APPROXIMATE BI-HOMOMORPHISMS AND BI-DERIVATIONS IN C^{*}-TERNARY ALGEBRAS

Jae-Hyeong Bae and Won-Gil Park

Abstract

In this paper, we prove the generalized Hyers-Ulam stability of bi-homomorphisms in C^{*}-ternary algebras and of bi-derivations on C^{*} ternary algebras for the following bi-additive functional equation

$$
f(x+y, z-w)+f(x-y, z+w)=2 f(x, z)-2 f(y, w)
$$

This is applied to investigate bi-isomorphisms between C^{*}-ternary algebras.

1. Introduction and preliminaries

Ternary algebraic operations were considered in the 19th century by several mathematicians, such as Cayley [9] who introduced the notion of cubic matrix, which, in turn, was generalized by Kapranov [15] et al. The simplest example of such nontrivial ternary operation is given by the following composition rule:

$$
\{a, b, c\}_{i j k}=\sum_{1 \leq l, m, n \leq N} a_{n i l} b_{l j m} c_{m k n} \quad(i, j, k=1,2, \cdots, N) .
$$

Ternary structures and their generalization, the so-called n-ary structures, raise certain hopes in view of their applications in physics. Some significant physical applications are as follows (see $[16,17]$):
(1) The algebra of 'nonions' generated by two matrices

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \quad \& \quad\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & \omega \\
\omega^{2} & 0 & 0
\end{array}\right) \quad\left(\omega=e^{\frac{2 \pi i}{3}}\right)
$$

was introduced by Sylvester as a ternary analog of Hamilton's quaternions [1].
(2) The quark model inspired a particular brand of ternary algebraic systems. The so-called 'Nambu mechnics' is based on such structures [10].

There are also some applications, although still hypothetical, in the fractional quantum Hall effect, the non-standard statistics, supersymmetric theory, and Yang-Baxter equation [1, 17, 39].

[^0]A C^{*}-ternary algebra is a complex Banach space A, equipped with a ternary product $(x, y, z) \mapsto[x, y, z]$ of A^{3} into A, which is \mathbb{C}-linear in the outer variables, conjugate \mathbb{C}-linear in the middle variable, and associative in the sense that $[x, y,[z, w, v]]=[x,[w, z, y], v]=[[x, y, z], w, v]$, and satisfies $\|[x, y, z]\| \leq\|x\|$. $\|y\| \cdot\|z\|$ and $\|[x, x, x]\|=\|x\|^{3}$ (see [2, 40]). Every left Hilbert C^{*}-module is a C^{*}-ternary algebra via the ternary product $[x, y, z]:=\langle x, y\rangle z$.

If a C^{*}-ternary algebra $(A,[\cdot, \cdot, \cdot])$ has an identity, i.e., an element $e \in A$ such that $x=[x, e, e]=[e, e, x]$ for all $x \in A$, then it is routine to verify that A, endowed with $x \circ y:=[x, e, y]$ and $x^{*}:=[e, x, e]$, is a unital C^{*}-algebra. Conversely, if (A, \circ) is a unital C^{*}-algebra, then $[x, y, z]:=x \circ y^{*} \circ z$ makes A into a C^{*}-ternary algebra.

Let A and B be C^{*}-ternary algebras. A \mathbb{C}-linear mapping $H: A \rightarrow B$ is called a C^{*}-ternary algebra homomorphism if

$$
H([x, y, z])=[H(x), H(y), H(z)]
$$

for all $x, y, z \in A$. If, in addition, the mapping H is bijective, then the mapping $H: A \rightarrow B$ is called a C^{*}-ternary algebra isomorphism. A \mathbb{C}-linear mapping $\delta: A \rightarrow A$ is called a C^{*}-ternary derivation if

$$
\delta([x, y, z])=[\delta(x), y, z]+[x, \delta(y), z]+[x, y, \delta(z)]
$$

for all $x, y, z \in A$ (see [2, 22]).
Definition. Let A and B be C^{*}-ternary algebras. A \mathbb{C}-bilinear mapping H : $A \times A \rightarrow B$ is called a C^{*}-ternary algebra bi-homomorphism if it satisfies

$$
H([x, y, z], w)=[H(x, w), H(y, w), H(z, w)]
$$

and

$$
H(x,[y, z, w])=[H(x, y), H(x, z), H(x, w)]
$$

for all $x, y, z, w \in A$. A \mathbb{C}-bilinear mapping $\delta: A \times A \rightarrow A$ is called a C^{*}-ternary bi-derivation if it satisfies

$$
\delta([x, y, z], w)=[\delta(x, w), y, z]+[x, \delta(y, w), z]+[x, y, \delta(z, w)]
$$

and

$$
\delta(x,[y, z, w])=[\delta(x, y), z, w]+[y, \delta(x, z), w]+[y, z, \delta(x, w)]
$$

for all $x, y, z, w \in A$.
In 1940, S. M. Ulam [38] gave a talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of unsolved problems. Among these was the following question concerning the stability of homomorphisms.

We are given a group G and a metric group G^{\prime} with metric $\rho(\cdot, \cdot)$. Given $\epsilon>0$, does there exist a $\delta>0$ such that if $f: G \rightarrow G^{\prime}$ satisfies

$$
\rho(f(x y), f(x) f(y))<\delta
$$

for all $x, y \in G$, then a homomorphism $h: G \rightarrow G^{\prime}$ exists with

$$
\rho(f(x), h(x))<\epsilon
$$

for all $x \in G$?
In 1941, Hyers [13] gave the first partial solution to Ulam's question for the case of approximate additive mappings under the assumption that G_{1} and G_{2} are Banach spaces. Then, Aoki [3] and Bourgin [8] considered the stability problem with unbounded Cauchy differences. In 1978, Rassias [35] generalized the theorem of Hyers [13] by considering the stability problem with unbounded Cauchy differences. In 1991, Gajda [11] following the same approach as by Rassias [35] gave an affirmative solution to this question for $p>1$. It was shown by Gajda [11] as well as by Rassias and Šemrl [36], that one cannot prove a Rassias-type theorem when $p=1$. Găvruta [12] obtained the generalized result of Rassias's theorem which allows the Cauchy difference to be controlled by a general unbounded function. During the past two decades, a number of papers and research monographs have been published on various generalizations and applications of the generalized Hyers-Ulam stability to a number of functional equations and mappings, for example, Cauchy-Jensen mappings, k-additive mappings, invariant means, multiplicative mappings, bounded nth differences, convex functions, generalized orthogonality mappings, Euler-Lagrange functional equations, differential equations, and Navier-Stokes equations (see [4]-[7], [11, 12, 14], [18]-[21], [23], [25]-[31], [36, 37]). The instability of characteristic flows of solutions of partial differential equations is related to the Ulam stability of functional equations [24, 33]. On the other hand, Park [24] and Kim [34] have contributed works to the stability problem of ternary homomorphisms and ternary derivations.

