• 제목/요약/키워드: isomorphisms

검색결과 36건 처리시간 0.019초

COLORINGS OF TREES WITH LINEAR, INTERMEDIATE AND EXPONENTIAL SUBBALL COMPLEXITY

  • LEE, SEUL BEE;LIM, SEONHEE
    • 대한수학회지
    • /
    • 제52권6호
    • /
    • pp.1123-1137
    • /
    • 2015
  • We study colorings of regular trees using subball complexity b(n), which is the number of colored n-balls up to color-preserving isomorphisms. We show that for any k-regular tree, for k > 1, there are colorings of intermediate complexity. We then construct colorings of linear complexity b(n) = 2n + 2. We also construct colorings induced from sequences of linear subword complexity which has exponential subball complexity.

ISOMORPHIC MODULAR GROUP ALGEBRAS OF SEMI-COMPLETE PRIMARY ABELIAN GROUPS

  • DANCHEV, PETER V.
    • 대한수학회보
    • /
    • 제42권1호
    • /
    • pp.53-56
    • /
    • 2005
  • Suppose G is a semi-complete abelian p-group and FG ${\cong}$ FH as commutative unitary F-algebras of characteristic p for any fixed group H. Then, it is shown that, G ${\cong}$ H. This improves a result of the author proved in the Proceedings of the American Math. Society (2002) and also completely solves by an another method a long-standing problem of W. May posed in the same Proceedings (1979).

ISOMORPHISMS OF A(3) ∞(i,k)

  • Jo, Young-Soo;Kang, Joo-Ho;Cho, Kyu-Min
    • 대한수학회보
    • /
    • 제33권2호
    • /
    • pp.233-241
    • /
    • 1996
  • The study of non-self-adjoint operator algebras on Hilbert space was only beginned by W.B. Arveson[1] in 1974. Recently, such algebras have been found to be of use in physics, in electrical engineering, and in general systems theory. Of particular interest to mathematicians are reflexive algebras with commutative lattices of invariant subspaces.

  • PDF

REMARKS ON ISOMORPHISMS OF TRANSFORMATION SEMIGROUPS RESTRICTED BY AN EQUIVALENCE RELATION

  • Namnak, Chaiwat;Sawatraksa, Nares
    • 대한수학회논문집
    • /
    • 제33권3호
    • /
    • pp.705-710
    • /
    • 2018
  • Let T(X) be the full transformation semigroup on a set X and ${\sigma}$ be an equivalence relation on X. Denote $$E(X,{\sigma})=\{{\alpha}{\in}T(X):{\forall}x,\;y{\in}X,\;(x,y){\in}{\sigma}\;\text{implies}\;x{\alpha}=y{\alpha}\}.$$. Then $E(X,{\sigma})$ is a subsemigroup of T(X). In this paper, we characterize two semigroups of type $E(X,{\sigma})$ when they are isomorphic.

APPROXIMATE BI-HOMOMORPHISMS AND BI-DERIVATIONS IN C*-TERNARY ALGEBRAS

  • Bae, Jae-Hyeong;Park, Won-Gil
    • 대한수학회보
    • /
    • 제47권1호
    • /
    • pp.195-209
    • /
    • 2010
  • In this paper, we prove the generalized Hyers-Ulam stability of bi-homomorphisms in $C^*$-ternary algebras and of bi-derivations on $C^*$-ternary algebras for the following bi-additive functional equation f(x + y, z - w) + f(x - y, z + w) = 2f(x, z) - 2f(y, w). This is applied to investigate bi-isomorphisms between $C^*$-ternary algebras.

REMARKS ON THE MAFFEI'S ISOMORPHISM

  • Kwon, Nam-Hee
    • 호남수학학술지
    • /
    • 제33권3호
    • /
    • pp.347-353
    • /
    • 2011
  • In [1], Maffei proved a certain relationship between quiver varieties of type A and the geometry of partial flag varieties over the nilpotent cone. This relation was conjectured by Naka-jima, and Nakajima proved his conjecture for a simple case. In the Maffei's proof, the key step was a reduction of the general case of the conjecture to the simple case treated by Nakajima through a certain isomorphism. In this paper, we study properties of this isomorphism.

MINIMAL PROJECTIVE RESOLUTIONS OF A FINITELY GENERATED MODULE M OVER A NOETHERIAN LOCAL RING (R, 𝔪) AND THE COHOMOLOGIES OF (M, R/𝔪)

  • Lee, Sang Cheol;Song, Yeong Moo
    • 호남수학학술지
    • /
    • 제40권2호
    • /
    • pp.355-366
    • /
    • 2018
  • Let R be a commutative ring with identity and let M be a finitely generated module over a Noetherian local ring R. Then it is well-known that M has a minimal projective resolution, which is unique up to isomorphisms of exact sequences. We provide a new proof of its uniqueness. Moreover, we deal with the cohomologies of (M, R/m).

ISOMOEPHISMS OF CERTAIN (4k-1)-DIAGONAL ALGEBRAS $Alg{\iota}(\array{4k-a\\2n}\)$ AND $Alg{\iota}(\array{4k-a\\2n+1}\)$

  • Taeg Young Choi;Si Ju Kim
    • 대한수학회논문집
    • /
    • 제12권3호
    • /
    • pp.631-643
    • /
    • 1997
  • In this paper, we introduce (4k-1)-diagonal algebras $Alg{\iota}(\array{4k-a\\2n}\)$ AND $Alg{\iota}(\array{4k-a\\2n+1}\)$ and investigate necessary and sufficient conditions that isomorphisms of $Alg{\iota}(\array{4k-a\\2n}\)$ AND $Alg{\iota}(\array{4k-a\\2n+1}\)$ are spatially implemented.

  • PDF

ON QUASI-REPRESENTING GRAPHS FOR A CLASS OF B(1)-GROUPS

  • Yom, Peter Dong-Jun
    • 대한수학회지
    • /
    • 제49권3호
    • /
    • pp.493-502
    • /
    • 2012
  • In this article, we give a characterization theorem for a class of corank-1 Butler groups of the form $\mathcal{G}$($A_1$, ${\ldots}$, $A_n$). In particular, two groups $G$ and $H$ are quasi-isomorphic if and only if there is a label-preserving bijection ${\phi}$ from the edges of $T$ to the edges of $U$ such that $S$ is a circuit in T if and only if ${\phi}(S)$ is a circuit in $U$, where $T$, $U$ are quasi-representing graphs for $G$, $H$ respectively.

DERIVATION MODULES OF GROUP RINGS AND INTEGERS OF CYCLOTOMIC FIELDS

  • Chung, I.Y.
    • 대한수학회보
    • /
    • 제20권1호
    • /
    • pp.31-36
    • /
    • 1983
  • Let R be a commutative ring with 1, and A a unitary commutative R-algebra. By a derivation module of A, we mean a pair (M, d), where M is an A-module and d: A.rarw.M and R-derivation, i.e., d is an R-linear mapping such that d(ab)=a)db)+b(da). A derivation module homomorphism f:(M,d).rarw.(N, .delta.) is an A-homomorphism f:M.rarw.N such that f.d=.delta.. A derivation module of A, (U, d), there exists a unique derivation module homomorphism f:(U, d).rarw.(M,.delta.). In fact, a universal derivation module of A exists in the category of derivation modules of A, and is unique up to unique derivation module isomorphisms [2, pp. 101]. When (U,d) is a universal derivation module of R-algebra A, the A-module U is denoted by U(A/R). For out convenience, U(A/R) will also be called a universal derivation module of A, and d the R-derivation corresponding to U(A/R).

  • PDF