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COLORINGS OF TREES WITH LINEAR, INTERMEDIATE

AND EXPONENTIAL SUBBALL COMPLEXITY

Seul Bee Lee and Seonhee Lim

Abstract. We study colorings of regular trees using subball complex-

ity b(n), which is the number of colored n-balls up to color-preserving
isomorphisms.

We show that for any k-regular tree, for k > 1, there are colorings of
intermediate complexity. We then construct colorings of linear complexity

b(n) = 2n + 2. We also construct colorings induced from sequences of

linear subword complexity which has exponential subball complexity.

1. Introduction

Consider a coloring φ : V T → A of a locally finite tree T , i.e., a coloring of
vertices V T of T , with colors in a finite set A (called an alphabet). The subball
complexity bφ(n) of a coloring φ, defined by D. Kim and the second author
(which is called subword complexity of a coloring in [5]), is the number of col-
ored n-balls in the colored tree (T, φ) up to color-preserving isomorphisms (see
the paragraph after Definition 2.2). The subball complexity bφ(n) is closely
related to the well-known subword complexity of a sequence, which is an im-
portant tool to study sequences which are not periodic.

The subword complexity pw(n) of a sequence w is the number of distinct
subwords of length n. Coven and Hedlund showed that the subword com-
plexity of a two-sided sequence is bounded if and only if it is periodic [3]. A
non-eventually periodic sequence with minimal unbounded subword complex-
ity p(n) = n + 1 is called a Sturmian sequence. It is known that Sturmian
sequences are completely characterized as irrational rotations on the unit circle
(see for example [7]).

D. Kim and the second author showed a theorem analogous to Coven-
Hedlund Theorem for colorings of regular trees, namely that bφ(n) is bounded
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if and only if φ is periodic. They further studied Sturmian colorings, which are
colorings of minimal unbounded subball complexity b(n) = n+ 2 (see [5]).

In this paper, we continue the study of subball complexity of colorings of
trees. For any given sequence, we first construct a coloring of subball complex-
ity which is asymptotically of the same type as the subword complexity of the
sequence.

More precisely, let φ0 be a two-sided sequence. We can consider φ0 as a
coloring on vertices of a connected graph X, which is a 2-regular tree with one
loop attached to each vertice. Given an index map i on X, let us denote by
π the projection map from the universal covering tree T of (X, i) to X. The
lift φ = φ0 ◦ π is a coloring of T , which we call the lifting of φ0 to T . By
constructing an index map i on X which preserves the subball complexity, we
show the following theorem (see Theorem 3.6).

Theorem 1. Let φ0 be a two-sided sequence with a finite alphabet A. For any
integer k > 2, there exists a coloring φ : V T → A on a k-regular tree T such
that

bφ(n) = bφ0(n).

A non-decreasing function is called intermediate if it grows faster than any
polynomial function and slower than any exponential function. One-sided se-
quences of intermediate subword complexity have been constructed by many
authors (see for example [2] and [6]). For a given one-sided sequence, it is
straightforward to construct a two-sided sequence whose subball complexity is
of the same asymptotic type as the subword complexity of the given one-sided
sequence.

Corollary 1. There exist colorings of intermediate subball complexity.

In the second part, we construct colorings with the exact subball complexity
(see Theorem 4.9).

Theorem 2. For any k > 1, there exists a family of colorings of k-regular
trees with subball complexity b(n) = 2n+ 2.

G. Rote constructed one-sided sequences with subword complexity p(n) = 2n
using rotations on the unit circle (see [8] for details and examples). He showed
that a sequence v = (vi)i∈N is complementation-symmetric (see Definition 4.2)
and pv(n) = 2n if and only if its difference sequence d = (di)i∈N defined by
di = vi+1 − vi (mod 2) is Sturmian.

In Section 4, we give a method of constructing non-eventually periodic two-
sided sequences with subword complexity 2n using the method of G. Rote
(see Proposition 4.6). Then, we show that if w is a non-eventually periodic
complementation-symmetric two-sided sequence with subword complexity p(n)
= 2n, then w is a coloring of a 2-regular tree with subball complexity b(n) =
2n+ 2 (see Theorem 4.9).



SUBBALL COMPLEXITY OF COLORINGS 1125

One might ask if the asymptotic growth type of subball complexity function
is preserved by any index map i. In Section 5, we will show that there is
an index map i on a 2-regular tree such that the subball complexity bφ(n) is
exponential (see Theorem 5.1).

Theorem 3. Let X be a 2-regular tree with loops attached and φ0 be a coloring
of X on a finite alphabet A with unbounded subball complexity bφ0

(n). If the
1-balls colored by [aaa] occur only finitely many times in X for any a ∈ A,
then there is an index map i on X such that bφ(n) is an exponential function
where φ is the lifting of φ0 to the universal covering of (X, i). In particular,
there are some Sturmian sequences whose induced coloring of an index map has
exponential subball complexity.

2. Preliminaries

2.1. Words and sequences

An element of an alphabet A is called a letter. For a word of length n ∈ N (or
an n-word) u = u1u2 · · ·un, ui ∈ A, the reversed word of u is u = un · · ·u2u1.
The word u is called a palindrome if u = u.

