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ISOMORPHISMS OF A%

Younc Soo Jo, Joo Ho KanGg, AND Kyu MIN CHO

1. Introduction

The study of non-self-adjoint operator algebras on Hilbert space was
only beginned by W.B. Arveson[l] in 1974. Recently, such algebras
have been found to be of use in physics, in electrical engineering, and
in general systems theory. Of particular interest to mathematicians
are reflexive algebras with commutative lattices of invariant subspaces.
One of the most important classes of such algebras is the sequence of
“tridiagonal” algebras, discovered by F. Gilfeather and D. Larson[§].
These algebras possess many surprising properties related to isomor-
phisms and eohomology, and are not yet well understood.

Let H be a complex Hilbert space with an orthonormal basis {¢1, €2,

€3, -+ }. Let AL be the algebra consisting of all bounded operators
acting on H of the form:

* ok
*
* K %
*
*

where all non-starred entries are zero.

Let Ag)(i k) be a subalgebra of B(H) such that an operator A is

in 'A(oi)(i,k) if and only if it is in AL and its two off-diagonal entries
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are zero. First we will introduce the terminologies used in this paper.
Let H be a complex Hilbert space and let .4 be a subset of B(H). the
class of all bounded operators acting on H. If .4 is a vector space
over C' and if A is closed under the composition of maps, then A is
called an algebra. A is called a self-adjoint algebra provided A* is in
A for every A in A. Otherwise, A is called a non-self-adjoint algebra.
If £ is a lattice of orthogonal projections acting on H, AlgL denotes
the algebra of all bounded operators acting on H that leave invariant
every orthogonal projection in £. A subspace latiice £ is a strongly
closed lattice of orthogonal projections acting on . containing 0 and
1. Dually, if A is a subalgebra of B(H), then LatA is the lattice of all
orthogonal projections invariant for each operator :n 4. An algebra A4
is reflexive if A = AlgLat A and a lattice £ is reflexive if £ = Lat AlgL.
A lattice £ is a commutative subspace lattice, or CSL, if each pair
of projections in £ commutes; AlgL is then called a C'SL-algebra. If
T1,T9. ", T, are vectors in some Hilbert space, then [z, x5, - .7,]
means the closed subspace generated by the vectors z,, 15, . 2,.

(3)

2. Isomorphisms of Al

Let £, and £, be commutative subspace lattices. By an isomorphism
v AlgL, — AlgLl,

we mean a strictly algebraic isomorphism, that is a bijective, linear,
multiplicative map. An isomorphism » : Algl, — AlgL, is said
to be spatially implemented if there is a bounded invertible operator
T such that p(A) = TAT™! for all A in AlgL, An isomorphism
p: AlgL, — AlgL, is said to be quasi-spatially implemented if there
exists a one-to-one operator T with a dense domain D. that is an in-
variant linear manifold for AlgL,, such that o(A'Tf = TAf for all
Ain AlgL, and f € D. Let 7 and j be natural rumbers. Then E;;
is the matrix whose (¢, j)-component is 1 and all other components
are zero. If o : A(i) — AE;? is an isomorphism, then we know that

@ is quasi-spatially implemented [5]. Let A(OBO)“ x) be a subalgebra of
B(H) such that an operator A is in Agi)(i.k) if and only if A is in Aﬁ,i)
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(3)

Isomorphisms of AOO( ik

and its (2¢ 4+ 1,2¢)-, (2k + 1,2k)- component are zero, where | < k,

:=1,2,---. Let £ be the commutative subspace lattice generated by

{[62}2—-1]1 [61762763], [63,64,65], [621’—1,621‘], [52i+1762i+27€21+3]»
(3

[eZk—lank]ﬂ [€2k+1w62k+2»€2k+3]a -+t p=12.--}. Then ’A(oo)(i,k) -

AlgL. Since £ is commutative, £ and A(oi)(zpk) are reflexive.

THEOREM 1. (Gilfeather and Moore [9]) Le £, and £, be com-
mutative subspace lattices on Hilbert spaces H, and H,. respectively,
and let ¢ : AlgLy — AlgLy be an algebraic iscrnorphism. Then ¢ is
uniformly continuous.