Let X and Y be real or complex linear spaces. For a mapping $f: X \times X \rightarrow Y$, consider the functional equation:

$$
\begin{equation*}
f(x+y, z-w)+f(x-y, z+w)=2 f(x, z)-2 f(y, w) \tag{1}
\end{equation*}
$$

Recently, the authors [32] showed that a mapping $f: X \times X \rightarrow Y$ satisfies the equation (1) if and only if the mapping f is bi-additive. We investigate the generalized Hyers-Ulam stability in C^{*}-ternary algebras for the bi-additive mappings satisfying (1).

2. Stability of bi-homomorphisms in C^{*}-ternary algebras

Throughout this section, assume that A is a C^{*}-ternary algebra with norm $\|\cdot\|_{A}$ and that B is a C^{*}-ternary algebra with norm $\|\cdot\|_{B}$.
Lemma 2.1. Let V and W be \mathbb{C}-linear spaces and let $f: V \times V \rightarrow W$ be a bi-additive mapping such that $f(\lambda x, \mu y)=\lambda \mu f(x, y)$ for all $\lambda, \mu \in \mathbb{T}^{1}:=\{\lambda \in$ $\mathbb{C}:|\lambda|=1\}$ and all $x, y \in V$, then f is \mathbb{C}-bilinear.
Proof. Since f is bi-additive, we get $f\left(\frac{1}{2} x, \frac{1}{2} y\right)=\frac{1}{4} f(x, y)$ for all $x, y \in V$. Now let $\sigma, \tau \in \mathbb{C}$ and M an integer greater than $2(|\sigma|+|\tau|)$. Since $\left|\frac{\sigma}{M}\right|<\frac{1}{2}$ and $\left|\frac{\tau}{M}\right|<\frac{1}{2}$, there is $s, t \in\left(\frac{\pi}{3}, \frac{\pi}{2}\right]$ such that $\left|\frac{\sigma}{M}\right|=\cos s=\frac{e^{i s}+e^{-i s}}{2}$ and $\left|\frac{\tau}{M}\right|=\cos t=\frac{e^{i t}+e^{-i t}}{2}$. Now $\frac{\sigma}{M}=\left|\frac{\sigma}{M}\right| \lambda$ and $\frac{\tau}{M}=\left|\frac{\tau}{M}\right| \mu$ for some $\lambda, \mu \in \mathbb{T}^{1}$.

Thus we have

$$
\begin{aligned}
& f(\sigma x, \tau y)= f\left(M \frac{\sigma}{M} x, M \frac{\tau}{M} y\right)=M^{2} f\left(\frac{\sigma}{M} x, \frac{\tau}{M} y\right) \\
&= M^{2} f\left(\left|\frac{\sigma}{M}\right| \lambda x,\left|\frac{\tau}{M}\right| \mu y\right)=M^{2} f\left(\frac{e^{i s}+e^{-i s}}{2} \lambda x, \frac{e^{i t}+e^{-i t}}{2} \mu y\right) \\
&= \frac{1}{4} M^{2} f\left(e^{i s} \lambda x+e^{-i s} \lambda x, e^{i t} \mu y+e^{-i t} \mu y\right) \\
&= \frac{1}{4} M^{2}\left[e^{i s} e^{i t} \lambda \mu f(x, y)+e^{i s} e^{-i t} \lambda \mu f(x, y)+e^{-i s} e^{i t} \lambda \mu f(x, y)\right. \\
&\left.\quad+e^{-i s} e^{-i t} \lambda \mu f(x, y)\right] \\
&= \sigma \tau f(x, y)
\end{aligned}
$$

for all $x, y \in V$. So the mapping $f: V \times V \rightarrow W$ is \mathbb{C}-bilinear.
Lemma 2.2. Let V and W be \mathbb{C}-linear spaces and let $f: V \times V \rightarrow W$ be a mapping such that

$$
f(\lambda x+\lambda y, \mu z-\mu w)+f(\lambda x-\lambda y, \mu z+\mu w)=2 \lambda \mu f(x, z)-2 \lambda \mu f(y, w)
$$

for all $\lambda, \mu \in \mathbb{T}^{1}$ and all $x, y, z, w \in V$. Then f is \mathbb{C}-bilinear.
Proof. Letting $\lambda=\mu=1$, by Theorem 2.1 in [32], f is bi-additive. Putting $y=w=0$ in the given functional equation, we get $f(\lambda x, \mu z)=\lambda \mu f(x, z)$ for all $\lambda, \mu \in \mathbb{T}^{1}$ and all $x, z \in V$. So by Lemma 2.1, the mapping f is \mathbb{C}-bilinear.

For a given mapping $f: A \times A \rightarrow B$, we define

$$
\begin{aligned}
& D_{\lambda, \mu} f(x, y, z, w) \\
:= & f(\lambda x+\lambda y, \mu z-\mu w)+f(\lambda x-\lambda y, \mu z+\mu w)-2 \lambda \mu f(x, z)+2 \lambda \mu f(y, w)
\end{aligned}
$$

for all $\lambda, \mu \in \mathbb{T}^{1}$ and all $x, y, z, w \in A$.
We prove the generalized Hyers-Ulam stability of homomorphisms in C^{*} ternary algebras for the functional equation $D_{\lambda, \mu} f(x, y, z, w)=0$.

Theorem 2.3. Let $p<2$ and θ be positive real numbers, and let $f: A \times A \rightarrow B$ be a mapping such that

$$
\begin{align*}
& \left\|D_{\lambda, \mu} f(x, y, z, w)\right\|_{B} \leq \theta\left(\|x\|_{A}^{p}+\|y\|_{A}^{p}+\|z\|_{A}^{p}+\|w\|_{A}^{p}\right), \tag{2}\\
& \quad\|f([x, y, z], w)-[f(x, w), f(y, w), f(z, w)]\|_{B} \\
& \quad+\|f(x,[y, z, w])-[f(x, y), f(x, z), f(x, w)]\|_{B} \tag{3}\\
& \leq \theta\left(\|x\|_{A}^{p}+\|y\|_{A}^{p}+\|z\|_{A}^{p}+\|w\|_{A}^{p}\right)
\end{align*}
$$

for all $\lambda, \mu \in \mathbb{T}^{1}$ and all $x, y, z, w \in A$. Then there exists a unique C^{*}-ternary algebra bi-homomorphism $H: A \times A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x, y)-H(x, y)\|_{B} \leq \frac{6 \theta}{4-2^{p}}\left(\|x\|_{A}^{p}+\|y\|_{A}^{p}\right)+\frac{4}{3}\|f(0,0)\|_{B} \tag{4}
\end{equation*}
$$

for all $x, y \in A$.

