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ON QUASI-REPRESENTING GRAPHS
FOR A CLASS OF BMW.-GROUPS

PETER DONGJUN YOM

ABSTRACT. In this article, we give a characterization theorem for a class
of corank—1 Butler groups of the form G(Aj,..., Ay). In particular, two
groups G and H are quasi-isomorphic if and only if there is a label-
preserving bijection ¢ from the edges of T' to the edges of U such that
S is a circuit in T if and only if ¢(S) is a circuit in U, where T,U are
quasi-representing graphs for G, H respectively.

The terminology group in this article means a torsion-free abelian group.
A Butler group is a pure subgroup of a finite rank completely decomposable
group and a BM-group is a Butler group of the form C/X where C is a fi-
nite rank completely decomposable group and X a rank one pure subgroup of
C. Let Ay,...,A,(n > 2) be nonzero subgroups of Q and we will consider
BM-groups of the form G(Ai,...,A,) = the kernel of the codiagonal map
D, A; — Q given by (a1,...,a,) — > a;. The groups G(A1,...,A,) and
their dual groups G[Ay, ..., A,] have been studied extensively and classified up
to numerical quasi-isomorphism and isomorphism invariants by various authors
since F. Richman classified a relatively small family of Butler groups that he
called ‘doubly incomparable’ in [5]. A representing graph for G(A1,..., A,)
was first introduced by D. Arnold and C. Vinsonhaler in [1] and it was used
to obtain numerical quasi-isomorphism invariants for classes of CT-groups [2]
and strongly indecomposable groups [3]. In this article, we give a characteriza-
tion theorem for a class of groups G(Ay, ..., A,) in terms of quasi-representing
graphs.

1. Quasi-representing graphs

We define type as an isomorphism class of subgroups of the additive group
of rationals Q. Let 7; = type A; for each 1 < i < n and we shall refer to
the group G = G(A4,...,4,) as G = G(n1,...,Tn), keeping in mind that G
is defined up to quasi-isomorphism. Let G = G(r1,...,7,) and define Cq to
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be the complete graph with vertices 71, ..., 7, and edges 7;7; labelled by types
i ATy for 1 < i # j < n. A representing graph for G is any subgraph of Cq
that is obtained by iteration of the algorithm: if a graph contains a circuit
S with all the edges labelled with types > 7 and at least one edge labelled
with 7, then remove an edge of S labelled by 7. A labelled graph is a quasi-
representing graph for a Butler groups H if it is a representing graph for some
group G(o1,...,0,) which is quasi-isomorphic to H. Suppose T is a quasi-
representing graph for a Butler group H, with n vertices and with edges 7;7;
labelled with types 7; A 7;. If we let o, = \/{; A7; : 7;7; is an edge in T and
j # i} for each 1 < i < n, then T is a representing graph for G(o1,...,0,) and
G(o1,...,0p) is quasi-isomorphic to H. The detail of representing graphs can
be found in [1].

Notation. Two groups G and H are quasi-isomorphic, G ~ H, if G is iso-
morphic to a subgroup of finite index in H. For any nonempty subset I of
{r1,..., 7}, we denote 7/ = \/_ _; 7.

Definition 1.1. We say that subsets X,Y of {m,..., 7.} is a TVE-partition
(two-vertex exchange partition) for 7, 7; if XNY =0, X UY ={r,..., 7} \
{mi,7;} and 75 ATV <7 AT
A collection of types 71,...,7, is called trimmed if 7; < \/j £iTj for each

1 < i < n. Throughout the article we assume, unless otherwise stated, all
collections of types 71,...,7, are trimmed. The following lemma is Theorem 4
in [7].
Lemma 1.1 (‘two-vertex exchange’). Let 71,...,T, be trimmed and 1; # o,
fori,j € {1,2}. Then the following statements are equivalent:

(a) g(7—177—257—37 e aTn) =~ g(Ul, 02,T3,... 77-71);

(b) There is a TVE-partition X,Y for 1,7 and o1 = (11 V1Y) A (2 VTX)

and oy = (. VTX) A (2 V 7Y).

Suppose X,Y is a TVE-partition for 71,72 in G = G(71,...,7,) and 01,09
defined as in Lemma 1.1 then we say H = G(01,02,73,...,Ts) is obtained from
G by a two-vertex exchange and we will write H = (G; X,Y; 11, 72).

