
KYUNGPOOK Math. J. 57(2017), 667-676

https://doi.org/10.5666/KMJ.2017.57.4.667

pISSN 1225-6951 eISSN 0454-8124

c© Kyungpook Mathematical Journal

Some Characterizations of Catenary Rotation Surfaces

Dong-Soo Kim
Department of Mathematics, Chonnam National University, Gwangju 61186, South
Korea
e-mail : dosokim@chonnam.ac.kr

Young Ho Kim∗

Department of Mathematics Education, Kyungpook National University, Daegu
41566, South Korea
e-mail : yhkim@knu.ac.kr

Dae Won Yoon
Department of Mathematics Education and RINS, Gyeongsang National University,
Jinju 52828, South Korea
e-mail : dwyoon@gnu.ac.kr

Abstract. We study the positive C1 function z = f(x, y) defined on the plane R2. For
a rectangular domain [a, b] × [c, d] ⊂ R2, we consider the volume V and the surface area
S of the graph of z = f(x, y) over the domain. We also denote by (x̄V , ȳV , z̄V ) and
(x̄S , ȳS , z̄S) the geometric centroid of the volume under the graph of z = f(x, y) and the
centroid of the graph itself defined on the rectangular domain, respectively.

In this paper, first we show that among nonconstant C2 functions with isolated

singularities, S = kV , k ∈ R characterizes the family of catenary rotation surfaces

f(x, y) = k cosh(r/k), r = |(x, y)|. Next, we show that one of (x̄S , ȳS) = (x̄V , ȳV ),

(x̄S , z̄S) = (x̄V , 2z̄V ) and (ȳS , z̄S) = (ȳV , 2z̄V ) characterizes the family of catenary

rotation surfaces among nonconstant C2 functions with isolated singularities.

1. Introduction

A well-known property of the catenary curve y = k cosh((x − c)/k), k > 0
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is that the ratio of the area under the curve to the arc length of the curve is
independent of the interval over which these quantities are concurrently measured.
That is, for every interval [a, b], the area A(a, b) under the curve always equals to
kL(a, b), where L(a, b) denotes the arc length of the curve itself. This property
characterizes the family of catenaries y = k cosh((x− c)/k) among nonconstant C2

functions as follows ([17]):

Proposition 1.1. For a nonconstant positive C2 function y = f(x) defined on an
interval I, the following are equivalent.

(1) There exists a positive constant k such that for every interval [a, b] ⊂ I,
A(a, b) = kL(a, b).

(2) The function f(x) satisfies f(x) = k
√

1 + f ′(x)2, where k is a positive con-
stant.

(3) For some k > 0 and c ∈ R,

f(x) = k cosh

(
x− c
k

)
.

For a positive C1 function y = f(x) defined on an interval I and an in-
terval [a, b] ⊂ I, we denote by (x̄A, ȳA) = (x̄A(a, b), ȳA(a, b)) and (x̄L, ȳL) =
(x̄L(a, b), ȳL(a, b)) the geometric centroid of the area under the graph of y = f(x)
and the centroid of the graph itself defined on this interval, respectively. Then, for
a catenary curve f(x) = k cosh ((x− c)/k) we always have x̄L(a, b) = x̄A(a, b) and
ȳL(a, b) = 2ȳA(a, b) ([17]). Conversely, one of theses properties characterizes the
catenary curves as follows ([13]).

Proposition 1.2. For a nonconstant positive C2 function y = f(x) defined on an
interval I, the following are equivalent.

(1) For every interval [a, b] ⊂ I, x̄L(a, b) = x̄A(a, b).

(2) For every interval [a, b] ⊂ I, ȳL(a, b) = 2ȳA(a, b).

(3) For some k > 0 and c ∈ R,

f(x) = k cosh

(
x− c
k

)
.

Some higher dimensional generalizations of Proposition 1.1, especially for rota-
tion hypersurfaces in Rn+1, were established in [1].

In this paper, we study a positive C1 function z = f(x, y) defined on R2. For a
rectangular domain [a, b]× [c, d] ⊂ R2, we consider the volume V = V (a, b, c, d)
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and the surface area S = S(a, b, c, d) of the graph of z = f(x, y) over the domain.
We also denote by

(x̄V , ȳV , z̄V ) = (x̄V (a, b, c, d), ȳV (a, b, c, d), z̄V (a, b, c, d))

and

(x̄S , ȳS , z̄S) = (x̄S(a, b, c, d), ȳS(a, b, c, d), z̄S(a, b, c, d))

the geometric centroid of the volume under the graph of z = f(x, y) and the
centroid of the graph itself defined on the rectangular domain, respectively.

As a result, first of all we prove the following characterization theorem in Section
3.