Let u be a sequence, by which we mean either a finite word or an infinite
sequence. If there are suitable sequences x, y and z such that u = xyz, then
we say that y is admissible in u and that y is a subword of u. The sequence
x is called a prefix of u and z is called a suffix of u. Let Fn(u) be the set of
n-subwords of u and F (u) be the set of all subwords of u. We say that u is
reversible if y ∈ F (u) for any y ∈ F (u).

The subword complexity pu(n) of a sequence u is the number of distinct
n-subwords:

pu(n) = |Fn(u)|.
A sequence u = (ui) is periodic if there is p ∈ N such that ui = ui+p for
any i. A one-sided sequence v = v1v2 · · · is eventually periodic if vkvk+1 · · ·
is periodic for some k ∈ N. A two-sided sequence w = · · ·w−1w0w1 · · · is
eventually periodic if both · · ·w−k−1w−k and wkwk+1 · · · are periodic for some
k ∈ N.

Coven and Hedlund showed that subword complexity of a one-sided (two-
sided, respectively) sequence is bounded if and only if the one-sided (two-sided,
respectively) sequence is eventually periodic (periodic, respectively).

A one-sided sequence v with minimal unbounded subword complexity pv(n)
= n+1 is called a one-sided Sturmian sequence. A non-eventually periodic two-
sided sequence w with pw(n) = n+ 1 is called a two-sided Sturmian sequence.
It is known that a Sturmian sequence is induced by an irrational circle rotation
as follows.

Proposition 2.1 ([7], p. 51, Theorem 2.1.13). A one-sided (or two-sided,
respectively) sequence u is Sturmian if and only if there exist c ∈ R and θ ∈ R\Q



1126 S. B. LEE AND S. LIM

where 0 < θ < 1 such that u = (um)m∈N (or u = (um)m∈Z, respectively) is
defined by

um =

{
1, if c+mθ (mod 1) ∈ [0, θ)
0, if c+mθ (mod 1) ∈ [θ, 1)

or

um =

{
1, if c−mθ (mod 1) ∈ [0, θ)
0, if c−mθ (mod 1) ∈ [θ, 1).

2.2. Colorings of trees

A tree T is a connected graph without cycles. Let V T be the vertex set of
T and ET be the edge set of T which is the set of oriented edges of T . We
endow T with the metric d for which each edge has length 1. Denote by ē the
inverse of an edge e, i.e., the same edge as e with inverse orientation. An edge
which is directed from v to w for v, w ∈ V T will be denoted by [v, w].

Let ∂0(e) be the initial vertex of e and ∂1(e) be the terminal vertex of e.
Consider ∂0 and ∂1 as maps from ET to V T . For a fixed k ∈ N, a tree T is
called k-regular if |∂−1

0 (v)| = k for every v ∈ V T .
An n-ball around x ∈ V T is defined by Bn(x) = {y ∈ T : d(x, y) ≤ n}. An

n-sphere around x is defined by Sn(x) = {y ∈ T : d(x, y) = n}.

Definition 2.2. Let T be a k-regular tree. A coloring of a tree is a map
φ : V T → A where A is an alphabet.

Let T be a k-regular tree and φ be a coloring of T . Let T1 and T2 be subtrees
of T . A color-preserving map f : T1 → T2 is a graph homomorphism such that
φ(v) = φ(f(v)) for v ∈ V T1. We say that Bn(x) and Bn(y) are equivalent
if there exists a color-preserving isomorphism f : Bn(x) → Bn(y). We call
such an equivalence class a colored n-ball and denote it by [Bn(x)]. The set of
colored n-balls is denoted by Bφ(n).

Definition 2.3 ([5]). The subball complexity of a coloring φ is a fuction bφ :
Z≥0 → N defined by bφ(n) = |Bφ(n)|.

2.3. Graph of groups and edge-indexed graphs

Definition 2.4 ([9]). A graph of groups G = (X,A•) consists of a connected
graph X, a collection of groups {Ax}x∈V XtEX such that Ae = Aē for each
e ∈ EX and a collection of monomorphisms {αe : Ae → A∂0(e)}e∈EX .

Definition 2.5 ([5]). An edge-indexed graph is a connected graph X with an
index map i : EX → N assigning a cardinal number i(e) to every oriented edge
e.

The universal covering of an edge-indexed graph (X, i) is constructed as
follows. Choose a vertex v0 of X and an edge e with ∂0(e) = v0. Start with a
vertex, say ṽ0. Attach i(e) edges ẽj , j = 1, . . . , i(e) to ṽ0 as liftings of e. Let e′

be an edge of X such that ∂1(e) = ∂0(e′). For each edge ẽj , attach i(e′) edges

ẽ′k, k = 1, . . . , i(e′) to ∂1(ẽj) as liftings of e′. We obtain the universal covering
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tree T of (X, i) by repeating this procedure. Remark that graphs of groups are
always developable as opposed to complexes of groups in dimension at least 2.

Remark. Let T be a k-regular tree colored by φ and G be the set of automor-
phisms of T . Let Γφ be the group of color-preserving automorphisms. We call
γ ∈ G an inversion if γ(e) = e for an edge e.

