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ON QUASI-REPRESENTING GRAPHS

FOR A CLASS OF B(1)-GROUPS

Peter Dongjun Yom

Abstract. In this article, we give a characterization theorem for a class
of corank–1 Butler groups of the form G(A1, . . . , An). In particular, two
groups G and H are quasi-isomorphic if and only if there is a label-

preserving bijection ϕ from the edges of T to the edges of U such that
S is a circuit in T if and only if ϕ(S) is a circuit in U , where T, U are
quasi-representing graphs for G,H respectively.

The terminology group in this article means a torsion-free abelian group.
A Butler group is a pure subgroup of a finite rank completely decomposable
group and a B(1)-group is a Butler group of the form C/X where C is a fi-
nite rank completely decomposable group and X a rank one pure subgroup of
C. Let A1, . . . , An(n ≥ 2) be nonzero subgroups of Q and we will consider
B(1)-groups of the form G(A1, . . . , An) = the kernel of the codiagonal map⊕n

i=1Ai → Q given by (a1, . . . , an) 7→
∑
ai. The groups G(A1, . . . , An) and

their dual groups G[A1, . . . , An] have been studied extensively and classified up
to numerical quasi-isomorphism and isomorphism invariants by various authors
since F. Richman classified a relatively small family of Butler groups that he
called ‘doubly incomparable’ in [5]. A representing graph for G(A1, . . . , An)
was first introduced by D. Arnold and C. Vinsonhaler in [1] and it was used
to obtain numerical quasi-isomorphism invariants for classes of CT-groups [2]
and strongly indecomposable groups [3]. In this article, we give a characteriza-
tion theorem for a class of groups G(A1, . . . , An) in terms of quasi-representing
graphs.

1. Quasi-representing graphs

We define type as an isomorphism class of subgroups of the additive group
of rationals Q. Let τi = type Ai for each 1 ≤ i ≤ n and we shall refer to
the group G = G(A1, . . . , An) as G = G(τ1, . . . , τn), keeping in mind that G
is defined up to quasi-isomorphism. Let G = G(τ1, . . . , τn) and define CG to
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be the complete graph with vertices τ1, . . . , τn and edges τiτj labelled by types
τi ∧ τj for 1 ≤ i ̸= j ≤ n. A representing graph for G is any subgraph of CG
that is obtained by iteration of the algorithm: if a graph contains a circuit
S with all the edges labelled with types ≥ τ and at least one edge labelled
with τ , then remove an edge of S labelled by τ . A labelled graph is a quasi-
representing graph for a Butler groups H if it is a representing graph for some
group G(σ1, . . . , σn) which is quasi-isomorphic to H. Suppose T is a quasi-
representing graph for a Butler group H, with n vertices and with edges τiτj
labelled with types τi ∧ τj . If we let σi =

∨
{τi ∧ τj : τiτj is an edge in T and

j ̸= i} for each 1 ≤ i ≤ n, then T is a representing graph for G(σ1, . . . , σn) and
G(σ1, . . . , σn) is quasi-isomorphic to H. The detail of representing graphs can
be found in [1].

Notation. Two groups G and H are quasi-isomorphic, G ≃̇ H, if G is iso-
morphic to a subgroup of finite index in H. For any nonempty subset I of
{τ1, . . . , τn}, we denote τ I =

∨
τi∈I τi.

Definition 1.1. We say that subsets X,Y of {τ1, . . . , τn} is a TVE-partition
(two-vertex exchange partition) for τi, τj if X ∩ Y = ∅, X ∪ Y = {τ1, . . . , τn} \
{τi, τj} and τX ∧ τY ≤ τi ∧ τj .

A collection of types τ1, . . . , τn is called trimmed if τi ≤
∨

j ̸=i τj for each
1 ≤ i ≤ n. Throughout the article we assume, unless otherwise stated, all
collections of types τ1, . . . , τn are trimmed. The following lemma is Theorem 4
in [7].

Lemma 1.1 (‘two-vertex exchange’). Let τ1, . . . , τn be trimmed and τi ̸= σj
for i, j ∈ {1, 2}. Then the following statements are equivalent:

(a) G(τ1, τ2, τ3, . . . , τn) ≃̇ G(σ1, σ2, τ3, . . . , τn);
(b) There is a TVE-partition X,Y for τ1, τ2 and σ1 = (τ1∨ τY )∧ (τ2∨ τX)

and σ2 = (τ1 ∨ τX) ∧ (τ2 ∨ τY ).
Suppose X,Y is a TVE-partition for τ1, τ2 in G = G(τ1, . . . , τn) and σ1, σ2

defined as in Lemma 1.1 then we say H = G(σ1, σ2, τ3, . . . , τn) is obtained from
G by a two-vertex exchange and we will write H = (G;X,Y ; τ1, τ2).