Theorem 1.3. Suppose that z = f(x, y) denotes a nonconstant positive C2 func-
tion defined on R2 with isolated singularities. Then, the following are equivalent.

(1) There exists a positive constant k such that for every rectangular domain,
V = kS.

(2) By a Euclidean motion of R2 if necessary, we have

f(x, y) = k cosh
( r
k

)
, r =

√
x2 + y2.

Next, in Section 4 we prove the following characterization theorem.

Theorem 1.4. Suppose that z = f(x, y) denotes a nonconstant positive C2 function
defined on R2 with isolated singularities. Then, the following are equivalent.

(1) For every rectangular domain, we have

x̄S = x̄V , ȳS = ȳV .

(2) For every rectangular domain, we have

x̄S = x̄V , z̄S = 2z̄V .

(3) For every rectangular domain, we have

ȳS = ȳV , z̄S = 2z̄V .

(4) By a Euclidean motion of R2 if necessary, we have

f(x, y) = k cosh
( r
k

)
, r =

√
x2 + y2.
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In order to find the centroid of polygons, see [3]. For the perimeter centroid of
a polygon, we refer to [2]. In [15], mathematical definitions of centroid of planar
bounded domains were given. For various centroids of higher dimensional simplexes,
see [16]. The relationships between various centroids of a quadrangle were given in
[6, 12]

Archimedes proved the area properties of parabolic sections and then formulated
the centroid of parabolic sections ([18]). Some characterizations of parabolas using
these properties were given in [5, 9, 11]. Furthermore, Archimedes also proved the
volume properties of the region surrounded by a paraboloid of rotation and a plane
([18]). For characterizations of spheres, ellipsoids, elliptic paraboloid or elliptic
hyperboloids with respect to these volume properties, we refer to [4, 7, 8, 14].

2. Some Lemmas

In this section, we prove some lemmas which are useful in the proof of our
theorems.

We consider a positive C1 function z = f(x, y) defined on R2. For a rectangular
domain [a, b] × [c, d] ⊂ R2, the volume V = V (a, b, c, d) and the surface area
S = S(a, b, c, d) of the graph of z = f(x, y) over the domain are respectively
given by
(2.1)

V (a, b, c, d) =

∫ b

a

∫ d

c

f(x, y)dxdy, S(a, b, c, d) =

∫ b

a

∫ d

c

w(x, y)dxdy,

where w(x, y) is a function defined by

(2.2) w(x, y) =
√

1 + |∇f |2, ∇f = (fx, fy).

The centroids over the rectangular domain [a, b]× [c, d] are also respectively given
by
(2.3)

(x̄V , ȳV , z̄V ) =
1

V

(∫ b

a

∫ d

c

xf(x, y)dxdy,

∫ b

a

∫ d

c

yf(x, y)dxdy,
1

2

∫ b

a

∫ d

c

f(x, y)2dxdy

)
and

(2.4)

(x̄S , ȳS , z̄S) =
1

S

(∫ b

a

∫ d

c

xw(x, y)dxdy,

∫ b

a

∫ d

c

yw(x, y)dxdy,

∫ b

a

∫ d

c

f(x, y)w(x, y)dxdy

)
.

First, suppose that x̄S = x̄V . Then for all a, b, c, d ∈ R with a < b and c < d,
we have
(2.5)∫ b

a

∫ d

c

f(x, y)dxdy

∫ b

a

∫ d

c

xw(x, y)dxdy =

∫ b

a

∫ d

c

xf(x, y)dxdy

∫ b

a

∫ d

c

w(x, y)dxdy.
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Note that (2.5) is valid for all a, b, c, d ∈ R. We differentiate (2.5) with respect to b
and a repeatedly. Then the fundamental theorem of calculus gives

(2.6)

∫ d

c

f(b, y)dy

∫ d

c

aw(a, y)dy +

∫ d

c

f(a, y)dy

∫ d

c

bw(b, y)dy

=

∫ d

c

bf(b, y)dy

∫ d

c

w(a, y)dy +

∫ d

c

af(a, y)dy

∫ d

c

w(b, y)dy.

We again differentiate (2.6) with respect to d and c repeatedly. Then, we get

(2.7)
f(b, d)aw(a, c) + aw(a, d)f(b, c) + f(a, d)bw(b, c) + bw(b, d)f(a, c)

= bf(b, d)w(a, c) + bw(a, d)f(b, c) + af(a, d)w(b, c) + aw(b, d)f(a, c),

from which we obtain

(2.8) f(b, d)w(a, c) + f(b, c)w(a, d) = f(a, d)w(b, c) + f(a, c)w(b, d).