Notation. If X,Y is a TVE-partition for 7,7 in G = G(r1,...,7,) and
H = (G;X,Y; 71, 7), then, for notational convenience, we let 7, = (71 V1Y) A
(o V7X)and 7 = (L VTX)A (e V7Y) and H = G(71, 70, T3, ..., Tn)-

Since the lattice of types is distributive, we can show that
TIANTo =TI AT, TI AT =T1 AT and o AT, = o A7 if 7 € X
(1) AT =TI NANTm and TL ATy, = T2 ATy if 7, €Y.

Let Cg be the complete graph with vertices 71, . .., 7, and each edge 7;7; labelled
with type 7, A 7; for 1 < i # j < n. Using (1) we define a label-preserving
bijection ¢ from the edges of Cg to the edges of Cy as follows:

¢(mim) = Ty for 3 < i # j <nand ¢(Ti7e) = T170;
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(2) d(17i) = 717 and ¢(T27y) = To1y if T € X5

O(ToTm) = T17m and @(T17y) = ToT, if 7, € Y.

Definition 1.2. Let G = G(my,..., 7).

(a) ¢ : C¢ — Cg is called a TVE-map if H = G(71,72,73,...,Tn) =
(G;X,Y;711,72) and ¢ is a label-preserving bijection map from the
edges of C¢ to the edges of Cy defined as in (2) above.

(b) Let A and B be labelled graphs then we say ¢ : A — B is a CLP-map
if ¢ is a label-preserving bijection from the edges of A to the edges of
B such that S is a circuit in A if and only if ¥(S) is a circuit in B.

Let Q(G) be the set of all quasi-representing graphs for G.

Lemma 1.2. Let G = G(7y,..., ™) and H = G(o1,...,0p). Ifp: T = U s
a CLP-map for some T € Q(G) and U € Q(H), then G ~ H.

Proof. Let T € Q(G) and U € Q(H) and ¢ : T — U be a CLP-map. Then
there is a group isomorphism from Dp to Dy sending Kp to Ky, where Dp =
@D{mAT; : Ti7; is an edge in T'} and Ky is the pure subgroup of Dy generated by
the circuits of T' by Proposition 2.1 in [2]. Since G =~ Dy /Ky and H =~ Dy /Ky
by Corollary 1.7 in [1], it follows that G ~ H. O

Let T € Q(@). For a type 7, define T(7) be the subgraph of T" whose edges
are labelled with types > 7.

Lemma 1.3 (Lemma 1 in [3]). Let G = G(71,...,7,) and T € Q(G) and
suppose T;, T;, T, are distinct vertices of T with 7; A7; < 13, If edge 7,75 € T
with type T = 7, AT;, then there is a path P in T(1)\{1;7;} connecting either =;
or 7 to T,. If P connects T; (respectively, ;) to Ty, then 7,7, may be replaced
by T, (respectively, T,7;) to obtain a new quasi-representing graph for G and
Ti NT; = Ti AT (respectively, Ti AT;).

Remark 1.1. Observe that in Lemma 1.3 there are no two paths P and P’ in
T(1) \ {m7;} such that P connects 7; to 7, and P’ connects 7; to 7. If both
P and P’ exist, then P U P’ U {r;7;} contains a circuit S such that 7,7, is an
edge in S and S C T'(7) where 7 = 7; A 7, a contradiction to the fact that T
is a quasi-representing graph.

Notation. Let G = G(m,...,7,) and T € Q(G). We write 7,7; — 77y, if 7, A
Tj = T AT and the edge 7;7; € T is replaced by the edge 71,7, to obtain a new
quasi-representing graph 7" for G, that is, 7" = (T'\ {77, }) U {7e7m } € Q(G).
We also write 7,7, — T,T, OF T, 7, if either 7,7, — TuTr O TLTi — TmTr-

Lemma 1.4. Suppose X,Y is a TVE-partition for 71,72 in G = G(11,...,Tn)
and let E = {1xTm : TkTm 18 an edge and T, ATy, < 71 A T2 for 3 <k #m <n}
and F = {17 : TkTm is an edge and T N\ Ty < 7t where T, 7y, € X and
T € Y}, then there exists T € Q(G) such that T C Cq \ (EUF).