Proof. Letting $\lambda=\mu=1, y=x$ and $w=-z$ in (2), we gain

$$
\begin{equation*}
\|f(2 x, 2 z)-2 f(x, z)+2 f(x,-z)\|_{B} \leq 2 \theta\left(\|x\|_{A}^{p}+\|z\|_{A}^{p}\right)+\|f(0,0)\|_{B} \tag{5}
\end{equation*}
$$

for all $x, z \in A$. Putting $\lambda=\mu=1$ and $x=z=0$ in (2), we get

$$
\|f(y,-w)+f(-y, w)+2 f(y, w)\|_{B} \leq \theta\left(\|y\|_{A}^{p}+\|w\|_{A}^{p}\right)+2\|f(0,0)\|_{B}
$$

for all $y, w \in A$. Replacing y by x and w by z in the above inequality, we have

$$
\begin{equation*}
\|f(x,-z)+f(-x, z)+2 f(x, z)\|_{B} \leq 2 \theta\left(\|x\|_{A}^{p}+\|z\|_{A}^{p}\right)+2\|f(0,0)\|_{B} \tag{6}
\end{equation*}
$$

for all $x, z \in A$. Setting $\lambda=\mu=1, y=-x$ and $w=z$ in (2), we obtain

$$
\begin{equation*}
\|f(2 x, 2 z)-2 f(x, z)+2 f(-x, z)\|_{B} \leq 2 \theta\left(\|x\|_{A}^{p}+\|z\|_{A}^{p}\right)+\|f(0,0)\|_{B} \tag{7}
\end{equation*}
$$

for all $x, z \in A$. By (5) and (6), we gain
$\|f(2 x, 2 z)-4 f(x, z)+f(x,-z)-f(-x, z)\|_{B} \leq 4 \theta\left(\|x\|_{A}^{p}+\|z\|_{A}^{p}\right)+3\|f(0,0)\|_{B}$
for all $x, z \in A$. By (5) and (7), we get

$$
\|f(x,-z)-f(-x, z)\|_{B} \leq 2 \theta\left(\|x\|_{A}^{p}+\|z\|_{A}^{p}\right)+\|f(0,0)\|_{B}
$$

for all $x, z \in A$. By the above two inequalities, we have

$$
\begin{equation*}
\|f(2 x, 2 z)-4 f(x, z)\|_{B} \leq 6 \theta\left(\|x\|_{A}^{p}+\|z\|_{A}^{p}\right)+4\|f(0,0)\|_{B} \tag{8}
\end{equation*}
$$

for all $x, z \in A$. Replacing x by $2^{j} x$ and z by $2^{j} z$ and dividing 4^{j+1} in the above inequality, we obtain that

$$
\begin{aligned}
& \left\|\frac{1}{4^{j}} f\left(2^{j} x, 2^{j} z\right)-\frac{1}{4^{j+1}} f\left(2^{j+1} x, 2^{j+1} z\right)\right\|_{B} \\
\leq & \frac{6}{4^{j+1}} 2^{j p} \theta\left(\|x\|_{A}^{p}+\|z\|_{A}^{p}\right)+\frac{1}{4^{j}}\|f(0,0)\|_{B}
\end{aligned}
$$

for all $x, z \in A$ and all $j=0,1,2, \ldots$. For given integers $l, m(0 \leq l<m)$, we obtain that

$$
\begin{align*}
& \left\|\frac{1}{4^{l}} f\left(2^{l} x, 2^{l} z\right)-\frac{1}{4^{m}} f\left(2^{m} x, 2^{m} z\right)\right\|_{B} \\
\leq & \sum_{j=l}^{m-1}\left[\frac{6}{4^{j+1}} 2^{j p} \theta\left(\|x\|_{A}^{p}+\|z\|_{A}^{p}\right)+\frac{1}{4^{j}}\|f(0,0)\|_{B}\right] \tag{9}
\end{align*}
$$

for all $x, z \in A$. By the above inequality, the sequence $\left\{\frac{1}{4^{n}} f\left(2^{n} x, 2^{n} y\right)\right\}$ is a Cauchy sequence for all $x, y \in A$. Since B is complete, the sequence $\left\{\frac{1}{4^{n}} f\left(2^{n} x, 2^{n} y\right)\right\}$ converges for all $x, y \in A$. Define $H: A \times A \rightarrow B$ by

$$
H(x, y):=\lim _{n \rightarrow \infty} \frac{1}{4^{n}} f\left(2^{n} x, 2^{n} y\right)
$$

for all $x, y \in A$. By (2), we have

$$
\begin{aligned}
&\|H(x+y, z-w)+H(x-y, z+w)-2 H(x, z)+2 H(y, w)\|_{B} \\
&=\lim _{n \rightarrow \infty} \| \frac{1}{4^{n}} f\left(2^{n}(x+y), 2^{n}(z-w)\right)+\frac{1}{4^{n}} f\left(2^{n}(x-y), 2^{n}(z+w)\right) \\
&-\frac{2}{4^{n}} f\left(2^{n} x, 2^{n} z\right)+\frac{2}{4^{n}} f\left(2^{n} y, 2^{n} w\right) \|_{B} \\
& \leq \lim _{n \rightarrow \infty} \frac{2^{n p}}{4^{n}} \theta\left(\|x\|_{A}^{p}+\|y\|_{A}^{p}+\|z\|_{A}^{p}+\|w\|_{A}^{p}\right)
\end{aligned}
$$

for all $x, y, z, w \in A$ and all $n=0,1,2, \ldots$. Letting $n \rightarrow \infty$, we see that H satisfies (1). By Lemma 2.2, the mapping $H: A \times A \rightarrow B$ is \mathbb{C}-bilinear. Setting $l=0$ and taking $m \rightarrow \infty$ in (9), one can obtain the inequality (4).