Notation. If X,Y is a TVE-partition for τ1, τ2 in G = G(τ1, . . . , τn) and
H = (G;X,Y ; τ1, τ2), then, for notational convenience, we let τ̂1 = (τ1 ∨ τY ) ∧
(τ2 ∨ τX) and τ̂2 = (τ1 ∨ τX) ∧ (τ2 ∨ τY ) and H = G(τ̂1, τ̂2, τ3, . . . , τn).

Since the lattice of types is distributive, we can show that

τ1 ∧ τ2 = τ̂1 ∧ τ̂2; τ1 ∧ τk = τ̂1 ∧ τk and τ2 ∧ τk = τ̂2 ∧ τk if τk ∈ X;

τ2 ∧ τm = τ̂1 ∧ τm and τ1 ∧ τm = τ̂2 ∧ τm if τm ∈ Y.(1)

Let CG be the complete graph with vertices τ1, . . . , τn and each edge τiτj labelled
with type τi ∧ τj for 1 ≤ i ̸= j ≤ n. Using (1) we define a label-preserving
bijection ϕ from the edges of CG to the edges of CH as follows:

ϕ(τiτj) = τiτj for 3 ≤ i ̸= j ≤ n and ϕ(τ1τ2) = τ̂1τ̂2;
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ϕ(τ1τk) = τ̂1τk and ϕ(τ2τk) = τ̂2τk if τk ∈ X;(2)

ϕ(τ2τm) = τ̂1τm and ϕ(τ1τm) = τ̂2τm if τm ∈ Y.

Definition 1.2. Let G = G(τ1, . . . , τn).
(a) ϕ : CG → CH is called a TVE-map if H = G(τ̂1, τ̂2, τ3, . . . , τn) =

(G;X,Y ; τ1, τ2) and ϕ is a label-preserving bijection map from the
edges of CG to the edges of CH defined as in (2) above.

(b) Let A and B be labelled graphs then we say ψ : A→ B is a CLP-map
if ψ is a label-preserving bijection from the edges of A to the edges of
B such that S is a circuit in A if and only if ψ(S) is a circuit in B.

Let Q(G) be the set of all quasi-representing graphs for G.

Lemma 1.2. Let G = G(τ1, . . . , τn) and H = G(σ1, . . . , σn). If ψ : T → U is
a CLP-map for some T ∈ Q(G) and U ∈ Q(H), then G ≃̇ H.

Proof. Let T ∈ Q(G) and U ∈ Q(H) and ψ : T → U be a CLP-map. Then
there is a group isomorphism from DT to DU sending KT to KU , where DT =⊕

{τi∧τj : τiτj is an edge in T} andKT is the pure subgroup ofDT generated by
the circuits of T by Proposition 2.1 in [2]. Since G ≃̇ DT /KT and H ≃̇ DU/KU

by Corollary 1.7 in [1], it follows that G ≃̇ H. □

Let T ∈ Q(G). For a type τ , define T (τ) be the subgraph of T whose edges
are labelled with types ≥ τ .

Lemma 1.3 (Lemma 1 in [3]). Let G = G(τ1, . . . , τn) and T ∈ Q(G) and
suppose τi, τj , τk are distinct vertices of T with τi ∧ τj ≤ τk. If edge τiτj ∈ T
with type τ = τi∧τj, then there is a path P in T (τ)\{τiτj} connecting either τi
or τj to τk. If P connects τi (respectively, τj) to τk, then τiτj may be replaced
by τkτj (respectively, τkτi) to obtain a new quasi-representing graph for G and
τi ∧ τj = τk ∧ τj (respectively, τk ∧ τi).

Remark 1.1. Observe that in Lemma 1.3 there are no two paths P and P ′ in
T (τ) \ {τiτj} such that P connects τi to τk and P ′ connects τj to τk. If both
P and P ′ exist, then P ∪ P ′ ∪ {τiτj} contains a circuit S such that τiτj is an
edge in S and S ⊆ T (τ) where τ = τi ∧ τj , a contradiction to the fact that T
is a quasi-representing graph.

Notation. Let G = G(τ1, . . . , τn) and T ∈ Q(G). We write τiτj ⇀ τkτm if τi∧
τj = τk∧τm and the edge τiτj ∈ T is replaced by the edge τkτm to obtain a new
quasi-representing graph T ′ for G, that is, T ′ = (T \ {τiτj})∪ {τkτm} ∈ Q(G).
We also write τkτm ⇀ τkτr or τmτr if either τkτm ⇀ τkτr or τkτm ⇀ τmτr.