496 PETER DONGJUN YOM

Proof. Let X,Y be a TVE-partition for 71,7 in G = G(ry,...,7,) and V €
O(G). If edge Tx1m € V N E, then 747, — 747 or 7,7 for r € {1,2} by
Lemma 1.3 and similarly, we can replace all other edges in V' N E to obtain
V' € Q(G) such that V! C Cg \ E. If edge 747, € V' N F, then 147, — 71T
or 7,7 by Lemma 1.3. Without loss of generality, assume 747, — Tp7¢. Since
X,Y is the TVE-partition for 7,7 in G, it follows that 75 A 7Y < 71 A 7y
and consequently, 7, A 73 < 7. and Ty — T T Or T,.7¢ for r € {1,2}. With a
similar argument, we can remove all edges in V' N F to obtain T € Q(G) such
that T C Cq \ (EUF). O

Notation. Let S be a subgraph of T and we denote Sy = the set of all
vertices in S and e(A, B)r = {ry7; : 7;7; is an edge in T" and 7, € A, 7; € B}
for A,BCTy.

In the proposition below, we list some results from [7].

Proposition 1.5. Let G = G(11,...,7,) and suppose X,Y is a TVE-partition

for 1,70 in G. Then
(a) Let T € Q(Q) such that e(X,Y)r =0 and if H = (G; X,Y;71,72) and
¢:Cq — Cy is a TVE-map, then U = ¢(T) € Q(H) and ¢|7 : T — U

is a CLP-map.
(b) If 71,72, 73, ..., Tn 48 trimmed, then
(i) 71,72, 73, ..., Tn 45 trimmed and Ty NTo = 71 AFo, 71 = (FLVTY) A

(FoVTX) and o = (AL VTE)A (R VvV TY).
(ii) X,Y is also a TVE-partition for 71,72 in H and G = (H; X,Y;
T1,72).

2. CLP-maps

We say T € Q(G) is reduced if (i) for any two edges e, f in T there is a
circuit containing both edges e, f and (ii) if label e < label f, then there is a
circuit containing e but not f. It is shown that G is strongly indecomposable
if and only if each T' € Q(G) is reduced (Theorem 3 in [3]).

Lemma 2.1. Let G be strongly indecomposable and T € Q(G). Then each
vertex in T has degree at least two and |e(Sy, (T \ S)v)r| > 2 for any non-
empty subgraph S C T.

Proof. Suppose G is strongly indecomposable and T' € Q(G) then T is reduced.
Since there is a circuit containing any two edges in T', each vertex in 7' has
degree at least two. That is, there are at least two edges incident to each
vertex in 7. Thus, we have |e(Sy, (T'\S)v)r| > 2 for any non-empty subgraph
ScT. O

We next investigate a relationship between two TVE-partitions.

Lemma 2.2. Let H = G(o1,...,0p) = G(T1,72,73,...,Tn) = (G; X, Y ; 71, 72)
be strongly indecomposable and let X', Y’ be a TVE-partition for o;,0; in H.
Then
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(a) If o # 7p fort e {i,j},t' € {1,2} and {o;,0;} CY (respectively, X),
then {71, 72} UX C X' or Y’ (respectively, {T1,72t UY C Y’ or X').

(b) If 0; = 71,05 # 72 and o € Y (respectively, X), then {1} UX C X'
or'Y' (respectively, {72} UY CY’ or X').

Proof. By Lemma 1.4, there exists T € Q(G) such that T C Cq \ (FUF)
where E = {147y, : Tk 1s an edge and 74, A7y, <71 Ao for 3 <k #m < n}
and F = {747 : TpTim is an edge and 74 A 7, < 7 where 74,7, € X and
€Y} IftU =¢(T) € Q(H) as in Proposition 1.5(a), then U C Cy \ (EUF)
because o; = 7; if 0; # 71 or 7». For notational convenience, after rearranging
the indices of H, we let 01 = 0; and 02 = 0; and X', Y’ be the TVE-partition
for o1, 09 throughout the proof.