THEOREM 2. Let ¢ : Ag:)(i,k) — ‘Afi)(i,k) be an isomorphism such
that @(Epp) = Epp for all p = 1,2,---. Then there exist nonzero
complex numbers &, n such that o(E;y, n) = am nEm n for all E,, , in

A(3)

oo(1,k)”
Proof. Since ¢(E,,) = E,, and ¢ is an isomorphism, we have
cp(Epr = E};l;, for all p = 1,2,--- by Theorem 1. Since Ez;4121 =

L L _
E5iwiE2t1,20 B and Eqrpi0 = B i Eap 1By 0y (1=
1,2,---;l#7and | # k),

(¢(Eary120) = o Egj g Bargr 20E2121) )
= QD(EQJLZI)‘P(EZH-I,ZI)W(EZI,’ZI)
= EQLJ,QISO(E21+1,21)E21,21 and

@(E21+1,21) :99(E21+1,21+1E21+1,21E2l1+1721+1)
= ¢(E2ip1,2041)9( Bar1, 200 By 2041
= E21+1,21+1§9(E21+1.21)Ei}7+1,21+]

Comparing components of the first equation of {*) with those of sec-
ond equation of (*), we have @(Eq4121) = o02i41,20F241,2 for all
l=1,2,---(I#¢and ! # k). Since Eqiq191 # 0, azip1,20 # 0. Sim-
ilarly we can prove that o(Eqp41 0p+2) = Q2pt1,2p+2E2p+1,2p+2 for all
p=12, and p(E1y) = apk,.

THEOREM 3. Let ¢ : Ag)(i,k) — Af:;)(i,k) be an isomorphism such

that ‘P(Epp) = Epp for all p = 1,2,--- and let 2(Eqi41 21) = Q1,2
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E21+1,21, @(E2p+1,2p+2) = (12p+1,2p+2E2p+1,2p+2 and @(E12) = a12E),
(Lp=1,2,---;1 # ¢ and | # k). Then there exists a diagonal linear
transformation T such that ¢(A) = TAT ! for all 4 in Af;i)(i k)

Proof. Let A = (a,;) be in Afj_))(i’k). Then ¢(A) = (aija:j) by The-
orem 1. Let T = (t;) be a diagonal-matrix whose (7,7)-component is
tiand t; # 0 for all i = 1,2,---. Then TAT ! = (t;a;;¢7"). So if the

777
linear system for unknown variables ¢; (i = 1,2,--- (*);

-1

o2 = ity 7,
-
aizg = t3t,

~1
zq = tat, ",

-1
Qoi1,2i = tai_1ty;
-1

Q2i+1,2i+2 = t2it1tg;1 95

-1
02i43,2i+2 = t2igsty; o,

-1

Q2k—1,2k-2 = tok—1l55_o,
—1
Qo128 = t2k—1t5;,
—1

O2k+1,2k+2 = L2k+1855 40

—1
Q2k43,2k+2 = Lok43top g,

then (4) = TAT™! for all 4in AP, .
t2k+1 = 1. Then

— o1
t2 = oy

Put tl - 1,t2,‘+1 =1 and

—1
t3 = 01320112

N | -1
t4 = 034 (132012
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Isomorphisms of A(S(l %)

—1 -1
toi = @y, g 5i0mim12i-2" " Q3207

o
t2i4e = Qg0 9549

o o
12i43 = Q2i43,2i4200; 11 9149

. - 1 . . ~1
toipa = Oit3,2i44 ¥2i43,2i+200, 11 2,42

tok—1 = agk_l,gk_za;kl_mk_gazk—s,2k~4 e '*¥2i+3,2i+2%7‘:»1.21‘
tog = az‘k]_mkazk-l,zk_gaz_kl_ssz_Qazk—sﬁzk-lt
2043204201 1 2142
tok+2 = az—k]+l,2k+2

. -1
tog43 = X2k+3,2k+2%98 41 2k42

Thus the linear system (*) has solutions and hence @(A) = TAT ! for

(3)
all Ain A oo(i.k)

THEOREM 4. (Gilfeather and Moore [9]) Let £ and £, be commu-
tative subspace lattices on Hilbert spaces H, and H;, respectively, and
suppose that @ : AlgL, — AlgL, is an algebraic isomorphism. Let
M be a maximal abelian self-adjoint subalgebra(masa) contained in
AlgLy. Then there exist a bounded invertible operator Y : Hy — Hy
and an isomorphism p : AlgL, — AlgL, such that

1) p(M) =M for all M in M and

i) p(A) =Y p(A)Y ! for all A in AlgL,.