Lemma 1.4. Suppose X,Y is a TVE-partition for τ1, τ2 in G = G(τ1, . . . , τn)
and let E = {τkτm : τkτm is an edge and τk ∧ τm ≤ τ1 ∧ τ2 for 3 ≤ k ̸= m ≤ n}
and F = {τkτm : τkτm is an edge and τk ∧ τm ≤ τt where τk, τm ∈ X and
τt ∈ Y }, then there exists T ∈ Q(G) such that T ⊆ CG \ (E ∪ F ).
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Proof. Let X,Y be a TVE-partition for τ1, τ2 in G = G(τ1, . . . , τn) and V ∈
Q(G). If edge τkτm ∈ V ∩ E, then τkτm ⇀ τkτr or τmτr for r ∈ {1, 2} by
Lemma 1.3 and similarly, we can replace all other edges in V ∩ E to obtain
V ′ ∈ Q(G) such that V ′ ⊆ CG \ E. If edge τkτm ∈ V ′ ∩ F , then τkτm ⇀ τkτt
or τmτt by Lemma 1.3. Without loss of generality, assume τkτm ⇀ τkτt. Since
X,Y is the TVE-partition for τ1, τ2 in G, it follows that τX ∧ τY ≤ τ1 ∧ τ2
and consequently, τk ∧ τt ≤ τr and τkτt ⇀ τkτr or τrτt for r ∈ {1, 2}. With a
similar argument, we can remove all edges in V ′ ∩ F to obtain T ∈ Q(G) such
that T ⊆ CG \ (E ∪ F ). □
Notation. Let S be a subgraph of T and we denote SV = the set of all
vertices in S and e(A,B)T = {τiτj : τiτj is an edge in T and τi ∈ A, τj ∈ B}
for A,B ⊆ TV .

In the proposition below, we list some results from [7].

Proposition 1.5. Let G = G(τ1, . . . , τn) and suppose X,Y is a TVE-partition
for τ1, τ2 in G. Then

(a) Let T ∈ Q(G) such that e(X,Y )T = ∅ and if H = (G;X,Y ; τ1, τ2) and
ϕ : CG → CH is a TVE-map, then U = ϕ(T ) ∈ Q(H) and ϕ|T : T → U
is a CLP-map.

(b) If τ1, τ2, τ3, . . . , τn is trimmed, then
(i) τ̂1, τ̂2, τ3, . . . , τn is trimmed and τ1 ∧ τ2 = τ̂1 ∧ τ̂2, τ1 = (τ̂1 ∨ τY )∧

(τ̂2 ∨ τX) and τ2 = (τ̂1 ∨ τX) ∧ (τ̂2 ∨ τY ).
(ii) X,Y is also a TVE-partition for τ̂1, τ̂2 in H and G = (H;X,Y ;

τ̂1, τ̂2).

2. CLP-maps

We say T ∈ Q(G) is reduced if (i) for any two edges e, f in T there is a
circuit containing both edges e, f and (ii) if label e ≤ label f , then there is a
circuit containing e but not f . It is shown that G is strongly indecomposable
if and only if each T ∈ Q(G) is reduced (Theorem 3 in [3]).

Lemma 2.1. Let G be strongly indecomposable and T ∈ Q(G). Then each
vertex in T has degree at least two and |e(SV , (T \ S)V )T | ≥ 2 for any non-
empty subgraph S ⊂ T .

Proof. Suppose G is strongly indecomposable and T ∈ Q(G) then T is reduced.
Since there is a circuit containing any two edges in T , each vertex in T has
degree at least two. That is, there are at least two edges incident to each
vertex in T . Thus, we have |e(SV , (T \S)V )T | ≥ 2 for any non-empty subgraph
S ⊂ T . □

We next investigate a relationship between two TVE-partitions.

Lemma 2.2. Let H = G(σ1, . . . , σn) = G(τ̂1, τ̂2, τ3, . . . , τn) = (G;X,Y ; τ1, τ2)
be strongly indecomposable and let X ′, Y ′ be a TVE-partition for σi, σj in H.
Then
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(a) If σt ̸= τ̂t′ for t ∈ {i, j}, t′ ∈ {1, 2} and {σi, σj} ⊆ Y (respectively, X),
then {τ̂1, τ̂2} ∪X ⊆ X ′ or Y ′ (respectively, {τ̂1, τ̂2} ∪ Y ⊆ Y ′ or X ′).

