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A CHARACTERIZATION OF CONCENTRIC

HYPERSPHERES IN R
n

Dong-Soo Kim and Young Ho Kim

Abstract. Concentric hyperspheres in the n-dimensional Euclidean spa-
ce Rn are the level hypersurfaces of a radial function f : Rn → R. The
magnitude ||∇f || of the gradient of such a radial function f : Rn → R is
a function of the function f . We are interested in the converse problem.
As a result, we show that if the magnitude of the gradient of a function
f : Rn → R with isolated critical points is a function of f itself, then f is
either a radial function or a function of a linear function. That is, the level
hypersurfaces are either concentric hyperspheres or parallel hyperplanes.

As a corollary, we see that if the magnitude of a conservative vector field
with isolated singularities on R

n is a function of its scalar potential, then
either it is a central vector field or it has constant direction.

1. Introduction

Consider a radial function f : Rn → R, that is, f satisfies f(x) = g(||x||) for
some function g. Then it is well-known that the magnitude of the gradient of
f is a function of the function f .

In this regard, for a function f : Rn → R, we consider the following condition

(C) ||∇f(p)|| = φ(f(p)), p ∈ R
n,

where φ : R → [0,+∞) is a real valued function. Then, the radial functions on
R

n satisfy condition (C).
Therefore, it is natural to ask a question:
“What kinds of functions on R

n satisfy condition (C)?”
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In this article, we study the functions defined on R
n which satisfy condi-

tion (C). As a result, first, we establish a local characterization of functions
satisfying condition (C).

Proposition 1. For a function f defined on an open set V ⊂ R
n without

critical points, the following are equivalent:
1) The function f satisfies condition (C).
2) Every integral curve of ∇f is a straight line.

3) For a level hypersurface M , f is constant on each parallel hypersurface

of M .

Second, using Proposition 1, we prove the following characterization theorem
of functions satisfying condition (C) globally on R

n.

Theorem 2. Suppose that a function f : Rn → R with isolated critical points

satisfies condition (C). Then f is a function of either a distance function r =
||p − o|| from a fixed point o or a linear function. That is, the level sets are

either concentric hyperspheres or parallel hyperplanes.

As applications of Theorem 2, we get the following characterizations.

Corollary 3. Suppose that a function f defined on R
n with isolated critical

points satisfies condition (C). Then we have the following.

1) If f has no critical points, then f is a function of some linear function.

2) If f has at least one critical point, then f is a radial function from a fixed

point o.

In particular, we have:

Corollary 4. For a function f defined on R
n, the following are equivalent:

1) The magnitude ||∇f || of the gradient of f is constant on R
n.

2) The function f is a linear function.

It follows from Corollary 4 that a conservative vector field with constant
magnitude defined on the whole space R

n is a constant vector field.
For a conservative vector field F on R

n, condition (C) is equivalent to the
following:

“The magnitude of a conservative vector field F is a function of its scalar

potential function.”

For a fixed point o ∈ R
n, a vector field F defined on R

n
r {o} is called a

central vector field if it is invariant under orthogonal transformations around o.
The point o is called the center of the vector field F . The gradient vector field
of a radial function from a point o ∈ R

n is an example of such vector fields.
Since orthogonal transformations around a fixed point o are actually rota-

tions and reflections, the invariance conditions show that vectors of a central
vector field are always directed towards, or away from, its center o. Hence, it
is straightforward to show that every central vector field with center o ∈ R

n is
the gradient vector field of a radial function from o.
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Now, we may restate Theorem 2 as follows.

Theorem 5. Suppose that the magnitude of a conservative vector field F on

R
n with isolated singularities is a function of its scalar potential function. Then

we have the following.

1) If F has no singularities, then F has constant direction.

2) If F has at least one singularity, then F has exactly one zero o ∈ R
n and

F is a central vector field with center o.

Theorem 2 or Theorem 5 might be well-known, but we could not find the
references for them (cf. [7]).

Throughout this article, all objects are smooth (that is, C2), unless otherwise
mentioned. For notations and terminologies, see [2], [3], [5] or [9].

2. Proofs

Suppose that ||∇f || = φ(f) for a real valued function φ. Let Rf denote the
set of regular values of f . For k ∈ Rf , let’s denote by U the unit normal vector
to the level hypersurface f−1(k) in the direction of ∇f . Hence, it follows from
condition (C) that

(1) ∇f = φ(k)U on f−1(k).

First, we prove the following lemma.

Lemma 6. For a function f defined on an open set V ⊂ R
n without critical

points, the following are equivalent:
1) ||∇f || = φ(f) for a function φ.
2) Every integral curve y(t) of ∇f is a straight line.