If Γφ does not contain inversions, then Γφ\T is a graph without any loop,
i.e., without any edge e such that ∂0(e) = ∂1(e). If Γφ contains inversions, then
Γφ\T has a loop. Then, we can take a barycentric subdivision T ′ on the edges
of T stabilized by inversions in Γφ. The vertices of T will be expressed as black
vertices and the vertices of T ′ − T will be expressed by white vertices.

Let π : T ′ → X = Γφ\T ′ be the covering map. Let us denote by x̃ ∈
V T ′ t ET ′ a lifting of x ∈ V X t EX. In Γφ, the group of stabilizers of x̃ is
denoted by Γx̃. If π(x̃) = π(ỹ), then Γx̃ and Γỹ are isomorphic.

We define the quotient graph of groups Γφ\\T ′ = (X,A•) as follows. For

x ∈ V X t EX, we define Ax as Γx̃. For e ∈ EX, γ(∂0(ẽ)) = ∂̃0(e) for some
γ ∈ Γφ. Let fγ : Γ∂0(ẽ) → Γ

∂̃0(e)
be an isomorphism defined by fγ(g) = γgγ−1

and ιẽ be the inclusion from Γẽ to Γ∂0(ẽ). A monomorphism αe : Ae → A∂0(e)(∼=
Γẽ → Γ

∂̃0(e)
) is defined by αe = fγ ◦ ιẽ. Hence, Γφ\\T ′ = (X,A•) is a graph of

groups. The universal covering of Γφ\\T ′ is T ′ [1, p. 20].
We define an index map i : EX → N by e 7→ [A∂0(e) : αeAe]. The univer-

sal covering of (X, i) is isomorphic to the universal covering of Γφ\\T ′, thus
isomorphic to T ′.

3. From one-sided sequences to colorings

For a given one-sided sequence v = v1v2 · · · , we can find a two-sided sequence
with the same asymptotic growth type of subword complexity, simply by taking
w = · · · · · · v3v2v1v2v3 · · · . It is easy to see that

pv(n) ≤ pw(n) ≤ 2pv(n) + n− 2.

Considering w as a coloring, a subword, as a sub-ball, is equivalent to its
reversed word. Thus

pv(2n+ 1)

2
≤ bw(n) ≤ pv(2n+ 1) + n.

Here, bw(n) is the subball complexity of w seen as a coloring on a 2-regular
tree. It follows that if there is a one-sided sequence v of polynomial subword
complexity pv(n), then one can construct a coloring w of 2-regular tree with
subball complexity bw(n) with the same asymptotic type as pv(n), i.e.,

bw(n) = O(pv(n)) and pv(n) = O(bw(n)).

In this section, we extend the above idea to construct colorings of k-regular
trees induced from a one-sided sequence v, for any k, with subball complexity
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b(n) with the same asymptotic type as pv(n). We further construct some
sequences whose subball complexity is precisely 2n+ 2.

3.1. From one-sided sequences to two-sided sequences

For some special one-sided sequences, there exist two-sided sequences with
the same subword complexity.

Proposition 3.1. Let u = u1u2 · · · be a one-sided sequence. If every prefix of
u of length n is a suffix of an (n + 1)-subword of u, then there is a two-sided
sequence w such that F (u) = F (w). It follows that

pw(n) = pu(n).

Proof. We first claim that there is a letter a ∈ A such that F (au) = F (u), and
that every prefix of au of length n is a suffix of an (n+ 1)-subword of au.

Suppose that for each letter a, there is a positive integer Na such that
au1u2 · · ·uNa

is not admissible in u. Let N = max{Na : a ∈ A}. On the
other hand, by the assumption, there is a letter b such that bu1u2 · · ·uN is
admissible in u. Since N ≥ Nb, bu1u2 · · ·uNb

is also admissible in u, which is
a contradiction.

Therefore, there is a letter a such that au1u2 · · ·un ∈ F (u) for all n. Thus
F (au) = F (u). Therefore, a prefix of au of length n is a subword of u, thus it
is a suffix of an (n+ 1)- subword of au.

Since au satisfies the assumption again, there is a letter b such that F (bau) =
F (u). We obtain a two-sided sequence w such that F (w) = F (u) by repeating
this process. �

Example 3.2. Consider sequences satisfying Proposition 3.1:

010110101100101 · · · and 001001111001001 · · · for example.

Subwords of those sequences occur infinitely many times. Thus they satisfy the
assumption of Proposition 3.1 (see Section 3 of [8] for details).

3.2. From colorings of a 2-regular tree to colorings of a k-regular tree

In this subsection, we show that for a given coloring φ0 of 2-regular tree,
there exists a coloring φ with the same subball complexity.

We will use notations introduced in Section 2.3. Let us fix a coloring φ0 on a
tree T . Throughout this subsection, let xi, yi, i = 1, . . . , k be the neighboring
vertices of x, y, respectively.

Definition 3.3. The n-branch Brn(x, xi) from x to xi is defined as the set
[x, xi] ∪ {y ∈ Bn(x) | d(y, xi) < d(y, x)}. Let us denote by [Brn(x, x′)] the
equivalence class of colored branch Brn(x, x′) up to color-preserving isomor-
phisms. We will say that [Brn(x, x′)] = [Brn(y, y′)] via f if there exists a
color-preserving isomorphism f : Brn(x, x′)→ Brn(y, y′).
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Lemma 3.4 ([5], Lemma 2). We have [Bn(x)] = [Bn(y)] if and only if there ex-
ists a permutation σ ∈ Sk such that for all i = 1, . . . , k, we have [Brn(x, xi)] =
[Brn(y, yσ(i))]. Consequently, if [Brn(x, x′)] = [Brn(y, y′)] and [Brn+1(x′, x)]
= [Brn+1(y′, y)], then [Bn(x)] = [Bn(y)].