(a) Suppose {01,002} C Y and oy # 7 for t,t' € {1,2}. We first show
X Cc X' Let Ay = XNX'and A = XNY” and suppose o, € A1 and o, € As.
First note that e(X,Y)y = 0 and e(A;, A2)y = 0 because U C Cy \ (EU F).
Let r € {1,2}. If 7. € X', then 7.0, — 017, or 0104, for all o, € Ay and
if 7. € Y/, then 7.0, — 017 or o0} for all o, € A;. Hence, there exists
U’ € Q(H) such that (i) e(7, A2)yr = 0 if 7 € X’ (ii) e(7, A1)y = 0 if
7 €Y' (iil) e(A1,A2)yr = 0 and e(X,Y)yr = 0. We will show that U’ does
not exist and we conclude that either A; = 0 or Ay = 0.

Suppose U’ exists and {71,72} C X’ then e({71, 72}, A2)yr = 0. Let o, €
As. If edge 010, is in U’, then there is no circuit in U’ containing 010, and
any edge in UJ, \ As because e(As, U{, \ A2)yr = e(o1, As)y, a contradiction to
the fact U’ is reduced. If 010, ¢ U’, then e(As, Uy, \ A2)y = 0, a contradiction
by Lemma 2.1. Hence we must have {71,72} € X’ and similarly we can show
that {71,72} € Y’. Therefore, we assume 7, € X’ and 75 € Y’ in U.

If 7 € X’ and Ty € Y’ in U, then 6(%1,A2)U/ = () and 6(722,141)[]/ = 0. Let
o € Ay and o, € Ay. If 010, € U’, then 010, — T20,, or o172 because
o1 Aoy < 71 A7y and similarly if 010, € U’, then o10, — T10} or o17y.
So, there exists W € Q(H) such that e(oy, Ay U A2)w = 0, but there is no
circuit containing edges 7103 and 720, in W because e(Aj, As)y = 0 and
e(X,Y)w = 0, a contradiction. Since 7 # oy for ¢,¢' € {1,2}, we must
conclude that U’ does not exist and either A; = () or Ay = . Without loss
of generality, we assume A = () and X C X’ in U and we next show that
{#1,%2} C X' in U.

Suppose X C X’ and {f1,72} C Y’ in U and if e({?1,72}, X)y # 0, then
70 — 010} or Troq for some o, € X and r € {1,2} to obtain W € Q(H)
such that e({71, 72}, X)w = 0 and e(X,Y)w = e(o1, X)w or e(X,Y)w = 0. If
o0 € W for some o, € X, then there is no circuit containing edges o0 and
7104 for some oy € Y, a contradiction. If oy0 ¢ W, then e(X, Wy \X)w =0, a
contradiction by Lemma 2.1. So, we must have that e({71, 72}, X)y = 0. Then
e(X,Uy \ X)u = 0 because e¢(X,Y)y = 0, a contradiction by Lemma 2.1.
Hence, we must have {71, 72} € Y’. Without loss of generality, assume 71 € X’
and 75 € Y/ in U. If 5oy € U for some o; € X, then 750; — o010y or
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7o01 and furthermore if 750y — oy0y, then o0y — 0171 or 7i0; to obtain
U’ € Q(H) because o1 Aoy < 71 A To. Hence e(72, X))y = 0 but there is
no circuit containing edges 710y and a0, for oy € X, 0, € Y in U’ because
e({71, 72} UY, X))y = e(71, X))y, a contradiction. Hence, we must conclude
that 75 € X’. Thus, we proved that {7,752} UX C X’. By symmetry we can
also show that if A1 = (), then {71,7} U X C Y’ and similarly if {1,002} C X,
then {%1,75} UY CY' or X'.

(b) Suppose o1 = 71,09 # 7o and 02 € Y in U. Let 47 = X N X’ and
As = X NY’ and suppose Ay # ) and Ay # 0. If 75 € X' (respectively, Y)
and Taoy € U, then 7o0y — 710y or 7179 for all o € Ay (respectively, A;) and
furthermore if 790y — 7172, then 7179 — 7102 Or 0979 because 71 ATy = Tao Aoy <
71 A oa. So, there exists U’ € Q(H) such that (i) e(72, A1)y =0 if 72 € Y’ and
6(7A'2,A2)U/ = @ 1f7A'2 S X' (ll) 7A'17A'2 ¢ U/ (111) €(A1,A2)U/ = (Z) and e(X, Y)U/ = (Z)
Then for some oy € Y,0, € A1,0,, € Ay there is no circuit in U’ containing
edges Tooy and 710y, if 7o € Y/ because e(Ay, (U)y \ A1)y = e(71, A1), a
contradiction. Similarly, we can show that if 75 € X', then there is no circuit
containing 757 and o10,,. So, we must have A; = () or A3 = (). Without loss of
generality, let Ay = () and assume X C X’ in U and with a similar argument as
above we can show 75 € X’ hence {72} UX C X’'. With a symmetric argument
we can show that if A1 = (), then {7} U X C Y’ and similarly if o5 € X, then
{R}UY CY’' or X' O

