• Title/Summary/Keyword: isolated singularities

Search Result 12, Processing Time 0.021 seconds

HOMOGENEOUS POLYNOMIAL HYPERSURFACE ISOLATED SINGULARITIES

  • Akahori, Takao
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.4
    • /
    • pp.667-680
    • /
    • 2003
  • The mirror conjecture means originally the deep relation between complex and symplectic geometry in Calabi-Yau manifolds. Recently, this conjecture is posed beyond Calabi-Yau, and even to, open manifolds (e.g. $A_{n}$ singularities and its resolution) is discussed. While if we treat open manifolds, we can't avoid the boundary (in our case, CR manifolds). Therefore we pose the more precise conjecture (mirror symmetry with boundaries). Namely, in mirror symmetry, for boundaries, what kind of structure should correspond\ulcorner For this problem, the $A_{n}$ case is studied.

SYMPLECTIC 4-MANIFOLDS VIA SYMPLECTIC SURGERY ON COMPLEX SURFACE SINGULARITIES

  • PARK, HEESANG;STIPSICZ, ANDRAS I.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.1213-1223
    • /
    • 2015
  • We examine a family of isolated complex surface singularities whose exceptional curves consist of two complex curves with high genera intersecting transversally. Topological data of smoothings of these singularities are determined. We use these computations to construct symplectic 4-manifolds by replacing neighborhoods of the exceptional curves with smoothings of the singularities.

ANALYTIC APPROACH TO DEFORMATION OF RESOLUTION OF NORMAL ISOLATED SINGULARITIES: FORMAL DEFORMATIONS

  • Miyajima, Kimio
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.4
    • /
    • pp.709-725
    • /
    • 2003
  • We give an analytic approach to the versal deformation of a resolution of a germ of normal isolated singularities. In this paper, we treat only formal deformation theory and it is applied to complete the CR-description of the simultaneous resolution of a cone eve. a rational curve of degree n in P$^{n}$ (n $\leq$ 4).

Structural characteristics and properties of phase singularities in optical fibers

  • Lim, Dong-Sung;Lee, Ei-Hang
    • Journal of the Optical Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.81-89
    • /
    • 1997
  • The formation of phase singularities in optical fibers is theoretically and experimentally investigated. In particular, their structural characteristics and properties are discussed in relation to guided mode patterns. It is found that except for the fundamental linearly polarized(LP) modes, all the mixed modes displayed phase singularities in the transverse plane. The results in the few mode fiber show that superposition of the LP even and odd modes produces isolated dark points and phase singularities. Phase singularities are found to be of the screw type and of first order. The number of phase singularities linearly increases with the number of guided modes.

CR GEOMETRY/ANALYSIS AND DEFORMATION OF ISOLATED SINGULARITIES

  • Miyajima, Kimio
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.193-223
    • /
    • 2000
  • In the late 1970's, M. Kuranishi proposed to control the moduli of the germ of a normal Stein space by deformations of the CR structure on the boundary. I this paper, we will see that it is naturally accomplished by considering stably embeddable deformations of CR structures.

  • PDF

Some Characterizations of Catenary Rotation Surfaces

  • Kim, Dong-Soo;Kim, Young Ho;Yoon, Dae Won
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.4
    • /
    • pp.667-676
    • /
    • 2017
  • We study the positive $C^1$ function z = f(x, y) defined on the plane ${\mathbb{R}}^2$. For a rectangular domain $[a,b]{\times}[c,d]{\subset}{\mathbb{R}}^2$, we consider the volume V and the surface area S of the graph of z = f(x, y) over the domain. We also denote by (${\bar{x}}_V,\;{\bar{y}}_V,\;{\bar{z}}_V$) and (${\bar{x}}_S,\;{\bar{y}}_S,\;{\bar{z}}_S$) the geometric centroid of the volume under the graph of z = f(x, y) and the centroid of the graph itself defined on the rectangular domain, respectively. In this paper, first we show that among nonconstant $C^2$ functions with isolated singularities, S = kV, $k{\in}{\mathbb{R}}$ characterizes the family of catenary rotation surfaces f(x, y) = k cosh(r/k), $r={\mid}(x,y){\mid}$. Next, we show that one of $({\bar{x}}_S,\;{\bar{y}}_S)=({\bar{x}}_V,\;{\bar{y}}_V)$, $({\bar{x}}_S,\;{\bar{z}}_S)=({\bar{x}}_V,\;2{\bar{z}}_V)$ and $({\bar{y}}_S,\;{\bar{z}}_S)=({\bar{y}}_V,\;2{\bar{z}}_V)$ characterizes the family of catenary rotation surfaces among nonconstant $C^2$ functions with isolated singularities.

A BOUND FOR THE MILNOR SUM OF PROJECTIVE PLANE CURVES IN TERMS OF GIT

  • Shin, Jaesun
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.461-473
    • /
    • 2016
  • Let C be a projective plane curve of degree d whose singularities are all isolated. Suppose C is not concurrent lines. P loski proved that the Milnor number of an isolated singlar point of C is less than or equal to $(d-1)^2-{\lfloor}\frac{d}{2}{\rfloor}$. In this paper, we prove that the Milnor sum of C is also less than or equal to $(d-1)^2-{\lfloor}\frac{d}{2}{\rfloor}$ and the equality holds if and only if C is a P loski curve. Furthermore, we find a bound for the Milnor sum of projective plane curves in terms of GIT.

A CHARACTERIZATION OF CONCENTRIC HYPERSPHERES IN ℝn

  • Kim, Dong-Soo;Kim, Young Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.531-538
    • /
    • 2014
  • Concentric hyperspheres in the n-dimensional Euclidean space $\mathbb{R}^n$ are the level hypersurfaces of a radial function f : $\mathbb{R}^n{\rightarrow}\mathbb{R}$. The magnitude $||{\nabla}f||$ of the gradient of such a radial function f : $\mathbb{R}^n{\rightarrow}\mathbb{R}$ is a function of the function f. We are interested in the converse problem. As a result, we show that if the magnitude of the gradient of a function f : $\mathbb{R}^n{\rightarrow}\mathbb{R}$ with isolated critical points is a function of f itself, then f is either a radial function or a function of a linear function. That is, the level hypersurfaces are either concentric hyperspheres or parallel hyperplanes. As a corollary, we see that if the magnitude of a conservative vector field with isolated singularities on $\mathbb{R}^n$ is a function of its scalar potential, then either it is a central vector field or it has constant direction.