Throughout this subsection, let X be a graph which is a 2-regular tree with
loops possibly attached as in Figure 1 (see the remark after Definition 2.5). Let
us denote V X by {vn}v∈Z and EX = {[vj , vj±1], [vj , vj ] : j ∈ Z}. The dotted
lines of Figure 1 indicate that loops may or may not exist. We can define an
index map i on X such that indices on edges starting from the white vertices
are all 2. Then, the universal covering T ′ of (X, i) is regarded as a barycentric
subdivision of T as explained in Section 2.3. By abuse of notation, we will
denote the universal covering of (X, i) by T .

For x ∈ V X, let us denote by x̃ its lift in T . We can easily check the next
lemma.

Lemma 3.5. Fix x̃ and let x̃i, i = 1, . . . , k be the lifts of xi which are the
neighboring vertices of x̃ ∈ T .

(1) The colors of the vertices of Bn(x) and the indices of the edges of
Bn(x)− Sn(x) determine [Bn(x̃)].

(2) The colors of the vertices of Bn(π(x̃i)) and the indices of the edges of
Bn(π(x̃i))− Sn(π(x̃i)) determine [Brn+1(x̃, x̃i)].

Remark. Note that although there are many liftings of x and xi, the class
[Brn(x̃, x̃i)] is unique. Also, if π(x̃i) = π(x̃j), then [Brn(x̃, x̃i)] = [Brn(x̃, x̃j)].

By abuse of terminology, let us denote by [Brn(x̃, π̃(x̃i)] = [Brn(x̃, x̃i)]. This
notation allows us to write [Brn(ṽs, ṽs)], where the second ṽs means actually a
neighboring vertex of ṽs whose projected image is vs. This case happens when
there is a loop attached to vs.

Now we are ready to prove Theorem 1 in the introduction.

Theorem 3.6. Let φ0 be a coloring of a 2-regular tree X with loops possibly
attached. For any integer k > 2, there exists an index map i on X such that

(1) the universal covering T of (X, i) is a k-regular tree and
(2) for any n, bφ(n) = bφ0(n) where φ is the lifting of φ0 to T .

Proof. Fix k > 2. Define an index map i : EX → N which satisfies the following
conditions.

(i) For every vt ∈ V X, i[vt, vt−1] + i[vt, vt] + i[vt, vt+1] = k.
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(ii) If [B1(vt)] = [B1(vs)] via f , then i[vt, vt′ ] = i[vs, f(vt′)], vt′ ∈ B1(vt).
(iii) Let [B1(vs)] = [aab] and [B1(vt)] = [bab] for distinct letters a and b.

Then, i[vs, vs−l] + i[vs, vs] 6= i[vt, vt] where l = 1 or l = −1 such that
φ0(vs+l) = b.

Condition (i) ensures that the universal covering T of (X, i) is a k-regular
tree. Condition (ii) ensures that if [B1(vt)] = [B1(vs)], then [B1(ṽt)] = [B1(ṽs)].
Condition (iii) ensures that if [B1(ṽt)] = [B1(ṽs)], then [B1(vt)] = [B1(vs)].

Since we define i around each vertex independently, there is no problem of
compatibility.

It is enough to show that for all n ∈ N and vt, vs ∈ V X,

(3.1) [Bn(vt)] = [Bn(vs)] if and only if [Bn(ṽt)] = [Bn(ṽs)].

Let us prove by induction on n. The case when n = 1 is clearly satisfied by
conditions (ii) and (iii). Assume that (3.1) is true up to n and let us prove the
case n+ 1.

(a) (⇒) Assume that [Bn+1(vt)] = [Bn+1(vs)] via f for some vt, vs ∈ V X.
By the condition (ii), for all x ∈ V Bn(vs), i[x, y] = i[f(x), f(y)] where y ∈
V B1(x). By Lemma 3.5(1), [Bn+1(ṽt)] = [Bn+1(ṽs)].

(b) (⇐) Let us assume that [Bm(ṽt)] = [Bm(ṽs)] implies [Bm(vt)] = [Bm(vs)]
for any vt, vs ∈ V X and m = 1, . . . , n.

Suppose that [Bn+1(ṽs)] = [Bn+1(ṽt)]. Then, [Bn(ṽs)] = [Bn(ṽt)], thus
[Bn(vs)] = [Bn(vt)]. We may assume that φ0(vs+l) = φ0(vt+l) for all −n ≤ l ≤
n. (The case φ0(vs+l) = φ0(vt−l) can be treated similarly.) By Lemma 3.5(2),

(3.2) [Brn(ṽs−1, ṽs)] = [Brn(ṽt−1, ṽt)] and [Brn(ṽs+1, ṽs)] = [Brn(ṽt+1, ṽt)].