It follows from (3) that

$$
\begin{aligned}
& \| H([x, y, z], w)-[H(x, w), H(y, w), H(z, w)] \|_{B} \\
&+\|H(x,[y, z, w])-[H(x, y), H(x, z), H(x, w)]\|_{B} \\
&=\lim _{n \rightarrow \infty} \frac{1}{4^{n}}\left(\| f\left(\left[2^{n} x, 2^{n} y, 2^{n} z\right], 2^{n} w\right)\right. \\
& \quad-\left[f\left(2^{n} x, 2^{n} w\right), f\left(2^{n} y, 2^{n} w\right), f\left(2^{n} z, 2^{n} w\right)\right] \|_{B} \\
& \quad+\| f\left(2^{n} x,\left[2^{n} y, 2^{n} z, 2^{n} w\right]\right) \\
&\left.\quad-\left[f\left(2^{n} x, 2^{n} y\right), f\left(2^{n} x, 2^{n} z\right), f\left(2^{n} x, 2^{n} w\right)\right] \|_{B}\right) \\
& \leq \lim _{n \rightarrow \infty} \frac{2^{n p}}{4^{n}} \theta\left(\|x\|_{A}^{p}+\|y\|_{A}^{p}+\|z\|_{A}^{p}+\|w\|_{A}^{p}\right)=0
\end{aligned}
$$

for all $x, y, z, w \in A$. So

$$
H([x, y, z], w)=[H(x, w), H(y, w), H(z, w)]
$$

and

$$
H(x,[y, z, w])=[H(x, y), H(x, z), H(x, w)]
$$

for all $x, y, z, w \in A$.
Now, let $T: A \times A \rightarrow B$ be another bi-additive mapping satisfying (4). Then we have

$$
\begin{aligned}
& \|H(x, y)-T(x, y)\|_{B}=\frac{1}{4^{n}}\left\|H\left(2^{n} x, 2^{n} y\right)-T\left(2^{n} x, 2^{n} y\right)\right\|_{B} \\
\leq & \frac{1}{4^{n}}\left\|H\left(2^{n} x, 2^{n} y\right)-f\left(2^{n} x, 2^{n} y\right)\right\|_{B}+\frac{1}{4^{n}}\left\|f\left(2^{n} x, 2^{n} y\right)-T\left(2^{n} x, 2^{n} y\right)\right\|_{B} \\
\leq & \frac{2}{4^{n}}\left[\frac{6 \theta}{4-2^{p}} 2^{n p}\left(\|x\|_{A}^{p}+\|y\|_{A}^{p}\right)+\frac{4}{3}\|f(0,0)\|_{B}\right],
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$ for all $x, y \in A$. So we can conclude that $H(x, y)=T(x, y)$ for all $x, y \in A$. This proves the uniqueness of H.

Thus the mapping H is a unique C^{*}-ternary algebra bi-homomorphism satisfying (4).

We obtain the Hyers-Ulam stability for the functional equation

$$
D_{\lambda, \mu} f(x, y, z, w)=0
$$

as follows.
Theorem 2.4. Let $\varepsilon>0$ be a real number, and let $f: A \times A \rightarrow B$ be a mapping such that

$$
\left\|D_{\lambda, \mu} f(x, y, z, w)\right\|_{B} \leq \varepsilon
$$

and

$$
\begin{aligned}
\| f([x, y, z], w) & -[f(x, w), f(y, w), f(z, w)] \|_{B} \\
& +\|f(x,[y, z, w])-[f(x, y), f(x, z), f(x, w)]\|_{B} \leq \varepsilon
\end{aligned}
$$

for all $\lambda, \mu \in \mathbb{T}^{1}$ and all $x, y, z, w \in A$. Then there exists a unique C^{*}-ternary algebra bi-homomorphism $H: A \times A \rightarrow B$ such that

$$
\|f(x, y)-H(x, y)\|_{B} \leq \varepsilon+\frac{4}{3}\|f(0,0)\|_{B}
$$

for all $x, y \in A$.
Proof. The proof is similar to the proof of Theorem 2.3.
Theorem 2.5. Let $p>2$ and θ be positive real numbers, and let $f: A \times A \rightarrow B$ be a mapping satisfying (2), (3) and $f(0,0)=0$. Then there exists a unique C^{*}-ternary algebra bi-homomorphism $H: A \times A \rightarrow B$ such that

$$
\|f(x, y)-H(x, y)\|_{B} \leq \frac{6 \theta}{2^{p}-4} \cdot\left(\|x\|_{A}^{p}+\|y\|_{A}^{p}\right)
$$

for all $x, y \in A$.
Proof. It follows from (8) that

$$
\left\|f(x, y)-4 f\left(\frac{x}{2}, \frac{y}{2}\right)\right\|_{B} \leq \frac{6 \theta}{2^{p}}\left(\|x\|_{A}^{p}+\|y\|_{A}^{p}\right)
$$

for all $x, y \in A$. So

$$
\begin{align*}
& \left\|4^{l} f\left(\frac{x}{2^{l}}, \frac{y}{2^{l}}\right)-4^{m} f\left(\frac{x}{2^{m}}, \frac{y}{2^{m}}\right)\right\|_{B} \\
\leq & \sum_{j=l}^{m-1}\left\|4^{j} f\left(\frac{x}{2^{j}}, \frac{y}{2^{j}}\right)-4^{j+1} f\left(\frac{x}{2^{j+1}}, \frac{y}{2^{j+1}}\right)\right\|_{B} \tag{10}\\
\leq & \frac{6 \theta}{2^{p}} \sum_{j=l}^{m-1} \frac{4^{j}}{2^{p j}}\left(\|x\|_{A}^{p}+\|y\|_{A}^{p}\right)
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x, y \in A$. It follows from (10) that the sequence $\left\{4^{n} f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)\right\}$ is a Cauchy sequence for all $x, y \in A$. Since B is complete, the sequence $\left\{4^{n} f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)\right\}$ converges for all $x, y \in A$. So one can define the mapping $H: A \times A \rightarrow B$ by

$$
H(x, y):=\lim _{n \rightarrow \infty} 4^{n} f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)
$$

for all $x, y \in A$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (10), we get the desired inequality for f and H.

