DOI QR코드

DOI QR Code

Some Characterizations of Catenary Rotation Surfaces

  • Kim, Dong-Soo (Department of Mathematics, Chonnam National University) ;
  • Kim, Young Ho (Department of Mathematics Education, Kyungpook National University) ;
  • Yoon, Dae Won (Department of Mathematics Education and RINS, Gyeongsang National University)
  • Received : 2016.08.31
  • Accepted : 2017.05.29
  • Published : 2017.12.23

Abstract

We study the positive $C^1$ function z = f(x, y) defined on the plane ${\mathbb{R}}^2$. For a rectangular domain $[a,b]{\times}[c,d]{\subset}{\mathbb{R}}^2$, we consider the volume V and the surface area S of the graph of z = f(x, y) over the domain. We also denote by (${\bar{x}}_V,\;{\bar{y}}_V,\;{\bar{z}}_V$) and (${\bar{x}}_S,\;{\bar{y}}_S,\;{\bar{z}}_S$) the geometric centroid of the volume under the graph of z = f(x, y) and the centroid of the graph itself defined on the rectangular domain, respectively. In this paper, first we show that among nonconstant $C^2$ functions with isolated singularities, S = kV, $k{\in}{\mathbb{R}}$ characterizes the family of catenary rotation surfaces f(x, y) = k cosh(r/k), $r={\mid}(x,y){\mid}$. Next, we show that one of $({\bar{x}}_S,\;{\bar{y}}_S)=({\bar{x}}_V,\;{\bar{y}}_V)$, $({\bar{x}}_S,\;{\bar{z}}_S)=({\bar{x}}_V,\;2{\bar{z}}_V)$ and $({\bar{y}}_S,\;{\bar{z}}_S)=({\bar{y}}_V,\;2{\bar{z}}_V)$ characterizes the family of catenary rotation surfaces among nonconstant $C^2$ functions with isolated singularities.

Keywords

References

  1. V. Coll and M. Harrison, Two generalizations of a property of the catenary, Amer. Math. Monthly, 121(2)(2014), 109-119. https://doi.org/10.4169/amer.math.monthly.121.02.109
  2. M. J. Kaiser, The perimeter centroid of a convex polygon, Appl. Math. Lett., 6(3)(1993), 17-19. https://doi.org/10.1016/0893-9659(93)90025-I
  3. B. Khorshidi, A new method for finding the center of gravity of polygons, J. Geom., 96(1-2)(2009), 81-91. https://doi.org/10.1007/s00022-010-0027-1
  4. D.-S. Kim, Ellipsoids and elliptic hyperboloids in the Euclidean space $E^{n+1}$, Linear Algebra Appl., 471(2015), 28-45. https://doi.org/10.1016/j.laa.2014.12.014
  5. D.-S. Kim, and D. S. Kim, Centroid of triangles associated with a curve, Bull. Korean Math. Soc., 52(2015), 571-579. https://doi.org/10.4134/BKMS.2015.52.2.571
  6. D.-S. Kim, W. Kim, K. S. Lee and D. W. Yoon, Various centroids of polygons and some characterizations of rhombi, Commun. Korean Math. Soc., To appear.
  7. D.-S. Kim and Y. H. Kim, Some characterizations of spheres and elliptic paraboloids, Linear Algebra Appl., 437(1)(2012), 113-120. https://doi.org/10.1016/j.laa.2012.02.013
  8. D.-S. Kim and Y. H. Kim, Some characterizations of spheres and elliptic paraboloids II, Linear Algebra Appl., 438(3)(2013), 1356-1364. https://doi.org/10.1016/j.laa.2012.08.024
  9. D.-S. Kim and Y. H. Kim, On the Archimedean characterization of parabolas, Bull. Korean Math. Soc., 50(6)(2013), 2103-2114. https://doi.org/10.4134/BKMS.2013.50.6.2103
  10. D.-S. Kim and Y. H. Kim, A characterization of concentric hyperspheres in $R^n$, Bull. Korean Math. Soc., 51(2)(2014), 531-538. https://doi.org/10.4134/BKMS.2014.51.2.531
  11. D.-S. Kim, Y. H. Kim and S. Park, Center of gravity and a characterization of parabolas, Kyungpook Math. J., 55(2015), 473-484. https://doi.org/10.5666/KMJ.2015.55.2.473
  12. D.-S. Kim, K. S. Lee, K. B. Lee, Y. I. Lee, S. Son, J. K. Yang and D. W. Yoon, Centroids and some characterizations of parallelograms, Commun. Korean Math. Soc., to appear.
  13. D.-S. Kim, H. T. Moon and D. W. Yoon, Centroids and some characterizations of catenary curves, submitted.
  14. D.-S. Kim and B. Song, A characterization of elliptic hyperboloids, Honam Math. J., 35(1)(2013), 37-49. https://doi.org/10.5831/HMJ.2013.35.1.37
  15. S. G. Krantz, A matter of gravity, Amer. Math. Monthly, 110(2003), 465-481. https://doi.org/10.1080/00029890.2003.11919985
  16. S. G. Krantz, John E. McCarthy and Harold R. Parks, Geometric characterizations of centroids of simplices, J. Math. Anal. Appl., 316(1)(2006), 87-109. https://doi.org/10.1016/j.jmaa.2005.04.046
  17. E. Parker, A property characterizing the catenary, Math. Mag., 83(2010) 63-64. https://doi.org/10.4169/002557010X485120
  18. S. Stein, Archimedes. What did he do besides cry Eureka?, Mathematical Association of America, Washington D. C, 1999.