Lemma 2.3. Let H = G(o1,...,0) = G(71,72,73,...,Tn) = (G; X, Y; 71, 72)
be strongly indecomposable. If X' Y’ is a TVE-partition for o;,0; in H, then
there exists U € Q(H) such that e(X,Y)y =0 and e(X',Y")y = 0.

Proof. For notational convenience, after rearranging the indices of H, we let
o1 = 0; and 02 = 0;. By Lemma 1.4 there exists V € Q(H) such that edge
0kOm ¢ V if o N oy < 71 AT for 3 < k,m < n and edge 747, ¢ T for all
T N\ T < 7t Where 7,7, € X and 7 € Y. So, in particular e(X,Y )y = 0.
Throughout the proof, we let o, € X’ and o,, € Y'. We will consider
the following cases: (i) If o = 7 for t = 1,2, then we let U = V. (i)
If oy = 71,00 # 7o and if edge oro,, € V, then we can oo, — o090} or
090, by Lemma 2.2(b). (iii) If 07 € X,00 € Y and edge oro,, € V, then
OOy — O10) OF 010, if o, 0, € X and o0, — 020) Or 020, if 0,0, €Y.
Ifn e X’,fg €Y’ and edge 170 € V, then 7175 — Tyo1 or Tho;. If 7. € X'
for r € {1,2} and o, € Y/ N X (respectively, Y NY) and edge 7.0, € V,
then 7.0, — o104, or 017, (respectively, 7.0, — 020, or o97.). (iv) By
Lemma 2.2(a), if {01,092} € X or Y and edge o0, € V, then o0, — 0,04 or
orom for r € {1,2}. Therefore, there exists U € Q(H) such that e(X',Y")y =0
and e(X,Y)y = 0. O

Let G = G(m,...,7,) and H = G(01,...,0,). If 7, = 0; for some j, then
we say 7; is a common verter in G and H. We say that there is a sequence
of two-vertex exchanges transforming G to H if there is a sequence of groups
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G = G1,Gs,...,G, = H such that G;1; is obtained from G; by a two-vertex
exchange and common vertices of G and H are not replaced by each two-vertex
exchange. Some results on the sequence of two-vertex exchanges to transform
a group to a quasi-isomorphic group can be found in [8].

Corollary 2.4. Let G = G(11,...,7,) be strongly indecomposable and suppose
H is obtained by a sequence of two two-vertex exchanges from G. Then there
is a CLP-map o : T — U for some T € Q(G) and U € Q(H).

Proof. Suppose H is obtained by a sequence of two two-vertex exchanges from
G and let Gy = (G; X1,Y1;71,72) and H = (G1;X2,Y2;04,0;5). Then there
exists V € Q(G1) such that e(X1, Y1)y = 0 and (X2, Y2)y = 0 by Lemma 2.3.
Let ¢ : Cq, — Cq and ¢ : Cg, — Cpy be TVE-maps then T' = ¢(V') € Q(G) and
U=¢(V)e QH),and ¢~ Y7 : T — V and |y : V — U are CLP-maps by
Proposition 1.5(a). Hence (¢|y/)o(¢~t|7) : T — U is the desired CLP-map. [

Corollary 2.4 provides an induction step to prove Lemma 2.5.

Lemma 2.5. Let G = G(71,...,7,) and H = G(o1,...,0,) be strongly inde-
composable with both T1,...,7, and o1,...,0, trimmed. Then the following
are equivalent:

(a) G ~ H,

(b) There is a sequence of two-vertex exchanges transforming G to H;

(¢) Thereis a CLP-map ¢ : T — U for some T € Q(G) and U € Q(H).

