{N-m}\frac{1}{m+n+1}a_{m+n}\overline{a_n}.$$

Similarly, we also have that

(3.16)
$$\left\langle H_{\overline{g}}^* H_{\overline{g}} 1, z^m \right\rangle = \sum_{n=1}^{N-m} \frac{1}{m+n+1} a_{-m-n} \overline{a_{-n}}.$$

Substituting (3.15) and (3.16) into (3.14) we have

$$\sum_{n=1}^{N-m} \frac{1}{m+n+1} \overline{A_{n,m+n}} = 0 \quad (0 \le m \le N-1),$$

which gives the result.

COROLLARY 3.4. Let $\varphi(z) = \overline{g(z)} + f(z)$, where

$$f(z) = a_m z^m + a_N z^N$$
 and $g(z) = a_{-m} z^m + a_{-N} z^N$ $(0 < m < N)$.

If B_{φ} is hyponormal and ||f|| = ||g||, then $A_{m,N} = 0$.

ACKNOWLEDGEMENT. The author wishes to thank Professor C.C. Cowen for helpful suggestions for this work during the author's visit to Purdue University, USA. in 2002 – 2003.

References

- S. Axler, Bergman spaces and their operators, Surveys of Some Recent Results in Operator Theory, Vol. I, Pitman Research Notes in Mathematics, Longman 171 (1988), 1–50.
- [2] C. Cowen, Hyponormal and subnormal Toeplitz operators, Surveys of Some Recent Results in Operator Theory, Vol. I, Pitman Research Notes in Mathematics, Longman 171 (1988), 155-167.
- [3] _____, Hyponormality of Toeplitz operators, Proc. Amer. Math. Soc. 103 (1988), 809-812.
- [4] R. E. Curto and W. Y. Lee, Joint hyponormality of Toeplitz pairs, Memoirs Amer. Math. Soc. 150 (2001), no. 712.
- [5] R. Douglas, Banach algebra techniques in operator theorey, Academic Press, New York, 1972.
- [6] P. Duren, Theory of H^p spaces, Academic Press, New York, 1970.
- [7] P. Fan, Remarks on hyponormal trigonometric Toeplitz operators, Rocky Mountain J. Math. 13 (1983), 489-493.

- [8] D. R. Farenick and W. Y. Lee, Hyponormality and spectra of Toeplitz operators, Trans. Amer. Math. Soc. 348 (1996), 4153-4174.
- [9] C. Gu, A generalization of Cowen's characterization of hyponormal Toeplitz operators, J. Funct. Anal. 124 (1994), 135–148.
- [10]_____, On a class of jointly hyponormal Toeplitz operators, Trans. Amer. Math. Soc. **354** (2002), 3275–3298.
- [11]I. S. Hwang, I. H. Kim and W. Y. Lee, Hyponormality of Toeplitz operators with polynomial symbol, Math. Ann. 313 (1999), 247–261.
- [12]I. S. Hwang and W. Y. Lee, Hyponormality of trigonometric Toeplitz operators, Trans. Amer. Math. 354 (2002), 2461–2474.
- [13]T. Nakazi and K. Takahashi, Hyponormal Toeplitz operators and extremal problems of Hardy spaces, Trans. Amer. Math. Soc. 338 (1993), 753–769.
- [14]H. Sadraoui, Hyponormality of Toeplitz operators and Composition operators, Thesis, Purdue University, 1992.
- [15]D. Sarason, Generalized interpolation in H^{∞} , Trans. Amer. math. Soc. 127 (1967), 179–203.
- [16]K. Zhu, Hyponormal Toeplitz operators with polynomial symbols, Integral Equations and Operator Theory 21 (1995), 376–381.

Department of Mathematics Sungkyunkwan University Suwon 440-746, Korea E-mail: ihwang@skku.edu