We have [Brn+1(ṽs, ṽs)] = [Brn+1(ṽt, ṽt)] by Lemme 3.5(2). By the condi-
tion (ii), i[vs, vs] = i[vt, vt].

By Lemma 3.4, branches going out of ṽs correspond to those out of ṽt, thus
it is sufficient to consider the next two cases.

(1) If [Brn+1(ṽs, ṽs−1)] = [Brn+1(ṽt, ṽt−1)] and [Brn+1(ṽs, ṽs+1)] =
[Brn+1(ṽt, ṽt+1)], by Lemma 3.4 and (3.2), [Bn(ṽs−1)] = [Bn(ṽt−1)] and
[Bn(ṽs+1)] = [Bn(ṽt+1)]. By induction hypothesis, [Bn(vs−1)] = [Bn(vt−1)]
and [Bn(vs+1)] = [Bn(vt+1)]. Thus, [Bn+1(vs)] = [Bn+1(vt)].

(2) If [Brn+1(ṽs, ṽs−1)] = [Brn+1(ṽt, ṽt+1)] and [Brn+1(ṽs, ṽs+1)] =
[Brn+1(ṽt, ṽt−1)], we obtain the next claim.

Claim: Let 1 ≤ m ≤ n. If φ0(vs+l) = φ0(vt−l) for all −m ≤ l ≤ m, then
φ0(vs+l) = φ0(vt−l) for all −(m+ 1) ≤ l ≤ (m+ 1).

Proof of Claim. Suppose that φ0(vs+l) = φ0(vt−l) for all −m ≤ l ≤ m. Then,
[Brm(ṽs−1, ṽs)] = [Brm(ṽt+1, ṽt)] and [Brm(ṽs+1, ṽs)] = [Brm(ṽt−1, ṽt)] by
Lemma 3.5(2).

Since [Brm+1(ṽs, ṽs−1)] = [Brm+1(ṽt, ṽt+1)] and [Brm+1(ṽs, ṽs+1)] =
[Brm+1(ṽt, ṽt−1)], [Bm(ṽs−1)] = [Bm(ṽt+1)] and [Bm(ṽs+1)] = [Bm(ṽt−1)]
(see Lemma 3.4). By induction hypothesis, [Bm(vs−1)] = [Bm(vt+1)] and
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[Bm(vs+1)] = [Bm(vt−1)]. By the assumption of Claim, φ0(vs−m−1) =
φ0(vt+m+1) and φ0(vs+m+1) = φ0(vt−m−1). �

Now since φ0(vs−1) = φ0(vt+1) and φ0(vs+1) = φ0(vt−1), φ0(vs+l) =
φ0(vt−l) for all −(n+ 1) ≤ l ≤ (n+ 1), i.e., [Bn+1(vs)] = [Bn+1(vt)].

By induction, (3.1) holds for any n. �

Corollary 3.7. For any k ∈ N≥2, there exists a coloring of a k-regular tree of
intermediate subball complexity.

Proof. Recall that there are sequences of intermediate subword complexity
pu(n) [2], thus by the remark in the beginning of this section, there exists
a coloring of a 2-regular tree with intermediate subball complexity bw(n). By
the above theorem, there exists a coloring of a k-regular tree of intermediate
subball complexity bφ(n). �

4. Linear subball complexity

4.1. Colorings with subball complexity 2n + 2

In this section, we construct colorings with subball complexity 2n+ 2 using
a family of one-sided sequences with p(n) = 2n constructed by G. Rote.

Proposition 4.1 ([8], Theorem 2). Let c, ϕ ∈ R and θ ∈ R \ Q such that
0 < ϕ < 1, 0 < θ < min{ϕ, 1−ϕ} and mθ 6≡ ϕ (mod 1) for any m ∈ Z. Then,
a one-sided sequence v = v1v2 · · · vm · · · defined by

(4.1) vm =

{
1, if c+mθ (mod 1) ∈ [0, ϕ)
0, if c+mθ (mod 1) ∈ [ϕ, 1)

for each m ∈ N

has subword complexity pv(n) = 2n.

Definition 4.2. Let u be a sequence over {0, 1}. Denote by û a sequence ob-
tained by interchanging 0 and 1 of u. The sequence u is called complementation-
symmetric if ŷ ∈ F (u) for any y ∈ F (u). The difference sequence d(u) = (di)
of u = (ui) is defined by di = ui+1 − ui (mod 2).

It follows that

(4.2) ui = u1 + d1 + · · ·+ di−1 (mod 2).

Lemma 4.3. Let x = x1x2 · · ·xn and y = y1y2 · · · yn be n-words over {0, 1}.
Then d(x) = d(y) if and only if x = y or x̂ = y.

Proof. (⇐) Clearly, it is sufficient to show that d(x) = d(x̂). Note that x̂ =
x̂1x̂2 · · · x̂n. Since xi+1 − xi = x̂i+1 − x̂i (mod 2), d(x) = d(x̂).

(⇒) Suppose that d(x) = d(y). Since d(y) = d(ŷ), d(x) = d(ŷ). If
x1 = y1, then x = y by (4.2). If x1 6= y1, then x1 = ŷ1. By (4.2), x = ŷ. �
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Remark that a sequence u over {0, 1} is periodic (eventually periodic, re-
spectively) if and only if d(u) is periodic (eventually periodic, respectively).