Proof. (a) = (b) Theorem 2.3 in [6].

(b) = (c) We will prove the existence of a CLP-map ¢ : T — U for some
T € Q(G) and U € Q(H) by the induction on m = the number of two-
vertex exchanges to transform G to H. If m < 2, then there is a CLP-map
Y : T — U for some T € Q(G) and U € Q(H) by Proposition 1.5(a) if m =1
and by Corollary 2.4 if m = 2. So, assume it is true for m < n — 1 and
suppose there is a sequence of n two-vertex exchanges transforming G to H.
Let G =Gy, ...,G,,Gry1 = H such that G4 is obtained from G; by a two-
vertex exchange. Without loss of generality we define G; = G(ri,74,...,7})
and Gi 1 = (Gy; Xy, Yy 78, 78), where X;,Y; is the TVE-partition for 7{, 74 in
Gi=G(r{,75,...,7.) for i =1,...,n. Let ¢; : Cq, = Cg,,, be the TVE-map
for each i and define By = {77} : 7!7} is an edge in Cg, and 7} € X; and
7} € Y1} and E;y1 = ¢i(E;) inductively for i = 1,...,n (Recall that a quasi-
representing graph for G is any subgraph of Cg that is obtained by iteration
of the algorithm: if a graph contains a circuit S with all the edges labelled
by types > 7 and at least one edge labelled by 7, then remove an edge of S
labelled by 7).

We first show that C’G = Cg, \ F; contains a quasi-representing graph for G;
for each i. Let e; = T}le be an arbitrary edge in Ey. If f; = 7}7{ is an edge
incident to 7 in Cg,, then label e; < label f; and define e;11 = ¢;(e;) and
fit1 = ¢:(fi) inductively for i = 1,...,n. Since ¢; is the TVE-map preserving
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labels of edges, it follows that label e;= label e; and label f;= label f; and
label e; < label f; for i = 2,...,n 4+ 1. Suppose edge f; is incident to some
vertex 7; in Cg, then 7, > label f; and 7, > label e;. So, if edge e; = 7i7}
in Cg,, then 7,7, 7/ is a circuit with edges {77, 7irf, 7i7} labelled with types
> 78 A7f. Thus, we can remove e; = 7.7} from Cg, and Cg, \ {e;} contains a
quasi-representing graph for G;. Similarly, we can remove all other edges in E;
from Cg,, hence we showed that Ci;, = Cg, \ E; contains a quasi-representing
graph for G; fort=1,...,n+ 1.

By the induction hypothesis on m, there exists T' € Q(H) such that T' C
Cg, ., and V € Q(G2) such that ¢’ : T — V is a CLP-map. Since ¢ is a
bijection map between edges of T" and edges of V', it follows that V' C C’G2
and e(X1,Y1)y = 0 because 7.7 = 7% for r = 3,...,n by Proposition 1.5(b).
Hence, by Proposition 1.5(a), U = ¢; (V) € Q(G1) and o = ¢; |y : V = U
is a CLP-map, where ¢ : Cg, — Cg, is a TVE-map. The map v o)’ : T — U
is the desired CLP-map.

(c)=(a) Lemma 1.2. O

A group is completely decomposable if it is a direct sum of rank one sum-
mands. Two completely decomposable finite rank torsion-free abelian groups
are quasi-isomorphic if and only if they have an equal number of quasi-sum-
mands of same type for all types (or equivalently, two completely decomposable
groups are quasi-isomorphic if and only if their quasi-representing graphs have
equal numbers of edges of same types for all types). Since G is completely
decomposable if and only if T € Q(G) is a tree by Corollary 1.9 in [1], it is
clear that any label-preserving bijection between the edges of two trees is a
CLP-map. Hence, we proved that:

Lemma 2.6. Let G = G(m,...,7,) and H = G(o1,...,0,) be completely
decomposable groups. If G =~ H, then there is a CLP-map v : T — U for some
T e Q(G) and U € Q(H).

If G is decomposable group, then G =~ G @ - - - ® G, where each G; is either
completely decomposable or strongly indecomposable of rank > 1 and each G;
has a quasi-representing graph 7T; and 7; NT; does not contain an edge if ¢ # j
and T = J, T; € Q(G).