THEOREM 5. Letcp'A (k) Ag(z k)

there exists an invertible lmear transformatuon T from H onto H such

that @(A) = TAT™! for all A in A®

and T constructed the above.

be an isomorphism. Then

1k)

Proof. Since (.A(3 (i k)) N (.Afi)(l k) )* is a masa of Ag)(l x and Ey
is in (.A((i(l ) N (.A(3(l g)" for all ¢ = 1,2,--., by Theorem 4 there
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exist a bounded invertible operator Y in B(H) and an isomorphism
p: Ag)(i,k) — A(a?(i,k) such that p(E;;) = E;; for all7 = 1,2,--- and

P(A4) =Y p(A)Y " forall Ain AV | By Theorem 3 p(A) = SAS™!

for some diagonal linear transformation S and all .4 in A(o:i)(i x)- Hence

p(A) = Yp(A)Y ' = (YS)A(ST'Y ) for all Ain A}, || Let T =
YS. Then p(A) = TAT ! for all A in .Af_i)“.k).

THEOREM 6. Let ¢ : 'A(oi)(i K ‘Afi)(i x) be an isomorphism. Then
there exists an invertible linear transformation T all of whose entries
are zero except for the (p, p)-component, the (2¢-1,2q)-component and
the (2h + 1,2h)-component (h,p,q = 1,2,--- ,h # © and h # k) such
that p(A) = TAT ' forall Ain AY), .

Proof. Let ¢ : Afi)(i,k) — .A(o?(llk) be an isomorphism. Then by
Theorem 5 there exists an invertible linear transformation T such that

p(A) = TAT forall Ain AT, . Let A = (a;) and p(4) = (b;;)

be in 'A(o?(i,k)’ and let T = (t;;). Then p(A)T =TA - (*).

(1) t2n2m—1 = 0 for all n,m. First, we will show that t2,, = 0
for all n. Suppose that t9, 1 # 0 for some n. Comparing the (2n,1)-
component of ¢(A)T with that of TA, a1y = bap2n - (*;). Comparing
the (2n,3)-component of o(A)T with that of TA, t;, 3a33 = t2n.3b2n 2n-
SO t2n,3(b2n,2n — Cl33) = tzn‘g(an — (133) =90 by (*1). Since th(? equa-
tion (%) holds for all A in Agi)(i,k)’ tan s = 0. Comparing the (2n,2)-
component of (A)T with that of TA, byn anton2 == ton, 1012 + t2n,2a22
lf n=:1 and bzn’gntgmg = tzn,]alz + t2n,2a22 + tgn';agg ifn # 7. SillCG
tans = 0 and ay1 = byn2n, we have that ton2(a1. — az2) = tan 1012
Since the equation () holds for all A in A(oi)“ k)
tion if ay; = ag and a1z # 0. Thus ty,, = 0. Show that if ton2i—1 = 0,
then ¢5, 941 = 0forall { = 1,2,--.. Suppose that t,, 3141 # 0 for some
. Comparing the (2n,2! + 1)-component of ¢(A)T with that of TA,
a2141,2141 = ban 2n. Comparing the (2n,20)-component of p(A)T with
that of TA, bon ontan2t = t2n20-1020-1,21 + t20,2192: 21 + L2 204102041,21
if { # 1 and [ # k. Since t2p,01-1 = 0 and byn2n = 214120415

we have a contradic-
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Isomorphisms of Agzi.k)
ton2i(@2i41,2041 — @2121) = tan204102141,21. Comparing the (2n,20 +
2)-component of p(A)T with that of TA, ty, 21182041 2042 +2n 2042
21422042 +l2n 2043 21432042 = banonton2i42(l + 1 # k) or ta, 2049
a2i4+1,2142 + 20204202042 2142 = ban onton 2142(1 + 1 # k) if I = 7. Since
bon2n = @21412141, t2n 204102041 2042 t2n 2042 (@242 2042~ Q2041.2041)
+t2n 204302043 2042 = 0 OF ton 214102041 2142 + ton2i2(Qoig2 2042-Q2041,
2141) = 0. Since the equation (%) holds for all A in A(i)(i‘k),
contradiction. Thus if t5, 5;_1 = 0, then t3, 2/4 == 0 for alll=1,2,--.
Therefore t9, 2m—1 = 0 for all n, m.