(b) If σi = τ̂1, σj ̸= τ̂2 and σj ∈ Y (respectively, X), then {τ̂2} ∪X ⊆ X ′

or Y ′ (respectively, {τ̂2} ∪ Y ⊆ Y ′ or X ′).

Proof. By Lemma 1.4, there exists T ∈ Q(G) such that T ⊆ CG \ (E ∪ F )
where E = {τkτm : τkτm is an edge and τk ∧ τm ≤ τ1 ∧ τ2 for 3 ≤ k ̸= m ≤ n}
and F = {τkτm : τkτm is an edge and τk ∧ τm ≤ τt where τk, τm ∈ X and
τt ∈ Y }. If U = ϕ(T ) ∈ Q(H) as in Proposition 1.5(a), then U ⊆ CH \ (E ∪F )
because σi = τi if σi ̸= τ̂1 or τ̂2. For notational convenience, after rearranging
the indices of H, we let σ1 = σi and σ2 = σj and X ′, Y ′ be the TVE-partition
for σ1, σ2 throughout the proof.

(a) Suppose {σ1, σ2} ⊆ Y and σt ̸= τ̂t′ for t, t′ ∈ {1, 2}. We first show
X ⊂ X ′. Let A1 = X∩X ′ and A2 = X∩Y ′ and suppose σk ∈ A1 and σm ∈ A2.
First note that e(X,Y )U = ∅ and e(A1, A2)U = ∅ because U ⊆ CH \ (E ∪ F ).
Let r ∈ {1, 2}. If τ̂r ∈ X ′, then τ̂rσm ⇀ σ1τ̂r or σ1σm for all σm ∈ A2 and
if τ̂r ∈ Y ′, then τ̂rσk ⇀ σ1τ̂r or σ1σk for all σk ∈ A1. Hence, there exists
U ′ ∈ Q(H) such that (i) e(τ̂r, A2)U ′ = ∅ if τ̂r ∈ X ′ (ii) e(τ̂r, A1)U ′ = ∅ if
τ̂r ∈ Y ′ (iii) e(A1, A2)U ′ = ∅ and e(X,Y )U ′ = ∅. We will show that U ′ does
not exist and we conclude that either A1 = ∅ or A2 = ∅.

Suppose U ′ exists and {τ̂1, τ̂2} ⊆ X ′ then e({τ̂1, τ̂2}, A2)U ′ = ∅. Let σm ∈
A2. If edge σ1σm is in U ′, then there is no circuit in U ′ containing σ1σm and
any edge in U ′

V \A2 because e(A2, U
′
V \A2)U ′ = e(σ1, A2)U ′ , a contradiction to

the fact U ′ is reduced. If σ1σm /∈ U ′, then e(A2, U
′
V \A2)U ′ = ∅, a contradiction

by Lemma 2.1. Hence we must have {τ̂1, τ̂2} ̸⊆ X ′ and similarly we can show
that {τ̂1, τ̂2} ̸⊆ Y ′. Therefore, we assume τ̂1 ∈ X ′ and τ̂2 ∈ Y ′ in U .

If τ̂1 ∈ X ′ and τ̂2 ∈ Y ′ in U , then e(τ̂1, A2)U ′ = ∅ and e(τ̂2, A1)U ′ = ∅. Let
σk ∈ A1 and σm ∈ A2. If σ1σm ∈ U ′, then σ1σm ⇀ τ̂2σm or σ1τ̂2 because
σ1 ∧ σm ≤ τ̂1 ∧ τ̂2 and similarly if σ1σk ∈ U ′, then σ1σk ⇀ τ̂1σk or σ1τ̂1.
So, there exists W ∈ Q(H) such that e(σ1, A1 ∪ A2)W = ∅, but there is no
circuit containing edges τ̂1σk and τ̂2σm in W because e(A1, A2)W = ∅ and
e(X,Y )W = ∅, a contradiction. Since τ̂t ̸= σt′ for t, t′ ∈ {1, 2}, we must
conclude that U ′ does not exist and either A1 = ∅ or A2 = ∅. Without loss
of generality, we assume A2 = ∅ and X ⊆ X ′ in U and we next show that
{τ̂1, τ̂2} ⊆ X ′ in U .