The rest of the proof is similar to the proof of Theorem 2.3.
Theorem 2.6. Let $p<\frac{1}{2}$ and θ be positive real numbers, and let $f: A \times A \rightarrow B$ be a mapping such that

$$
\begin{align*}
& \left\|D_{\lambda, \mu} f(x, y, z, w)\right\|_{B} \leq \theta \cdot\|x\|_{A}^{p} \cdot\|y\|_{A}^{p} \cdot\|z\|_{A}^{p} \cdot\|w\|_{A}^{p} \tag{11}\\
& \|f([x, y, z], w)-[f(x, w), f(y, w), f(z, w)]\|_{B} \\
& \quad+\|f(x,[y, z, w])-[f(x, y), f(x, z), f(x, w)]\|_{B} \\
& \leq \theta \cdot\|x\|_{A}^{p} \cdot\|y\|_{A}^{p} \cdot\|z\|_{A}^{p} \cdot\|w\|_{A}^{p}
\end{align*}
$$

for all $\lambda, \mu \in \mathbb{T}^{1}$ and all $x, y, z, w \in A$. Then there exists a unique C^{*}-ternary algebra bi-homomorphism $H: A \times A \rightarrow B$ such that

$$
\|f(x, y)-H(x, y)\|_{B} \leq \frac{\theta}{2-2^{4 p-1}}\|x\|_{A}^{2 p} \cdot\|y\|_{A}^{2 p}+\frac{4}{3}\|f(0,0)\|_{B}
$$

for all $x, y \in A$.
Proof. Letting $\lambda=\mu=1, y=x$ and $w=-z$ in (11), we gain
(13) $\quad\|f(2 x, 2 z)-2 f(x, z)+2 f(x,-z)\|_{B} \leq \theta \cdot\|x\|_{A}^{2 p} \cdot\|z\|_{A}^{2 p}+\|f(0,0)\|_{B}$
for all $x, z \in A$. Putting $\lambda=\mu=1$ and $x=z=0$ in (11), we get

$$
\|f(y,-w)+f(-y, w)+2 f(y, w)\|_{B} \leq 2\|f(0,0)\|_{B}
$$

for all $y, w \in A$. Replacing y by x and w by z in the above inequality, we have

$$
\begin{equation*}
\|f(x,-z)+f(-x, z)+2 f(x, z)\|_{B} \leq 2\|f(0,0)\|_{B} \tag{14}
\end{equation*}
$$

for all $x, z \in A$. Setting $\lambda=\mu=1, y=-x$ and $w=z$ in (11), we obtain
(15) $\quad\|f(2 x, 2 z)-2 f(x, z)+2 f(-x, z)\|_{B} \leq \theta \cdot\|x\|_{A}^{2 p} \cdot\|z\|_{A}^{2 p}+\|f(0,0)\|_{B}$
for all $x, z \in A$. By (13) and (14), we gain
$\|f(2 x, 2 z)-4 f(x, z)+f(x,-z)-f(-x, z)\|_{B} \leq \theta \cdot\|x\|_{A}^{2 p} \cdot\|z\|_{A}^{2 p}+3\|f(0,0)\|_{B}$ for all $x, z \in A$. By (13) and (15), we get

$$
\|f(x,-z)-f(-x, z)\|_{B} \leq \theta \cdot\|x\|_{A}^{2 p} \cdot\|z\|_{A}^{2 p}+\|f(0,0)\|_{B}
$$

for all $x, z \in A$. By the above two inequalities, we have

$$
\begin{equation*}
\|f(2 x, 2 z)-4 f(x, z)\|_{B} \leq 2 \theta \cdot\|x\|_{A}^{2 p} \cdot\|z\|_{A}^{2 p}+4\|f(0,0)\|_{B} \tag{16}
\end{equation*}
$$

for all $x, z \in A$. Replacing x by $2^{j} x$ and z by $2^{j} z$ and dividing 4^{j+1} in the above inequality, we obtain that

$$
\begin{aligned}
& \left\|\frac{1}{4^{j}} f\left(2^{j} x, 2^{j} z\right)-\frac{1}{4^{j+1}} f\left(2^{j+1} x, 2^{j+1} z\right)\right\|_{B} \\
\leq & \frac{2^{4 j p+1}}{4^{j+1}} \cdot \theta \cdot\|x\|_{A}^{2 p} \cdot\|z\|_{A}^{2 p}+\frac{1}{4^{j}}\|f(0,0)\|_{B}
\end{aligned}
$$

for all $x, z \in A$ and all $j=0,1,2, \ldots$ For given integers $l, m(0 \leq l<m)$, we obtain that

$$
\begin{align*}
& \left\|\frac{1}{4^{l}} f\left(2^{l} x, 2^{l} z\right)-\frac{1}{4^{m}} f\left(2^{m} x, 2^{m} z\right)\right\|_{B} \\
\leq & \sum_{j=l}^{m-1}\left(\frac{2^{4 j p+1}}{4^{j+1}} \cdot \theta \cdot\|x\|_{A}^{2 p} \cdot\|z\|_{A}^{2 p}+\frac{1}{4^{j}}\|f(0,0)\|_{B}\right) \tag{17}
\end{align*}
$$

for all $x, z \in A$. It follows from (17) that the sequence $\left\{\frac{1}{4^{n}} f\left(2^{n} x, 2^{n} y\right)\right\}$ is a Cauchy sequence for all $x, y \in A$. Since B is complete, the sequence $\left\{\frac{1}{4^{n}} f\left(2^{n} x, 2^{n} y\right)\right\}$ converges for all $x, y \in A$. So one can define the mapping $H: A \times A \rightarrow B$ by

$$
H(x, y):=\lim _{n \rightarrow \infty} \frac{1}{4^{n}} f\left(2^{n} x, 2^{n} y\right)
$$

for all $x, y \in A$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (17), we get the desired inequality for f and H.

The rest of the proof is similar to the proof of Theorem 2.3.
Theorem 2.7. Let $p>\frac{1}{2}$ and θ be positive real numbers, and let $f: A \times A \rightarrow B$ be a mapping satisfying (11), (12) and $f(0,0)=0$. Then there exists a unique C^{*}-ternary algebra bi-homomorphism $H: A \times A \rightarrow B$ such that

$$
\|f(x, y)-H(x, y)\|_{B} \leq \frac{\theta}{2^{4 p-1}-2}\|x\|_{A}^{2 p}\|y\|_{A}^{2 p}
$$

for all $x, y \in A$.
Proof. It follows from (16) that

$$
\left\|f(x, y)-4 f\left(\frac{x}{2}, \frac{y}{2}\right)\right\|_{B} \leq \frac{\theta}{2^{4 p-1}} \cdot\|x\|_{A}^{2 p} \cdot\|y\|_{A}^{2 p}
$$

for all $x, y \in A$. So

$$
\begin{align*}
& \left\|4^{l} f\left(\frac{x}{2^{l}}, \frac{y}{2^{l}}\right)-4^{m} f\left(\frac{x}{2^{m}}, \frac{y}{2^{m}}\right)\right\|_{B} \\
\leq & \sum_{j=l}^{m-1}\left\|4^{j} f\left(\frac{x}{2^{j}}, \frac{y}{2^{j}}\right)-4^{j+1} f\left(\frac{x}{2^{j+1}}, \frac{y}{2^{j+1}}\right)\right\|_{B} \\
\leq & \frac{\theta}{2^{4 p-1}} \sum_{j=l}^{m-1} \frac{4^{j}}{2^{4 p j}}\|x\|_{A}^{2 p}\|y\|_{A}^{2 p} \tag{18}
\end{align*}
$$

for all nonnegative integers m and l with $m>l$ and all $x, y \in A$. It follows from (18) that the sequence $\left\{4^{n} f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)\right\}$ is a Cauchy sequence for all $x, y \in A$. Since B is complete, the sequence $\left\{4^{n} f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)\right\}$ converges for all $x, y \in A$. So one can define the mapping $H: A \times A \rightarrow B$ by

$$
H(x, y):=\lim _{n \rightarrow \infty} 4^{n} f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)
$$

for all $x, y \in A$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (18), we get the desired inequality for f and H.