Proof. For a point p ∈ f−1(k) with k ∈ Rf , we denote by κ1(p), . . . , κn−1(p)
the principal curvatures of the level hypersurface f−1(k) associated with the
corresponding principal directions e1(p), . . . , en−1(p) with respect to U at p.

For each i = 1, 2, . . . , n− 1, we let xi(s) denote a unit speed curve of f−1(k)
starting from p with x′

i(0) = ei(p), i = 1, 2, . . . , n−1. Then (1) implies for each
i = 1, 2, . . . , n− 1

(2) ∇f(xi(s)) = φ(k)U(xi(s)).

By differentiating (2) with respect to s, we get at s = 0

(3) Hf (p)ei(p) = −φ(k)κi(p)ei(p),

where Hf denotes the Hessian matrix of f . Since Hf (p) is symmetric, from
(3) we see that for any point p ∈ f−1(k)

(4) Hf(p)∇f(p) = h(p)∇f(p),

where h is a function. It follows from (4) that for all x ∈ R
n, f satisfies

(5) Hf (x)∇f(x) = h(x)∇f(x).
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Let’s denote by y(t) the integral curve of ∇f with y(0) = p ∈ f−1(k). Then
we have

(6) y′′(t) = Hf (y(t))∇f(y(t)) = h(t)∇f(y(t)) = h(t)y′(t),

where h(t) = h(y(t)) and the second equality follows from (5). This shows that
y(t) is a parametrization of a straight line.

Conversely, suppose that every integral curve y(t) of ∇f is a straight line.
Then every integral curve y(t) satisfies y′′(t) = h(t)y′(t) for some function h.
Hence (6) shows that f satisfies (5) for all x ∈ R

n.
Now, for a fixed unit speed curve x(s) on the level hypersurface f−1(k), we

differentiate ||∇f(x(s))||2 as follows.

(7)

d

ds
||∇f(x(s))||2 = 2

〈

d

ds
∇f(x(s)),∇f(x(s))

〉

= 2
〈

Hf (x(s))x′(s),∇f(x(s))
〉

= 2
〈

x′(s), Hf (x(s))∇f(x(s))
〉

= 2 〈x′(s), h(x(s))∇f(x(s))〉

= 0,

where the 3rd and 4th equalities follow from the symmetry of Hf and (5),
respectively. Thus, ||∇f ||2 is constant on each level hypersurface of f . This
completes the proof. �

For a hypersurface M of R
n with a unit normal vector field U , parallel

hypersurfaces Mt, t ∈ R of M are defined by

Mt = {p+ tU(p) | p ∈ M}.

Next, we show that the level hypersurfaces of f are parallel.

Lemma 7. Suppose that a function f defined on an open set V ⊂ R
n without

critical points satisfies condition (C). Then, for a level hypersurface M of f , f
is constant on each parallel hypersurface of M .

Proof. Let x(s) denote a fixed unit speed curve of a level hypersurface f−1(k)
of f . We consider the integral curve ys(t) of ∇f with ys(0) = x(s). Then, from
Lemma 6 we have

(8) ys(t) = x(s) + a(t)∇f(x(s)),

where a(t) is a function with a(0)= 0. Since∇f(x(s)) = y′s(0) = a′(0)∇f(x(s)),
we get a′(0) = 1.
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By differentiating f(ys(t)) with respect to s, it follows from (5) and (8) that

(9)

d

ds
f(ys(t)) =

〈

∇f(ys(t)),
d

ds
ys(t)

〉

=
〈

∇f(ys(t)), x
′(s) + a(t)Hf (x(s))x′(s)

〉

= a(t)a′(t)
〈

∇f(x(s)), Hf (x(s))x′(s)
〉

= a(t)a′(t)
〈

Hf (x(s))∇f(x(s)), x′(s)
〉

= 0.

Hence f(ys(t)) is a function of t only. This shows that f is constant on each
parallel hypersurface of M . �

If we let k(t) = f(ys(t)), then we have from condition (C)

(10) k′(t) = 〈∇f(ys(t)),∇f(ys(t))〉 = φ(k(t))2, k(0) = k.

On the other hand, from (8) we get

(11) k′(t) = 〈y′s(t), y
′

s(t)〉 = φ(k)2a′(t)2.

It follows from (10) and (11) that

(12) φ(k(t)) = φ(k)a′(t).

Thus a(t) is determined by (12) with a(0) = 0, which is independent of x(s).

Remark 8. If we let zs(t) denote the integral curve of U = ∇f/||∇f || with
zs(0) = x(s), then we have zs(t) = x(s) + tU(x(s)) and d

ds
f(zs(t)) = 0. For

k(t) = f(zs(t)), we get k′(t) = φ(k(t)).
Conversely, suppose that f is constant on each parallel hypersurface Mt.