we have a

(2) If ton om # 0, then agp 2m = bon 2, for all n,m. For, compar-
ing the (2n,2m)-component of ¢(A)T with that of TA, byy ontonom =
tan2m-102m-12m+ t2n2m%m2m + tan2m+102me1,2m f m # @ and
b2n,2nt2n,2m =ton2m—102m—1,2m + t2n 2md2m 2m f m = 1. Since ton,2m
# 0 tonom-1 =0 and t2n9m+1 = 0, ban.2n = @2m.2m- Similarly, we can
get the fOHOWiIlg. If t2n—1,2m~1 # 0 then bgn_[,gn_] = dam—1.2m-1
for all n,m. If tapnom # 0, then top; = 0 for all (I # 2m). If
tenom # 0, then #2190, = 0 for all (I # ¢). If ton_12m-1 # 0,
then ¢ 5,1 = 0 for all {(I % 2n —1). If 3, 12m_1 # 0, then
ton—12011r = 0 for all I({ # m). If ty; # 0, ty412i41 # 0 and
tok+1.2k+1 7 0. then T has the form of elements of Ag)(i,k)' For, let
t1; # 0. Comparing the (1,2)-component of ¢(+)T with that of TA,
ty2 # 0. Suppose that t1; # 0.2 # 0,---, t2;2; # 0. Comparing the
(21 + 1,2l)-component of ¢(A)T with that of TA (I # ¢ and [ # k),
t2[+1Y21+1 # 0. Suppose that 111 # O,tgg # 0, RN t21_1,21_.1 # 0. Com-
paring the (2] — 1.2[)-component of p(A)T with that of T4 (I # 1
and [ # k), ty101 # 0. So by induction, #;; # ¢ for all [ = 1,2,---
Similarly, we can get the following. If t3,_12n—1 # 0, t2n2, # 0 and
tont1,2n+1 # 0, then t3;_1 2 = 0 for [ # n and ! 54 n + 1. Finally, sup-
pose that t2,41,2; # 0. Comparing the (2: 4+ 1, 27)- component of @(A)T
with that of T'A, byit12¢t2i2i + bzig1 2i41t2i41,2i + bait1 2it2t2i42,2i =
1241201020120 T t2i41.2i02i2i + 12i41,2i4102i41 24 SINCE U441 2i =
0,baiq1,2i = 0, 25422 = 0, t2i41,2i—1 = 0 and b1 241 = Q2i412i41 bY
(*1), toitt 2:(@2i41 2041 — az; 2i) = 0. Since the equation (*) holds for
all A in Ai)(z,k)’ we have a contradiction if ajiy1 2i41 # azi2i. Thus
t2it1.2¢ = 0. Similarly, we can prove that topy; o = 0. It is easily
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verified that ¢3;_; ; and t3;_5 ; cannot both be nonzero, and ¢5;_; ; and
ty12 cannot both be nonzero (I > 2). If t;; = 0, then ty;_;; # 0
for some j(;j = 1,2,---). Suppose that t3; 25 = 0 and t5;, = 0.
Comparing the (25 — 1,2)-component of ¢(A)T with that of TA, we
have tg;_12(a11 — az) = tyj-1,1a12 which is a contradiction. Thus
t2;_2,2 # 0 or t3;5 # 0. But this contradicts the just above fact ---
(*2). By a simple but tedious calculation, it is verified that t;_1 2,41
and t3;_3 2i4+2 cannot both be nonzero, and t5;_1 9,41 and t2; 9,49 can-
not both be nonzero (I # ¢ + 1). Suppose that t7;412i+1 = 0. Then
t1,2i41 7 0 or t3_1 2:41 # 0 for some I. Suppose that ¢; 2,41 # 0 and
tg,2i42 = 0. Comparing the (1,2: + 2)-component of ¢(A)T with that
of TA, byity2ive + biataits = t12i4102i41 2i42 1 2i4202i42,2i42 +
t1,2i4302i43 2i42. Since by = a1, ty 2iv2(@in — C2ig2.2i42) = t12i41
A2i41,2i+2+ t12i4302i43,2i+2. Since the equation (*) holds for all A in

Ag)(i x)» We have a contradiction. So £33i42 # 0. It contradicts the just

above fact. If t2;_1 2:41 # 0 for some [, then with argument similar to
(*2) we have a contradiction. Hence tg,41 2,41 # 0.
Similarly we can prove that tox41 2641 # 0. Hence ¢y # 0 for all [

and T has the form of elements of .Agi)(i k-
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