The rest of the proof is similar to the proof of Theorem 2.3.

3. Stability of bi-derivations on C^{*}-ternary algebras and bi-isomorphisms between C^{*}-ternary algebras

Throughout this section, assume that A is a C^{*}-ternary algebra with norm $\|\cdot\|_{A}$.

We prove the generalized Hyers-Ulam stability of bi-derivations on C^{*} ternary algebras for the functional equation $D_{\lambda, \mu} f(x, y, z, w)=0$.

Theorem 3.1. Let $p<2$ and θ be positive real numbers, and let $f: A \times A \rightarrow A$ be a mapping satisfying (2) such that

$$
\begin{aligned}
& \|f([x, y, z], w)-[f(x, w), y, z]-[x, f(y, w), z]-[x, y, f(z, w)]\|_{A} \\
& +\|f(x,[y, z, w])-[f(x, y), z, w]-[y, f(x, z), w]-[y, z, f(x, w)]\|_{A}
\end{aligned}
$$

(19) $\leq \theta\left(\|x\|_{A}^{p}+\|y\|_{A}^{p}+\|z\|_{A}^{p}+\|w\|_{A}^{p}\right)$
for all $x, y, z, w \in A$. If f satisfies

$$
\lim _{n \rightarrow \infty} \frac{1}{4^{n}} f\left(2^{n} x, 2^{n} y\right)=\lim _{n \rightarrow \infty} \frac{1}{4^{n}} f\left(2^{n} x, 2^{3 n} y\right)=\lim _{n \rightarrow \infty} \frac{1}{4^{n}} f\left(2^{3 n} x, 2^{n} y\right)
$$

for all $x, y \in A$, then there is a unique C^{*}-ternary bi-derivation $\delta: A \times A \rightarrow A$ such that

$$
\|f(x, y)-\delta(x, y)\|_{A} \leq \frac{6 \theta}{4-2^{p}}\left(\|x\|_{A}^{p}+\|y\|_{A}^{p}\right)+\frac{4}{3}\|f(0,0)\|_{B}
$$

for all $x, y \in A$.
Proof. By the proof of Theorem 2.3, the sequence $\left\{\frac{1}{4^{n}} f\left(2^{n} x, 2^{n} y\right)\right\}$ is a Cauchy sequence for all $x, y \in A$. Since A is complete, the sequence $\left\{\frac{1}{4^{n}} f\left(2^{n} x, 2^{n} y\right)\right\}$ converges. So one can define the mapping $\delta: A \times A \rightarrow A$ by

$$
\delta(x, y):=\lim _{n \rightarrow \infty} \frac{1}{4^{n}} f\left(2^{n} x, 2^{n} y\right)
$$

for all $x, y \in A$. By the same reasoning as in the proof of Theorem 2.3, we get the desired inequality for f and δ and the fact that δ is \mathbb{C}-bilinear.

It follows from (19) that

$$
\begin{aligned}
& \|\delta([x, y, z], w)-[\delta(x, w), y, z]-[x, \delta(y, w), z]-[x, y, \delta(z, w)]\|_{A} \\
& +\|\delta(x,[y, z, w])-[\delta(x, y), z, w]-[y, \delta(x, z), w]-[y, z, \delta(x, w)]\|_{A} \\
= & \lim _{n \rightarrow \infty}\left(\| \frac{1}{4^{3 n}} f\left(2^{3 n}[x, y, z], 2^{3 n} w\right)-\left[\frac{1}{4^{n}} f\left(2^{n} x, 2^{n} w\right), y, z\right]\right.
\end{aligned}
$$

$$
\begin{aligned}
& -\left[x, \frac{1}{4^{n}} f\left(2^{n} y, 2^{n} w\right), z\right]-\left[x, y, \frac{1}{4^{n}} f\left(2^{n} z, 2^{n} w\right)\right] \|_{A} \\
& +\| \frac{1}{4^{3 n}} f\left(2^{3 n} x, 2^{3 n}[y, z, w]\right)-\left[\frac{1}{4^{n}} f\left(2^{n} x, 2^{n} y\right), z, w\right] \\
& \left.-\left[y, \frac{1}{4^{n}} f\left(2^{n} x, 2^{n} z\right), w\right]-\left[y, z, \frac{1}{4^{n}} f\left(2^{n} x, 2^{n} w\right)\right] \|_{A}\right) \\
= & \lim _{n \rightarrow \infty}\left(\| \frac{1}{4^{3 n}} f\left(\left[2^{n} x, 2^{n} y, 2^{n} z\right], 2^{3 n} w\right)-\frac{1}{4^{3 n}}\left[f\left(2^{n} x, 2^{3 n} w\right), 2^{n} y, 2^{n} z\right]\right. \\
& -\frac{1}{4^{3 n}}\left[2^{n} x, f\left(2^{n} y, 2^{3 n} w\right), 2^{n} z\right]-\frac{1}{4^{3 n}}\left[2^{n} x, 2^{n} y, f\left(2^{n} z, 2^{3 n} w\right)\right] \|_{A} \\
& +\| \frac{1}{4^{3 n}} f\left(2^{3 n} x,\left[2^{n} y, 2^{n} z, 2^{n} w\right]\right)-\frac{1}{4^{3 n}}\left[f\left(2^{3 n} x, 2^{n} y\right), 2^{n} z, 2^{n} w\right] \\
& \left.-\frac{1}{4^{3 n}}\left[2^{n} y, f\left(2^{3 n} x, 2^{n} z\right), 2^{n} w\right]-\frac{1}{4^{3 n}}\left[2^{n} y, 2^{n} z, f\left(2^{3 n} x, 2^{n} w\right)\right] \|_{A}\right) \\
\leq & \lim _{n \rightarrow \infty}\left[\frac{\theta}{4^{3 n}}\left(2^{n p}\|x\|_{A}^{p}+2^{n p}\|y\|_{A}^{p}+2^{n p}\|z\|_{A}^{p}+2^{3 n p}\|w\|_{A}^{p}\right)\right. \\
& \left.+\frac{\theta}{4^{3 n}}\left(2^{3 n p}\|x\|_{A}^{p}+2^{n p}\|y\|_{A}^{p}+2^{n p}\|z\|_{A}^{p}+2^{n p}\|w\|_{A}^{p}\right)\right]=0
\end{aligned}
$$

for all $x, y, z, w \in A$. So

$$
\delta([x, y, z], w)=[\delta(x, w), y, z]+[x, \delta(y, w), z]+[x, y, \delta(z, w)]
$$

and

$$
\delta(x,[y, z, w])=[\delta(x, y), z, w]+[y, \delta(x, z), w]+[y, z, \delta(x, w)]
$$

for all $x, y, z, w \in A$.
By the same argument as in the proof of Theorem 2.3, the mapping δ : $A \times A \rightarrow A$ is a unique C^{*}-ternary bi-derivation satisfying (19).