Suppose X ⊆ X ′ and {τ̂1, τ̂2} ⊆ Y ′ in U and if e({τ̂1, τ̂2}, X)U ̸= ∅, then
τ̂rσk ⇀ σ1σk or τ̂rσ1 for some σk ∈ X and r ∈ {1, 2} to obtain W ∈ Q(H)
such that e({τ̂1, τ̂2}, X)W = ∅ and e(X,Y )W = e(σ1, X)W or e(X,Y )W = ∅. If
σ1σk ∈W for some σk ∈ X, then there is no circuit containing edges σ1σk and
τ̂1σt for some σt ∈ Y , a contradiction. If σ1σk /∈W , then e(X,WV \X)W = ∅, a
contradiction by Lemma 2.1. So, we must have that e({τ̂1, τ̂2}, X)U = ∅. Then
e(X,UV \ X)U = ∅ because e(X,Y )U = ∅, a contradiction by Lemma 2.1.
Hence, we must have {τ̂1, τ̂2} ̸⊆ Y ′. Without loss of generality, assume τ̂1 ∈ X ′

and τ̂2 ∈ Y ′ in U . If τ̂2σt ∈ U for some σt ∈ X, then τ̂2σt ⇀ σ1σt or
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τ̂2σ1 and furthermore if τ̂2σt ⇀ σ1σt, then σ1σt ⇀ σ1τ̂1 or τ̂1σt to obtain
U ′ ∈ Q(H) because σ1 ∧ σt ≤ τ̂1 ∧ τ̂2. Hence e(τ̂2, X)U ′ = ∅ but there is
no circuit containing edges τ̂1σt and τ̂2σm for σt ∈ X,σm ∈ Y in U ′ because
e({τ̂1, τ̂2} ∪ Y,X)U ′ = e(τ̂1, X)U ′ , a contradiction. Hence, we must conclude
that τ̂2 ∈ X ′. Thus, we proved that {τ̂1, τ̂2} ∪X ⊆ X ′. By symmetry we can
also show that if A1 = ∅, then {τ̂1, τ̂2} ∪X ⊆ Y ′ and similarly if {σ1, σ2} ⊆ X,
then {τ̂1, τ̂2} ∪ Y ⊆ Y ′ or X ′.

(b) Suppose σ1 = τ̂1, σ2 ̸= τ̂2 and σ2 ∈ Y in U . Let A1 = X ∩ X ′ and
A2 = X ∩ Y ′ and suppose A1 ̸= ∅ and A2 ̸= ∅. If τ̂2 ∈ X ′ (respectively, Y ′)
and τ̂2σt ∈ U , then τ̂2σt ⇀ τ̂1σt or τ̂1τ̂2 for all σt ∈ A2 (respectively, A1) and
furthermore if τ̂2σt ⇀ τ̂1τ̂2, then τ̂1τ̂2 ⇀ τ̂1σ2 or σ2τ̂2 because τ̂1∧τ̂2 = τ̂2∧σt ≤
τ̂1 ∧σ2. So, there exists U ′ ∈ Q(H) such that (i) e(τ̂2, A1)U ′ = ∅ if τ̂2 ∈ Y ′ and
e(τ̂2, A2)U ′ = ∅ if τ̂2 ∈ X ′ (ii) τ̂1τ̂2 ̸∈ U ′ (iii) e(A1, A2)U ′ = ∅ and e(X,Y )U ′ = ∅.
Then for some σt ∈ Y, σk ∈ A1, σm ∈ A2 there is no circuit in U ′ containing
edges τ̂2σt and τ̂1σk if τ̂2 ∈ Y ′ because e(A1, (U

′)V \ A1)U ′ = e(τ̂1, A1)U ′ , a
contradiction. Similarly, we can show that if τ̂2 ∈ X ′, then there is no circuit
containing τ̂2τt and σ1σm. So, we must have A1 = ∅ or A2 = ∅. Without loss of
generality, let A2 = ∅ and assume X ⊆ X ′ in U and with a similar argument as
above we can show τ̂2 ∈ X ′, hence {τ̂2}∪X ⊆ X ′. With a symmetric argument
we can show that if A1 = ∅, then {τ̂2} ∪X ⊆ Y ′ and similarly if σ2 ∈ X, then
{τ̂2} ∪ Y ⊆ Y ′ or X ′. □

Lemma 2.3. Let H = G(σ1, . . . , σn) = G(τ̂1, τ̂2, τ3, . . . , τn) = (G;X,Y ; τ1, τ2)
be strongly indecomposable. If X ′, Y ′ is a TVE-partition for σi, σj in H, then
there exists U ∈ Q(H) such that e(X,Y )U = ∅ and e(X ′, Y ′)U = ∅.