Let us define g(a, b, c, d) as follows:

(2.9) g(a, b, c, d) = f(a, c)w(b, d)− f(b, d)w(a, c).

Then, it follows from (2.8) that

(2.10) g(a, b, c, d) = g(b, a, c, d).

Next, suppose that ȳS = ȳV . Then for all a, b, c, d ∈ R with a < b and c < d,
we have
(2.11)∫ b

a

∫ d

c

f(x, y)dxdy

∫ b

a

∫ d

c

yw(x, y)dxdy =

∫ b

a

∫ d

c

yf(x, y)dxdy

∫ b

a

∫ d

c

w(x, y)dxdy.

Note that (2.11) is valid for all a, b, c, d ∈ R. If we differentiate (2.11) with respect
to b and a repeatedly, then we get

(2.12)

∫ d

c

f(b, y)dy

∫ d

c

yw(a, y)dy +

∫ d

c

f(a, y)dy

∫ d

c

yw(b, y)dy

=

∫ d

c

yf(b, y)dy

∫ d

c

w(a, y)dy +

∫ d

c

yf(a, y)dy

∫ d

c

w(b, y)dy.

By differentiating (2.12) with respect to d and then with respect to c, as before we
get

(2.13) f(b, d)w(a, c) + f(a, d)w(b, c) = f(b, c)w(a, d) + f(a, c)w(b, d),

which implies

(2.14) g(a, b, c, d) = g(a, b, d, c).
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Finally, suppose that z̄S = 2z̄V . Then for all a, b, c, d ∈ R with a < b and c < d,
we have
(2.15)∫ b

a

∫ d

c

f(x, y)dxdy

∫ b

a

∫ d

c

f(x, y)w(x, y)dxdy =

∫ b

a

∫ d

c

f(x, y)2dxdy

∫ b

a

∫ d

c

w(x, y)dxdy.

Note that (2.15) is valid for all a, b, c, d ∈ R. We differentiate (2.15) with respect
to b and a repeatedly. Then we get

(2.16)

∫ d

c

f(b, y)dy

∫ d

c

f(a, y)w(a, y)dy +

∫ d

c

f(a, y)dy

∫ d

c

f(b, y)w(b, y)dy

=

∫ d

c

f(b, y)2dy

∫ d

c

w(a, y)dy +

∫ d

c

f(a, y)2dy

∫ d

c

w(b, y)dy.

By differentiating (2.16) with respect to d and then with respect to c, we have
(2.17)
f(b, d)f(a, c)w(a, c) + f(b, c)f(a, d)w(a, d) + f(a, d)f(b, c)w(b, c) + f(a, c)f(b, d)w(b, d)

= f(b, d)2w(a, c) + f(b, c)2w(a, d) + f(a, d)2w(b, c) + f(a, c)2w(b, d).

Together with (2.9), this shows that

(2.18) {f(b, d)− f(a, c)}g(a, b, c, d) = {f(a, d)− f(b, c)}g(a, b, d, c).

Summarizing the above discussions, we obtain

Lemma 2.1. Suppose that z = f(x, y) denotes a positive C2 function defined on
R2. Then, we have

(1) If the function z = f(x, y) satisfies x̄S = x̄V for every rectangular domain,
then

g(a, b, c, d) = g(b, a, c, d).

(2) If the function z = f(x, y) satisfies ȳS = ȳV for every rectangular domain,
then

g(a, b, c, d) = g(a, b, d, c).

(3) If the function z = f(x, y) satisfies z̄S = 2z̄V for every rectangular domain,
then

{f(b, d)− f(a, c)}g(a, b, c, d) = {f(a, d)− f(b, c)}g(a, b, d, c).

3. Theorem 1.3.

In this section, we prove Theorem 1.3 stated in Section 1.
Suppose that a positive C2 function z = f(x, y) defined on R2 satisfies V = kS

for some k > 0. Then for all a, b, c, d ∈ R with a < b and c < d, we have

(3.1)

∫ b

a

∫ d

c

f(x, y)dxdy = k

∫ b

a

∫ d

c

w(x, y)dxdy,
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where w(x, y) is a function defined by

(3.2) w(x, y) =
√

1 + |∇f |2.

Note that (2.1) is valid for all a, b, c, d ∈ R. By differentiating (2.1) with respect
to b and d repeatedly, the fundamental theorem of calculus gives f(b, d) = kw(b, d)
for all a, b ∈ R. That is, we get a partial differential equation

(3.3) f(x, y) = k
√

1 + |∇f |2.

This shows that the function z = f(x, y) satisfies

(3.4) |∇f(x, y)| = φ(f(x, y)), φ(t) =

√
t2 − k2
k

.