Using Proposition 2.1 and Proposition 4.1, G. Rote showed the following
proposition.

Proposition 4.4 ([8], Theorem 3 and Corollary). Let v be a one-sided sequence
over {0, 1}. The followings are equivalent.

(1) The sequence v is complementation-symmetric and pv(n) = 2n.
(2) The difference seuquence d(v) is Sturmian.
(3) The sequence v is constructed as in Proposition 4.1 with ϕ = 1/2.

Lemma 4.5. Let w = · · ·w−1w0w1 · · · be a two-sided sequence. Define w≥l
as wlwl+1 · · · for each l ∈ Z.

(1) Then, F (w) =
⋃
l∈Z F (w≥l) and

(2) If w≥l is non-eventually periodic for some l ∈ Z, then w is non-
eventually periodic.

(3) Let f : N → N be a function. Suppose that pw≥l
(n) = f(n) for any

l ∈ Z. Then, F (w) = F (w≥l) for any l ∈ Z, i.e., pw(n) = f(n).

Proof. (1) It is clear that
⋃
l∈Z F (w≥l) ⊂ F (w). Consider a subword u =

wlwl+1 · · ·wl+n for some n ∈ N. Since u is a subword of w≥l, u ∈
⋃
l∈Z F (w≥l).

(2) By the definition, it is trivial.
(3) Let m ∈ Z. Since F (w≥l+1) ⊂ F (w≥l) and pw≥l

(n) = pw≥l+1
(n),

F (w≥l+1) = F (w≥l). By part (1), F (w) = F (w≥l) for any l. �

Proposition 4.6. Let c, ϕ and θ as in Proposition 4.1. Then, a two-sided
sequence w = · · ·w−1w0w1 · · ·wm · · · defined by

(4.3) wm =

{
1, if c+mθ (mod 1) ∈ [0, ϕ)
0, if c+mθ (mod 1) ∈ [ϕ, 1)

for each m ∈ Z

is a non-eventually periodic two-sided sequence with pw(n) = 2n.

Proof. Let w be a two-sided sequence which is defined by (4.3) with c = cw,
ϕ = ϕw and θ = θw as in Proposition 4.1.

For any m ∈ Z, w≥l is constructed as Proposition 4.1 with c = cw + (l −
1)θw, ϕ = ϕw and θ = θw. Thus, pw≥l

(n) = 2n for any l. By Lemma 4.5,
pw(n) = 2n. Since pw≥l

(n) = 2n, w≥l is a non-eventually periodic one-sided
sequence by Coven-Hedlund Theorem. Thus, w is non-eventually periodic (see
Lemma 4.5(2)). �

Proposition 4.7. Let w be a two-sided sequence over {0, 1}. The following
conditions are equivalent.

(i) For all l ∈ Z, w≥l is constructed as in Proposition 4.1 with ϕ = 1/2.
(ii) The sequence w is constructed as in Proposition 4.6 with ϕ = 1/2.
(iii) For all l ∈ Z, d(w≥l) is a one-sided Sturmian sequence.
(iv) The difference sequence d(w) is a two-sided Sturmian sequence.



SUBBALL COMPLEXITY OF COLORINGS 1133

(v) For all l ∈ Z, w≥l is a complementation-symmetric one-sided sequence
with pw≥l

(n) = 2n.
(vi) The sequence w is a non-eventually periodic complementation-sym-

metric two-sided sequence with pw(n) = 2n.

Proof. (ii)⇔(i): Clear.
(i)⇔(iii)⇔(v): See Proposition 4.4.
(iii)⇔(iv): (⇒) By Lemma 4.5(2), d(w) is non-eventually periodic. By

Lemma 4.5(3), pd(w)(n) = n+ 1. (⇐) See Proposition 2.1.
(iv)⇒(ii): Similar with the proof of Proposition 4.4 (2)⇒(3) in Chapter 4

of [8].
(v)⇒(vi): Since w≥l has unbounded subword complexity, w≥l is non-

eventually periodic for each l ∈ Z by Coven-Hedlund Theorem. By Lemma 4.5
(2), w is non-eventually periodic. Since pw≥l

(n) = 2n for all l, F (w) = F (w≥l)
for any l ∈ Z and pw(n) = 2n by Lemma 4.5(3). Since complementation-
symmetricity depends only on the set of the subwords, w is complementation-
symmetric.

(vi)⇒(iv): Let w be a sequence which is in (vi). Let s ∈ Fn(d(w)). There
is u ∈ Fn+1(w) such that d(u) = s. Since w is complementation-symmetric,
û ∈ Fn+1(w). By Lemma 4.3, d(t) = s if and only if t = u or t = û. Therefore,
pd(w)(n) = |Fn+1(w)|/2 = n + 1. Since w is non-eventually periodic, d(w) is
non-eventually periodic. Thus, d(w) is Sturmian. �

A two-sided sequence w = · · ·w−1w0w1 · · · induces a coloring of a 2-regular
tree X as follows. Let V T be the set of vertices indexed by {vn}n∈Z. Then the
map w : V T → A defined by vn 7→ wn is a natural coloring of X. We will call
bw the subball complexity of w. For an odd length subword u of w, we will
denote by [u] a colored ball which is induced by u. Note that if [u] = [u′], then
u = u′ or u = u′.