Proof. For notational convenience, after rearranging the indices of H, we let
σ1 = σi and σ2 = σj . By Lemma 1.4 there exists V ∈ Q(H) such that edge
σkσm /∈ V if σk ∧ σm ≤ τ̂1 ∧ τ̂2 for 3 ≤ k,m ≤ n and edge τkτm /∈ T for all
τk ∧ τm ≤ τt where τk, τm ∈ X and τt ∈ Y . So, in particular e(X,Y )V = ∅.

Throughout the proof, we let σk ∈ X ′ and σm ∈ Y ′. We will consider
the following cases: (i) If σt = τ̂t for t = 1, 2, then we let U = V . (ii)
If σ1 = τ̂1, σ2 ̸= τ̂2 and if edge σkσm ∈ V , then we can σkσm ⇀ σ2σk or
σ2σm by Lemma 2.2(b). (iii) If σ1 ∈ X,σ2 ∈ Y and edge σkσm ∈ V , then
σkσm ⇀ σ1σk or σ1σm if σk, σm ∈ X and σkσm ⇀ σ2σk or σ2σm if σk, σm ∈ Y .
If τ̂1 ∈ X ′, τ̂2 ∈ Y ′ and edge τ̂1τ̂2 ∈ V , then τ̂1τ̂2 ⇀ τ̂1σ1 or τ̂2σ1. If τ̂r ∈ X ′

for r ∈ {1, 2} and σm ∈ Y ′ ∩ X (respectively, Y ′ ∩ Y ) and edge τ̂rσm ∈ V ,
then τ̂rσm ⇀ σ1σm or σ1τ̂r (respectively, τ̂rσm ⇀ σ2σm or σ2τ̂r). (iv) By
Lemma 2.2(a), if {σ1, σ2} ⊆ X or Y and edge σkσm ∈ V , then σkσm ⇀ σrσk or
σrσm for r ∈ {1, 2}. Therefore, there exists U ∈ Q(H) such that e(X ′, Y ′)U = ∅
and e(X,Y )U = ∅. □

Let G = G(τ1, . . . , τn) and H = G(σ1, . . . , σn). If τi = σj for some j, then
we say τi is a common vertex in G and H. We say that there is a sequence
of two-vertex exchanges transforming G to H if there is a sequence of groups
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G = G1, G2, . . . , Gn = H such that Gi+1 is obtained from Gi by a two-vertex
exchange and common vertices of G and H are not replaced by each two-vertex
exchange. Some results on the sequence of two-vertex exchanges to transform
a group to a quasi-isomorphic group can be found in [8].

Corollary 2.4. Let G = G(τ1, . . . , τn) be strongly indecomposable and suppose
H is obtained by a sequence of two two-vertex exchanges from G. Then there
is a CLP-map ψ : T → U for some T ∈ Q(G) and U ∈ Q(H).

Proof. Suppose H is obtained by a sequence of two two-vertex exchanges from
G and let G1 = (G;X1, Y1; τ1, τ2) and H = (G1;X2, Y2;σi, σj). Then there
exists V ∈ Q(G1) such that e(X1, Y1)V = ∅ and e(X2, Y2)V = ∅ by Lemma 2.3.
Let ϕ : CG1 → CG and ψ : CG1 → CH be TVE-maps then T = ϕ(V ) ∈ Q(G) and
U = ψ(V ) ∈ Q(H), and ϕ−1|T : T → V and ψ|V : V → U are CLP-maps by
Proposition 1.5(a). Hence (ψ|V )◦(ϕ−1|T ) : T → U is the desired CLP-map. □

Corollary 2.4 provides an induction step to prove Lemma 2.5.

Lemma 2.5. Let G = G(τ1, . . . , τn) and H = G(σ1, . . . , σn) be strongly inde-
composable with both τ1, . . . , τn and σ1, . . . , σn trimmed. Then the following
are equivalent:

(a) G ≃̇ H;
(b) There is a sequence of two-vertex exchanges transforming G to H;
(c) There is a CLP-map ψ : T → U for some T ∈ Q(G) and U ∈ Q(H).