We next show that the strongly indecomposability condition can be removed
in Lemma 2.5.

Theorem 2.7. Let G = G(m,...,m,) and H = G(o1,...,0,). Then G =~ H if
and only if there is a CLP-map ¢ : T — U for some T € Q(G) and U € Q(H).

Proof. Suppose G =~ H. By Lemma 2.5, we assume G is decomposable. Let
GG @ ®Gpand H~ H @ -+ ® Hy, where each G; and H; are
either completely decomposable or strongly indecomposable of rank > 1. Since
G ~ H it follows that £k = m and, without loss of generality, assume G; ~ H;
and there exists T; € Q(G;) such that ¢; : T; — U; is a CLP-map, where
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Uy = ¢;i(T;) € Q(H;) for each 1 < i < k. Let T = |J,T; € Q(G) and

U=U,U; € Q(H) and define a map v : T — U such that |7, = 1); for each
1 < i <k, then v is the desired CLP-map.
The converse is clear by Lemma 1.2. ([l
If there is a permutation p of {1,...,n} such that 71 = 0,1y, .., T = Tpm),
then we say G(71,...,7,) and G(o71,...,0,) are equivalent. It is easy to see that

any two equivalent groups are quasi-isomorphic. We say G is an elementary
group if T'(7) is either emptyset, a singleton edge or T for all types 7, where
T € Q(G).

We say a subgraph B C T is a block if B is the intersection of all circuits in
T containing B. It is easy to see that if ¥ : T'— U is a CLP-map, then B is a
block in T if and only if ¢(B) is a block in U.

Theorem 2.8. There are at most non-equivalent groups quasi-isomor-
phic to strongly indecomposable group G(71,...,Ts), where n > 3.

(n—1)!
2

Proof. Let G = G(71,...,7,) be a strongly indecomposable group and T €
Q(G). Note that since a TVE-partition gives a non-equivalent quasi-isomorphic
group by Lemma 1.1, we investigate which groups provide the maximum num-
ber of TVE-partitions. By the remark following Theorem 7 in [7] the necessary
and sufficient conditions for a TVE-partition X,Y for 71,75 using a quasi-
representing graph are e(X,Y)r = ) and 7¥ A 7¥ < 71 A 75 and observe that
if ¢ : T — U is a CLP-map, then U is obtained by permuting labels of edges
of blocks in T because 1 sends a circuit to a circuit. Hence, we get the max-
imum number of permutations of labels of edges in T if there is least number
of blocks in T. That is, we obtain the maximum number of non-equivalent
quasi-isomorphic groups if T is a circuit. So, we assume T is a circuit. If G is
an elementary group, then X,Y is a TVE-partition if and only if e(X,Y )7 = ()
by Lemma 8 in [7]. Hence, we assume G is elementary and T is a circuit, then
there are exactly (ngl)! non-equivalent elementary groups quasi-isomorphic to
G by Corollary 10 in [7]. Thus, for an arbitrary strongly indecomposable group

G there are at most w non-equivalent groups quasi-isomorphic to G. [

Define G[A1, ..., A,] = the cokernel of the diagonal embedding (', 4; —
@, A;, then G[A4;,...,A,]isa BM-group and the class of groups G[A, ...,
A,] is the dual class of groups G(Ay, ..., A,) in the sense of quasi-isomorphism
Butler duality of [4]. Let G = G[r1,...,7,] and define C¢ be the complete
graph with vertices 71,...,7, and edges 7;7; labelled by types 7; V 7; for 1 <
i #j < n. A co-representing graph for G is any subgraph of C that is obtained
by iteration of the algorithm: if a graph contains a circuit S with all the edges
labelled by types < 7 and at least one edge labelled by 7, then remove an edge
of S labelled by 7. Let CQ(G) be the set of all co-quasi-representing graphs for
G.
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The following corollary can be obtained using the quasi-isomorphism Butler
duality of [4].
Corollary 2.9. Let G =G[n,..., 7] and H = Glo1,...,0,].
(a) G =~ H if and only if there is a CLP-map ¢ : T — U for some T €
CO(G) and U € CQ(H).

(b) There are at most @ non-equivalent groups quasi-isomorphic to
strongly indecomposable group Gy, ..., T,], where n > 3.
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