In Theorem 3.1, for the case $p>2$, one can obtain a similar result.
Theorem 3.2. Let $p \neq \frac{1}{2}$ and θ be positive real numbers, and let $f: A \times A \rightarrow A$ be a mapping satisfying (11) such that

$$
\begin{aligned}
& \|f([x, y, z], w)-[f(x, w), y, z]-[x, f(y, w), z]-[x, y, f(z, w)]\|_{A} \\
& +\|f(x,[y, z, w])-[f(x, y), z, w]-[y, f(x, z), w]-[y, z, f(x, w)]\|_{A}
\end{aligned}
$$

(20) $\leq \theta \cdot\|x\|_{A}^{p} \cdot\|y\|_{A}^{p} \cdot\|z\|_{A}^{p} \cdot\|w\|_{A}^{p}$
for all $x, y, z, w \in A$. Then there exists a unique C^{*}-ternary bi-derivation $\delta: A \times A \rightarrow A$ such that

$$
\|f(x, y)-\delta(x, y)\|_{B} \leq \begin{cases}\frac{2 \theta}{2^{4 p}-4}\|x\|_{A}^{2 p}\|y\|_{A}^{2 p} & \left(p>\frac{1}{2}\right) \\ \frac{2 \theta}{4-2^{p}}\|x\|_{A}^{2 p} \cdot\|y\|_{A}^{2 p}+\frac{4}{3}\|f(0,0)\|_{B} & \left(p<\frac{1}{2}\right)\end{cases}
$$

for all $x, y \in A$.

Proof. Let $p<\frac{1}{2}$. By the same argument of the proof of Theorem 2.6, one can define the mapping $\delta: A \times A \rightarrow A$ by

$$
\delta(x, y):=\lim _{n \rightarrow \infty} \frac{1}{4^{n}} f\left(2^{n} x, 2^{n} y\right)
$$

for all $x, y \in A$ satisfying the desired inequality for f and δ.
The rest of the proof is similar to the proof of Theorem 3.1.
If $p>\frac{1}{2}$, the proof is similar to the proofs of Theorems 2.7, 3.1 and the case $p<\frac{1}{2}$.

From now on, assume that A is a unital C^{*}-ternary algebra with norm $\|\cdot\|_{A}$ and unit e, and that B is a unital C^{*}-ternary algebra with norm $\|\cdot\|_{B}$ and unit e^{\prime}.

We investigate isomorphisms between C^{*}-ternary algebras associated with the functional equation $D_{\lambda, \mu} f(x, y, z, w)=0$.

Theorem 3.3. Let $p \neq 2$ and θ be positive real numbers, and let $f: A \times A \rightarrow B$ be a bijective mapping satisfying (2) and (3). If

$$
e^{\prime}= \begin{cases}\lim _{n \rightarrow \infty} f\left(e, 2^{n} x\right) & (p<2) \\ \lim _{n \rightarrow \infty} f\left(e, \frac{x}{2^{n}}\right) & (p>2)\end{cases}
$$

for all $x \in A$, then the mapping $f: A \times A \rightarrow B$ is a C^{*}-ternary algebra bi-isomorphism.

Proof. Define $H: A \times A \rightarrow B$ by

$$
H(x, y):= \begin{cases}\lim _{j \rightarrow \infty} \frac{1}{4^{j}} f\left(2^{j} x, 2^{j} y\right) & (p<2) \\ \lim _{j \rightarrow \infty} 4^{j} f\left(\frac{1}{2^{j}} x, \frac{1}{2^{j}} y\right) & (p>2)\end{cases}
$$

for all $x, y \in A$. By the same reasoning as in the proof of Theorems 2.3 and 2.5, the mapping H is a C^{*}-ternary algebra bi-homomorphism.

For the case $p<2$, it follows from (3) that

$$
\begin{aligned}
H(x, y) & =H([e, e, x], y)=\lim _{n \rightarrow \infty} \frac{1}{4^{n}} f\left(2^{n}[e, e, x], 2^{n} y\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{4^{n}} f\left(\left[e, e, 2^{n} x\right], 2^{n} y\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{4^{n}}\left[f\left(e, 2^{n} y\right), f\left(e, 2^{n} y\right), f\left(2^{n} x, 2^{n} y\right)\right] \\
& =\lim _{n \rightarrow \infty}\left[f\left(e, 2^{n} y\right), f\left(e, 2^{n} y\right), \frac{1}{4^{n}} f\left(2^{n} x, 2^{n} y\right)\right] \\
& =\left[e^{\prime}, e^{\prime}, f(x, y)\right]=f(x, y)
\end{aligned}
$$

for all $x, y \in A$. Hence the bijective mapping $f: A \times A \rightarrow B$ is a C^{*}-ternary algebra bi-isomorphism.

Similarly, the bijective mapping $f: A \times A \rightarrow B$ is also a C^{*}-ternary algebra bi-isomorphism for the case $p>2$.

Theorem 3.4. Let $p \neq \frac{1}{2}$ and θ be positive real numbers, and let $f: A \times A \rightarrow B$ be a bijective mapping satisfying (11) and (12). If

$$
e^{\prime}= \begin{cases}\lim _{n \rightarrow \infty} f\left(e, 2^{n} x\right) & \left(p<\frac{1}{2}\right) \\ \lim _{n \rightarrow \infty} f\left(e, \frac{x}{2^{n}}\right) & \left(p>\frac{1}{2}\right)\end{cases}
$$

for all $x \in A$, then the mapping $f: A \times A \rightarrow B$ is a C^{*}-ternary algebra bi-isomorphism.

Proof. The proof is similar to the proof of Theorem 3.3.