Proof. (a) ⇒ (b) Theorem 2.3 in [6].
(b) ⇒ (c) We will prove the existence of a CLP-map ψ : T → U for some

T ∈ Q(G) and U ∈ Q(H) by the induction on m = the number of two-
vertex exchanges to transform G to H. If m ≤ 2, then there is a CLP-map
ψ : T → U for some T ∈ Q(G) and U ∈ Q(H) by Proposition 1.5(a) if m = 1
and by Corollary 2.4 if m = 2. So, assume it is true for m ≤ n − 1 and
suppose there is a sequence of n two-vertex exchanges transforming G to H.
Let G = G1, . . . , Gn, Gn+1 = H such that Gi+1 is obtained from Gi by a two-
vertex exchange. Without loss of generality we define G1 = G(τ11 , τ12 , . . . , τ1n)
and Gi+1 = (Gi;Xi, Yi; τ

i
1, τ

i
2), where Xi, Yi is the TVE-partition for τ i1, τ

i
2 in

Gi = G(τ i1, τ i2, . . . , τ in) for i = 1, . . . , n. Let ϕi : CGi → CGi+1 be the TVE-map
for each i and define E1 = {τ1i τ1j : τ1i τ

1
j is an edge in CG1 and τ1i ∈ X1 and

τ1j ∈ Y1} and Ei+1 = ϕi(Ei) inductively for i = 1, . . . , n (Recall that a quasi-
representing graph for G is any subgraph of CG that is obtained by iteration
of the algorithm: if a graph contains a circuit S with all the edges labelled
by types ≥ τ and at least one edge labelled by τ , then remove an edge of S
labelled by τ).

We first show that C′
Gi

= CGi \Ei contains a quasi-representing graph for Gi

for each i. Let e1 = τ1i τ
1
j be an arbitrary edge in E1. If f1 = τ1i τ

1
1 is an edge

incident to τ11 in CG1 , then label e1 ≤ label f1 and define ei+1 = ϕi(ei) and
fi+1 = ϕi(fi) inductively for i = 1, . . . , n. Since ϕi is the TVE-map preserving
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labels of edges, it follows that label ei= label e1 and label fi= label f1 and
label ei ≤ label fi for i = 2, . . . , n + 1. Suppose edge fi is incident to some
vertex τ ik in CGi then τ ik ≥ label fi and τ ik ≥ label ei. So, if edge ei = τ isτ

i
t

in CGi , then τ
i
k, τ

i
s, τ

i
t is a circuit with edges τ ikτ

i
s, τ

i
sτ

i
t , τ

i
t τ

i
k labelled with types

≥ τ is ∧ τ it . Thus, we can remove ei = τ isτ
i
t from CGi and CGi \ {ei} contains a

quasi-representing graph for Gi. Similarly, we can remove all other edges in Ei

from CGi , hence we showed that C′
Gi

= CGi \ Ei contains a quasi-representing
graph for Gi for i = 1, . . . , n+ 1.

By the induction hypothesis on m, there exists T ∈ Q(H) such that T ⊆
C′
Gn+1

and V ∈ Q(G2) such that ψ′ : T → V is a CLP-map. Since ψ′ is a

bijection map between edges of T and edges of V , it follows that V ⊆ C′
G2

and e(X1, Y1)V = ∅ because τ i+1
r = τ ir for r = 3, . . . , n by Proposition 1.5(b).

Hence, by Proposition 1.5(a), U = ϕ−1
1 (V ) ∈ Q(G1) and ψ = ϕ−1

1 |V : V → U
is a CLP-map, where ϕ1 : CG1 → CG2 is a TVE-map. The map ψ ◦ ψ′ : T → U
is the desired CLP-map.

(c)⇒(a) Lemma 1.2. □

A group is completely decomposable if it is a direct sum of rank one sum-
mands. Two completely decomposable finite rank torsion-free abelian groups
are quasi-isomorphic if and only if they have an equal number of quasi-sum-
mands of same type for all types (or equivalently, two completely decomposable
groups are quasi-isomorphic if and only if their quasi-representing graphs have
equal numbers of edges of same types for all types). Since G is completely
decomposable if and only if T ∈ Q(G) is a tree by Corollary 1.9 in [1], it is
clear that any label-preserving bijection between the edges of two trees is a
CLP-map. Hence, we proved that:

Lemma 2.6. Let G = G(τ1, . . . , τn) and H = G(σ1, . . . , σn) be completely
decomposable groups. If G ≃̇ H, then there is a CLP-map ψ : T → U for some
T ∈ Q(G) and U ∈ Q(H).

If G is decomposable group, then G ≃̇ G1⊕· · ·⊕Gk where each Gi is either
completely decomposable or strongly indecomposable of rank > 1 and each Gi

has a quasi-representing graph Ti and Ti ∩ Tj does not contain an edge if i ̸= j
and T =

∪
i Ti ∈ Q(G).

We next show that the strongly indecomposability condition can be removed
in Lemma 2.5.

Theorem 2.7. Let G = G(τ1, . . . , τn) and H = G(σ1, . . . , σn). Then G ≃̇ H if
and only if there is a CLP-map ψ : T → U for some T ∈ Q(G) and U ∈ Q(H).