That is, f(p + tU(p)) = k(t), p ∈ M, where k(t) is a function of t. Then we
have

(13) ∇f(p+ tU(p)) = k′(t)U(p).

Hence f satisfies condition (C) with φ = ±k′ ◦ k−1 if k′(t) 6= 0.

Thus, we have the following local characterization of functions satisfying
condition (C).

Proposition 1. For a function f defined on an open set V ⊂ R
n without

critical points, the following are equivalent:
1) f satisfies condition (C).
2) Every integral curve of ∇f is a straight line.

3) For a level hypersurface M , f is constant on each parallel hypersurface

of M .

Now, we prove the main theorem as follows.
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Theorem 2. Suppose that a function f : Rn → R with isolated critical points

satisfies condition (C). Then f is a function of either a distance function r =
||p − o|| from a fixed point o or a linear function. That is, the level sets are

either concentric hyperspheres or parallel hyperplanes.

Proof. Suppose that a function f : Rn → R with isolated critical points satisfies
condition (C) globally on R

n. Without loss of generality, we may assume
that 0 ∈ Rf . Then, the above discussion shows that for the unit normal
U = ∇f/||∇f || to the level hypersurface M0 = f−1(0), the function f and ∇f
is given by

(14) f(p+ tU(p)) = k(t) and ∇f(p+ tU(p)) = k′(t)U(p),

where k(t) is a function with k(0) = 0 and k′(0) 6= 0.
We consider the flow y : M0 × R → R

n given by

(15) y(p, t) = p+ tU(p).

For a point p ∈ M0, we denote by κ1(p), . . . , κn−1(p) the principal curvatures
of M associated with the corresponding principal directions e1(p), . . . , en−1(p)
with respect to U at p. For each i = 1, 2, . . . , n− 1, we let xi(s) denote a unit
speed curve of M0 starting from p with x′

i(0) = ei(p), i = 1, 2, . . . , n− 1. Then,
we have for each i = 1, 2, . . . , n− 1

(16)
d

ds
y(xi(s), t)|s=0 = (1− tκi(p))ei(p).

Since k′(0) 6= 0, we see that k′(t) 6= 0 on an open interval I0 containing 0.
Hence for each t ∈ I0, the level set Mt = f−1(k(t)) is a nonsingular hypersur-
face. Consider an open interval I containing 0. Then it follows from (15) and
(16) that the level sets Mt, t ∈ I are all nonsingular hypersurfaces if and only
if each t ∈ I satisfies the following

(17) 1− tκi(p) > 0, i = 1, 2, . . . , n− 1 and p ∈ M0.

Let’s denote by I∗ the maximal open interval containing 0 such that each t ∈ I∗

satisfies (17).
First, suppose that the maximal interval I∗ has an end point t0. Then we

have k′(t0) = 0, otherwise t0 is contained in I∗. Hence every point of the level
set Mt0 is a critical point of the function f . Since such points are isolated, we
see that the level set Mt0 is a fixed point o ∈ R

n.
This shows that M0 is a hypersphere of radius |t0| centered at o. Hence we

have κi(p) = 1/t0 for all i = 1, 2, . . . , n − 1 and p ∈ M0. It follows from (17)
that I∗ = (t0,∞) or I∗ = (−∞, t0) according to the sign of t0. Since each level
set Mt of f is a parallel hypersurface of M0, it is also a hypersphere centered
at o. Therefore f is a function of the distance function r = ||p − o|| from the
point o. Thus, f is a radial function from the point o.
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Finally, suppose that the maximal interval I∗ is the real line R. Then, it
follows from (17) and the definition of I∗ that

(18) κi(p) = 0, i = 1, 2, . . . , n− 1 and p ∈ M0.

ThereforeM0 is a hyperplane, and hence every level set of f is also a hyperplane.
Thus f is a function of a linear function. This completes the proof of Theorem
2. �

From Theorem 2, immediately we get Corollaries 3, 4 and Theorem 5.

Remark. Suppose that a function f : R
n → R with isolated critical points

satisfies condition (C) for some φ : R → [0,+∞).
If we additionally assume that f has at most one critical value (say, f(p) = a,

and hence we have φ(a) = 0), then setting h(r) :=
∫ r

r0
φ(s)−1ds ([r0, r] being a

segment outside φ−1(0) = {a}), we obtain ||∇(h ◦ f)(x)|| = 1 on a domain in
R

n. This is the classical eikonal equation (cf. [4] and [8]). But, the solutions
of eikonal equations do not imply our theorems in this article.

Instead, in case f has no critical points, h ◦ f is a function globally defined
on R

n with ||∇(h ◦ f)(x)|| = 1. Hence h ◦ f is a linear function (Remark 2.3 of
[1] and [6]). This gives a proof of 1) in Corollary 3.
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