Lemma 4.8. Let x = x1 · · ·xn be an odd length word over {0, 1}. Then,

d(x) = d(x) if and only if x = x.

Proof. First, we will show that d(x) = d(x). Let d(x) = d1 · · · dn−1 and
d(x) = f1 · · · fn−1. Then, fi = xn−i − xn−i+1 (mod 2)= xn−i+1 − xn−i (mod
2)= dn−i for all i = 1, . . . , n − 1, i.e., dn−1 · · · d1d1 = f1 · · · fn−1. Thus, it is
sufficient to show that d(x) = d(x) if and only if x = x.

By Lemma 4.3, it is enough to show that x̂ 6= x. Let x = x1x2 · · ·xn. Since
x(n+1)/2 = x(n+1)/2, ̂x(n+1)/2 6= x(n+1)/2. Thus, x̂ 6= x. �

Droubay-Pirillo Theorem [4] says that a one-sided sequence v is Sturmian if
and only if F (v) contains exactly one palindrome word of even length and two
palindrome words of odd length for each positive integer. Note that Droubay-
Pirillo Theorem holds for two-sided Sturmian sequences by Proposition 2.1 and
Lemma 4.5(3).
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Theorem 4.9. Let w be a non-eventually periodic complementation-symmetric
two-sided sequence with pw(n) = 2n. Then, bw(n) = 2n+ 2.

Proof. Let w = · · ·w−1w0w1 · · · and d(w) = · · · d−1d0d1 · · · . Then, pw(2n+1)
= 4n + 2 and pd(w)(2n) = 2n + 1. By Droubay-Pirillo Theorem, there is a
unique palindrome (2n)-word of d(w) and 2n non-palindrome (2n)-words of
d(w). Two (2n + 1)-words of w correspond to one (2n)-word of d(w) (see
proof of (vi)⇒(iv) of Proposition 4.7). By Lemma 4.8, there are exactly two
palindrome (2n+ 1)-words of w and 4n non-palindrome (2n+ 1)-words of w.

Let x = x0 · · ·x2n be a (2n+ 1)-subword of w and d(x) = d0 · · · d2n−1. By
Proposition 4.7, d(w) is Sturmian. Since a one-sided Sturmian sequence is re-

versible (see Proposition 2.1.19 on [7, p. 54] for details), d(x) ∈ F (d(w)). Since

d(x) = d(x), there is u ∈ F2n+1(w) such that d(u) = d(x). By Lemma 4.3,
u = x or û = x. Since w is complementation-symmetric, x ∈ F2n+1(w).

Thus, each non-palindrome (2n+ 1)-word x can be paired with its reversed
word x. Then, there are 2n pairs of (x,x) for non-palindrome words x. Thus,
bw(n) = (4n)/2 + 2 = 2n+ 2. �

By Theorem 4.9 and Theorem 3.6, there are colorings of a k-regular tree with
subball complexity 2n+ 2 for each integer k ≥ 2, which proves Theorem 2.

5. Exponential growth

In this section, we will show that an index map may not preserve linearity of
subball complexity. Indeed, we will construct an index map on some sequences
whose induced coloring has exponential subball complexity without restriction
on the subword complexity of the original sequence, including some sequences
of linear subword complexity (see Example 5.2).

Theorem 5.1. Let k ≥ 3 and let X be a 2-regular tree with a loop attached
to each vertex. If φ0 is a non-periodic coloring of X whose 1-balls colored by
[aaa] occur only finitely many times for any a ∈ A, then there exists an index
map i on X such that

bφ(n) ≥ (k − 1)n,

where φ is the lifting of φ0 to the universal covering of (X, i).

Proof. Let V X = {vs}s∈Z and EX = {[vs, vs±1] : s ∈ Z} ∪ {[vs, vs] : s ∈ Z}.
Denote a lifting of vs ∈ V X by ṽs. There is a ball K in X containing every
1-ball whose coloring occurs only finitely many times.

Throughout the proof, we denote i1 = (p, q, r) if i1 is an index map on
B1(vs) − S1(vs) such that i1[vs, vs−1] = p, i1[vs, vs] = q and i1[vs, vs+1] = r,
(see Figure 2).

We first claim that for any colored 1-ball [B1(vs)] appearing infinitely many
times, one can construct index maps i1t , t = 1, . . . , k − 1 which induce (k − 1)
non-equivalent colored 1-balls [B1(ṽs)].
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Indeed, since [B1(vs)] 6= [aaa] for any a ∈ A, one of φ(vs−1), φ(vs), φ(vs+1)
is different from the others. If φ(vs−1) 6= φ(vs+1), define i1t := (t, 0, k − t) on
B1(vs) − S1(vs) for 1 ≤ t ≤ (k − 1). A coloring on B1(ṽs) obtained by i1t
has exactly t neighboring vertices of ṽs colored by φ(vs−1). Thus distinct i1t ’s
induce (k-1) non-equivalent colorings on B1(ṽs).

If φ(vs−1) = φ(vs+1) 6= φ(vs), define i1t := (1, t− 1, k− t) on B1(vs)−S1(vs)
for 1 ≤ t ≤ (k − 1). As above, there are (k − 1) index maps i1t which result in
(k − 1) distinct colorings on B1(ṽs), which proves the claim (see Figure 3).