Proof. Suppose G ≃̇ H. By Lemma 2.5, we assume G is decomposable. Let
G ≃̇ G1 ⊕ · · · ⊕ Gk and H ≃̇ H1 ⊕ · · · ⊕ Hm, where each Gi and Hj are
either completely decomposable or strongly indecomposable of rank > 1. Since
G ≃̇ H it follows that k = m and, without loss of generality, assume Gi ≃̇ Hi

and there exists Ti ∈ Q(Gi) such that ψi : Ti → Ui is a CLP-map, where
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Ui = ψi(Ti) ∈ Q(Hi) for each 1 ≤ i ≤ k. Let T =
∪

i Ti ∈ Q(G) and
U =

∪
i Ui ∈ Q(H) and define a map ψ : T → U such that ψ|Ti = ψi for each

1 ≤ i ≤ k, then ψ is the desired CLP-map.
The converse is clear by Lemma 1.2. □

If there is a permutation ρ of {1, . . . , n} such that τ1 = σρ(1), . . . , τn = σρ(n),
then we say G(τ1, . . . , τn) and G(σ1, . . . , σn) are equivalent. It is easy to see that
any two equivalent groups are quasi-isomorphic. We say G is an elementary
group if T (τ) is either emptyset, a singleton edge or T for all types τ , where
T ∈ Q(G).

We say a subgraph B ⊆ T is a block if B is the intersection of all circuits in
T containing B. It is easy to see that if ψ : T → U is a CLP-map, then B is a
block in T if and only if ψ(B) is a block in U .

Theorem 2.8. There are at most (n−1)!
2 non-equivalent groups quasi-isomor-

phic to strongly indecomposable group G(τ1, . . . , τn), where n ≥ 3.

Proof. Let G = G(τ1, . . . , τn) be a strongly indecomposable group and T ∈
Q(G). Note that since a TVE-partition gives a non-equivalent quasi-isomorphic
group by Lemma 1.1, we investigate which groups provide the maximum num-
ber of TVE-partitions. By the remark following Theorem 7 in [7] the necessary
and sufficient conditions for a TVE-partition X,Y for τ1, τ2 using a quasi-
representing graph are e(X,Y )T = ∅ and τX ∧ τY ≤ τ1 ∧ τ2 and observe that
if ψ : T → U is a CLP-map, then U is obtained by permuting labels of edges
of blocks in T because ψ sends a circuit to a circuit. Hence, we get the max-
imum number of permutations of labels of edges in T if there is least number
of blocks in T . That is, we obtain the maximum number of non-equivalent
quasi-isomorphic groups if T is a circuit. So, we assume T is a circuit. If G is
an elementary group, then X,Y is a TVE-partition if and only if e(X,Y )T = ∅
by Lemma 8 in [7]. Hence, we assume G is elementary and T is a circuit, then

there are exactly (n−1)!
2 non-equivalent elementary groups quasi-isomorphic to

G by Corollary 10 in [7]. Thus, for an arbitrary strongly indecomposable group

G there are at most (n−1)!
2 non-equivalent groups quasi-isomorphic to G. □

Define G[A1, . . . , An] = the cokernel of the diagonal embedding
∩n

i=1Ai →⊕n
i=1Ai, then G[A1, . . . , An] is a B(1)-group and the class of groups G[A1, . . . ,

An] is the dual class of groups G(A1, . . . , An) in the sense of quasi-isomorphism
Butler duality of [4]. Let G = G[τ1, . . . , τn] and define CG be the complete
graph with vertices τ1, . . . , τn and edges τiτj labelled by types τi ∨ τj for 1 ≤
i ̸= j ≤ n. A co-representing graph for G is any subgraph of CG that is obtained
by iteration of the algorithm: if a graph contains a circuit S with all the edges
labelled by types ≤ τ and at least one edge labelled by τ , then remove an edge
of S labelled by τ . Let CQ(G) be the set of all co-quasi-representing graphs for
G.
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The following corollary can be obtained using the quasi-isomorphism Butler
duality of [4].

Corollary 2.9. Let G = G[τ1, . . . , τn] and H = G[σ1, . . . , σn].
(a) G ≃̇ H if and only if there is a CLP-map ψ : T → U for some T ∈

CQ(G) and U ∈ CQ(H).

(b) There are at most (n−1)!
2 non-equivalent groups quasi-isomorphic to

strongly indecomposable group G[τ1, . . . , τn], where n ≥ 3.
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