Now, we need the following (the main theorem of [10]):

Proposition 3.1. Suppose that a C2 function f : Rn → R with isolated critical
points satisfies |∇f(x, y)| = φ(f(x, y)), where φ is a function. Then f is a function
of either a distance function r = ||p− o|| from a fixed point o or a linear function.
That is, the level sets are either concentric hyperspheres or parallel hyperplanes.

It follows from Proposition 3.1 that by a Euclidean motion if necessary, the
function f(x, y) is either a radial function f(x, y) = h(r), r = |(x, y)| or a function
f(x, y) = h(x) of only x.

We consider two cases as follows.

Case 1. f(x, y) = h(r). In this case, we have from (3.4)

(3.5) h′(r) = ±
√
h(r)2 − k2

k
,

which shows that

(3.6) f(x, y) = h(r) = k cosh

(
r − c
k

)
.

Since the function f(x, y) has isolated singularities and |∇f(x, y)| = |h′(r)| =
| sinh ((r − c)/k) | vanishes where r(x, y) = c, the constant c must be nonpositive.
But, if c is negative, the function f(x, y) cannot be differentiable at the origin. This
implies that c = 0, and hence

(3.7) f(x, y) = k cosh
( r
k

)
, r =

√
x2 + y2.

Case 2. f(x, y) = h(x). In this case, we have from (3.4)

(3.8) h′(x) = ±
√
h(x)2 − k2

k
,
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which shows that

(3.9) f(x, y) = h(x) = k cosh

(
x− c
k

)
.

Since |∇f(x, y)| vanishes on the line x = c, this case is impossible.

Summarizing the above two cases, we see that (1) ⇒ (2).
Conversely, it is straightforward to show that (2) ⇒ (1). This completes the

proof of Theorem 1.3.

4. Theorem 1.4.

In this section, we prove Theorem 1.4 stated in Section 1.
First, suppose that a positive C2 function z = f(x, y) defined on R2 satisfies

x̄S = x̄V and ȳS = ȳV . Then for the function g defined by (2.9), it follows from
Lemma 2.1 that

(4.1) g(a, b, c, d) = g(b, a, c, d)

and

(4.2) g(a, b, c, d) = g(a, b, d, c).

On the other hands, by the definition of the function g in (2.9) we have

(4.3) g(a, b, c, d) = −g(b, a, d, c).

Hence, together with (4.1) and (4.2), this shows that for all a, b, c, d ∈ R

(4.4) g(a, b, c, d) = f(a, c)w(b, d)− f(b, d)w(a, c) = 0.

This shows that f(x, y) = kw(x, y), k ∈ R, that is,

(4.5) f(x, y) = k
√

1 + |∇f(x, y)|2.

Thus, the proof of Theorem 1.3 implies that (1) ⇒ (4).
Next, suppose that a positive C2 function z = f(x, y) defined on R2 satisfies

x̄S = x̄V and z̄S = 2z̄V . Then for the function g defined by (2.9), it follows from
Lemma 2.1 that

(4.6) g(a, b, c, d) = g(b, a, c, d)

and

(4.7) {f(b, d)− f(a, c)}g(a, b, c, d) = {f(a, d)− f(b, c)}g(a, b, d, c).

Note that (4.3) implies

(4.8) g(a, b, d, c) = −g(b, a, c, d) = −g(a, b, c, d),
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where the second equality follows from (4.6). Together with (4.7), this yields

(4.9) B(a, b, c, d)g(a, b, c, d) = 0,

where we put

(4.10) B(a, b, c, d) = f(a, d)− f(a, c) + f(b, d)− f(b, c).

Now we claim that g(a, b, c, d) vanishes. Otherwise, on an open set I2 × J2

g(a, b, c, d) does not vanish, and hence B(a, b, c, d) vanishes on the open set. This
implies the function fy(x, y) = 0 on the open set I × J , and hence f(x, y) = h(x) is
a function of one variable. The function h(x) obviously satisfies (1) of Proposition
1.2. Thus, on the open set I × J the function f(x, y) is either a constant function
or a catenary

(4.11) f(x, y) = k cosh

(
x− c
k

)
.

But in any cases, g(a, b, c, d) vanishes on the open set I2 × J2. This contradiction
shows that g(a, b, c, d) vanishes on R2, and hence f(x, y) = kw(x, y) for some k ∈ R.
Therefore the proof of Theorem 1.3 implies that (2) ⇒ (4).

Finally, suppose that a positive C2 function z = f(x, y) defined on R2 satisfies
ȳS = ȳV and z̄S = 2z̄V . Then, just the same argument as in the proof of (2) ⇒ (4)
yields that (3) ⇒ (4).

Conversely, it is straightforward to show that (4) ⇒ (1), (2) and (3). This
completes the proof of Theorem 1.4.
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