To prove the theorem, it is enough to prove the following claim.

Claim: For each n, there is a colored n-ball [Bn] of X such that

i) [Bn] occurs infinitely many times, say {Bn(vmj )}∞j=1,
ii) there are distinct index maps inj : Bn(vmj

) − Sn(vmj
) → N, called the

index maps on [Bn], such that [Bn(ṽmj )], i = 1, . . . , (k − 1)n are all
distinct and

iii) there is a ball Kn which contains Kn−1 and (k− 1)n n-balls equivalent
to [Bn] which are outside Kn−1.

We will prove this claim by using induction on n. First choose a colored
1-ball which occurs infinitely many times, say [B1]. Define K1 in X as a ball
containing K and (k − 1) 1-balls colored by [B1] outside K. By the claim
we proved in the beginning of the proof, we can choose k − 1 index maps i1t ,
t = 1, . . . , k − 1 whose induced colored balls are all distinct.

Assume that there is a colored n-ball [Bn] and Kn as in Claim. Note that
there are infinitely many [Bn] outside Kn. Since there are only finitely many
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ways to extend the coloring to (n+1)-balls, there is a colored (n+1)-ball [Bn+1]
outside Kn whose central n-ball is colored as [Bn] and which occurs infinitely
many times.

Define index maps in+1
j,t := ((k − 1, 0, 1), inj , i

1
t ) for j = 1, . . . , (k − 1)n and

t = 1, . . . , (k − 1). Consider the index map in+1
j,t on Bn+1(vs) − Sn+1(vs) and

in+1
j′,t′ on Bn+1(vs′) − Sn+1(vs′) where Bn+1(vs) and Bn+1(vs′) are colored by

[Bn+1]. Remark that the definition of i1t depends on the coloring of the 1-ball,
and that the map i1t in the definition of in+1

j,t is defined according to the coloring

of the rightmost 1-ball in Bn+1(vs).
If j 6= j′, then [Bn(ṽs)] 6= [Bn(ṽs′)], thus [Bn+1(ṽs)] 6= [Bn+1(ṽs′)]. Suppose

that j = j′ and t 6= t′. By Lemma 3.5(2), for l = 0, 1, . . . , n− 1,

(5.1) [Brn+1−l(ṽs+l, ṽs+l)] = [Brn+1−l(ṽs′+l, ṽs′+l)] and

(5.2) [Brn+1−l(ṽs+l, ṽs+l−1)] = [Brn+1−l(ṽs′+l, ṽs′+l−1)].

By (5.1) and (5.2) for l = n − 1, since [Br2(ṽs+n−1, ṽs+n)] = [B1(ṽs+n)] 6=
[B1(ṽs′+n)] = [Br2( ˜vs′+n−1ṽs′+n)], [B2(ṽs+n−1)] 6= [B2( ˜vs′+n−1)]. Since

[Br2(ṽs+n−1, ṽs+n−2)] = [Br2( ˜vs′+n−1, ˜vs′+n−2)] (by (5.2) for l = n − 1),

[Br3(ṽs+n−2, ṽs+n−1)] 6= [Br3( ˜vs′+n−2 ˜vs′+n−1)] (see Lemma 3.4).

Similarly, if [Brn+1−l(ṽs+l, ṽs+l+1)] 6= [Brn+1−l(ṽs′+l, ṽs′+l+1)],

then [Bn+1−l(ṽs+l)] 6= [Bn+1−l(ṽs′+l)], thus [Brn+2−l(ṽs+l−1, ṽs+l)] 6=
[Brn+2−l(ṽs′+l−1, ṽs′+l)]. By repeating this process, we obtain
[Brn+1(ṽs, ṽs+1)] 6= [Brn+1(ṽs′ , ṽs′+1)]. Since [Bn+1(ṽs, ṽs−1)] =
[Bn+1(ṽs′ , ṽs′−1)] and [Bn+1(ṽs, ṽs)] = [Bn+1(ṽs′ , ṽs′)], [Bn+1(ṽs)] 6=
[Bn+1(ṽs′)] (see Lemma 3.4).

Therefore, there are (k−1)n+1 index maps on (n+1)-balls colored by [Bn+1]
which induce (k−1)n+1 distinct colored (n+1)-balls in T . There is a ball Kn+1

as in Claim since [Bn+1] occurs infinitely many times.
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Define i on (k − 1)n n-balls in Kn − Kn−1, which are colored by [Bn], by
(k − 1)n distinct index maps. On the edges which are not yet defined, we can
define any indices. By the definition of i, bφ(n) ≥ (k − 1)n. �

Example 5.2. The sequences constructed as in Proposition 4.6 with φ = 1/2
and 1/4 < θ < 1/2 satisfies the assumption of Theorem 5.1 (see the proof of
Theorem 2 of [8, p. 8]).

For example, let w be the sequence constructed as in Proposition 4.6 with
c = 0, φ = 1/2 and θ =

√
2/4. Thus w = · · · 10110 11010 01001 · · · . Consider

w as a 2-regular tree. By Theorem 4.9, bw(1) = 4 thus only [001], [011], [101]
and [010] are all 1-balls of w. Thus w satisfies the assumption of Theorem 5.1.
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