References

[1] V. Abramov, R. Kerner, and B. Le Roy, Hypersymmetry: a Z_{3}-graded generalization of supersymmetry, J. Math. Phys. 38 (1997), no. 3, 1650-1669.
[2] M. Amyari and M. S. Moslehian, Approximate homomorphisms of ternary semigroups, Lett. Math. Phys. 77 (2006), no. 1, 1-9.
[3] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66.
[4] J.-H. Bae, On the stability of 3-dimensional quadratic functional equation, Bull. Korean Math. Soc. 37 (2000), no. 3, 477-486.
[5] J.-H. Bae and K.-W. Jun, On the generalized Hyers-Ulam-Rassias stability of a quadratic functional equation, Bull. Korean Math. Soc. 38 (2001), no. 2, 325-336.
[6] J.-H. Bae and W.-G. Park, Generalized Jensen's functional equations and approximate algebra homomorphisms, Bull. Korean Math. Soc. 39 (2002), no. 3, 401-410.
[7] , On the solution of a bi-Jensen functional equation and its stability, Bull. Korean Math. Soc. 43 (2006), no. 3, 499-507.
[8] D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc. 57 (1951), 223-237.
[9] A. Cayley, On the 34 concomitants of the ternary cubic, Amer. J. Math. 4 (1881), no. 1-4, 1-15.
[10] Y. L. Daletskii and L. Takhtajan, Leibniz and Lie algebra structures for Nambu algebra, Lett. Math. Phys. 39 (1997), no. 2, 127-141.
[11] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), no. 3, 431-434.
[12] P. Gǎvruţa, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436.
[13] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224.
[14] K.-W. Jun, S.-M. Jung, and Y.-H. Lee, A generalization of the Hyers-Ulam-Rassias stability of a functional equation of Davison, J. Korean Math. Soc. 41 (2004), no. 3, 501-511.
[15] M. Kapranov, I. M. Gelfand, and A. Zelevinskii, Discriminants, Resultants and Multidimensional Determinants, Birkhäuser, Berlin, 1994.
[16] R. Kerner, The cubic chessboard: Geometry and physics, Classical Quantum Gravity 14 (1997), A203-A225.
[17] , Ternary algebraic structures and their applications in physics, Proc. BTLP, 23rd International Conference on Group Theoretical Methods in Physics, Dubna, Russia, 2000; http://arxiv.org/abs/math-ph/0011023v1.
[18] E. H. Lee, I.-S. Chang, and Y.-S. Jung, On stability of the functional equations having relation with a multiplicative derivation, Bull. Korean Math. Soc. 44 (2007), no. 1, 185-194.
[19] Y.-H. Lee and K.-W. Jun, A note on the Hyers-Ulam-Rassias stability of Pexider equation, J. Korean Math. Soc. 37 (2000), no. 1, 111-124.
[20] Y. W. Lee, Stability of a generalized quadratic functional equation with Jensen type, Bull. Korean Math. Soc. 42 (2005), no. 1, 57-73.
[21] T. Miura, S.-M. Jung, and S.-E. Takahasi, Hyers-Ulam-Rassias stability of the Banach space valued linear differential equations $y^{\prime}=\lambda y$, J. Korean Math. Soc. 41 (2004), no. 6, 995-1005.
[22] M. S. Moslehian, Almost derivations on C^{*}-ternary rings, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), no. 1, 135-142.
[23] A. Najati, G. Z. Eskandani, and C. Park, Stability of homomorphisms and derivations in proper JCQ*-triples associated to the pexiderized Cauchy type mapping, Bull. Korean Math. Soc. 46 (2009), no. 1, 45-60.
[24] C. Park, Isomorphisms between C^{*}-ternary algebras, J. Math. Phys. 47 (2006), no. 10, 12 pp.
[25] C. Park and J. S. An, Isomorphisms in quasi-Banach algebras, Bull. Korean Math. Soc. 45 (2008), no. 1, 111-118.
[26] C. Park and Th. M. Rassias, d-Isometric linear mappings in linear d-normed Banach modules, J. Korean Math. Soc. 45 (2008), no. 1, 249-271.
[27] C.-G. Park and J. Hou, Homomorphisms between C^{*}-algebras associated with the Trif functional equation and linear derivations on C^{*}-algebras, J. Korean Math. Soc. 41 (2004), no. 3, 461-477.
[28] C.-G. Park and W.-G. Park, On the stability of the Jensen's equation in a Hilbert module, Bull. Korean Math. Soc. 40 (2003), no. 1, 53-61.
[29] K.-H. Park and Y.-S. Jung, Stability of a cubic functional equation on groups, Bull. Korean Math. Soc. 41 (2004), no. 2, 347-357.
[30] W.-G. Park and J.-H. Bae, On the stability of involutive A-quadratic mappings, Bull. Korean Math. Soc. 43 (2006), no. 4, 737-745.
[31] _, Quadratic functional equations associated with Borel functions and module actions, Bull. Korean Math. Soc. 46 (2009), no. 3, 499-510.
[32] , Approximate bi-additive mappings in Banach modules, preprint.
[33] A. Prástaro, Geometry of PDEs and Mechanics, World Scientific Publishing Co., Inc., River Edge, NJ, 1996.
[34] J. M. Rassias and H.-M. Kim, Approximate homomorphisms and derivations between C^{*}-ternary algebras, J. Math. Phys. 49 (2008), no. 6, 10 pp.
[35] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300.
[36] Th. M. Rassias and P. Šemrl, On the behavior of mappings which do not satisfy HyersUlam stability, Proc. Amer. Math. Soc. 114 (1992), no. 4, 989-993.
[37] J. Rho and H. J. Shin, Approximation of Cauchy additive mappings, Bull. Korean Math. Soc. 44 (2007), no. 4, 851-860.
[38] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.
[39] L. Vainerman and R. Kerner, On special classes of n-algebras, J. Math. Phys. 37 (1996), no. 5, 2553-2565.
[40] H. Zettl, A characterization of ternary rings of operators, Adv. in Math. 48 (1983), no. 2, 117-143.

Jae-Hyeong Bae
College of Liberal Arts
Kyung Hee University
Yongin 446-701, Korea
E-mail address: jhbae@khu.ac.kr

Won-Gil Park
National Institute for Mathematical Sciences
385-16 Doryong-Dong, Yuseong-Gu
Daejeon 305-340, Korea
E-mail address: wgpark@nims.re.kr

[^0]: Received July 11, 2009; Revised July 30, 2009.
 2000 Mathematics Subject Classification. Primary 39B82, 46B03, 47Jxx.
 Key words and phrases. bi-additive mapping, C^{*}-ternary algebra.

