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CR GEOMETRY/ANALYSIS AND
DEFORMATION OF ISOLATED SINGULARITIES

Kimvio MIvaJIMA

ABSTRACT. In the late 1970’s, M. Kuranishi proposed to control
the moduli of the germ of a normal Stein space by deformations
of the CR structure on the boundary. I this paper, we will see
that it is naturally accomplished by considering stably embeddable
deformations of CR structures.

1. Introduction

Complex manifolds are investigated from various points of view; the
holomorphic viewpoint (e.g. algebraic geometry and holomorphic func-
tion theory) and the differentiable viewpoint (e.g. differential geometry
and partial differential equations). The subject of this paper concerns
the moduli of singular varieties from the differentiable viewpoint. The
moduli of singular varieties consists of two factors; the moduli of local
structures and the moduli coming from the global arrangement of lo-
cal pieces. As a first step, we consider the moduli of germs of singular
varieties having only isolated singularities. For simplicity, throughout
this paper, we assume that V'isan analytic subvariety (i.e., a reduced
and irreducible analytic subset) of a neighborhood of B(c) in CV with
Sing(V') = {0} and intersecting transversely with S2N—1 := §B(e) for
all 0 < € < ¢, where B(c) denotes a ball centered at 0 with radius
¢ > 0. From the differentiable viewpoint, there would be two ways to
control the moduli of germs of V'; by the moduli of its regular part
and by that of the boundary. M. Kuranishi ([22]) proposed to take
the latter approach and to control the moduli of the germ of a normal
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Stein V' with dimcV' > 3, by deformations of the CR structure on
M:=V'n S2N—-1_In this proposal, the normality is necessary since,
without it, it is impossible to control the singularity of V' by the CR
structure on M (cf. §4). The surface singularity case was excluded
since all real three dimensional compact strongly pseudoconvex CR
manifolds need not be boundaries of Stein spaces.

After M. Kuranishi, this approach was done under the assumptions
dimcV’ > 4 and depth Oy > 3 by (3], [24] and [8]. Then, the follow-
ing questions naturally arise (note that a normal variety is assumed to
be dimaV' > 2 and depth Oy > 2):

Is there any CR approach to treat deformations of normal isolated

surface singularities?

Is there any way to weaken the dimensional condition and the depth-

condition?

For the surface singularity case, [6] recently showed that stably em-
beddable formal deformations of the CR structure on M correspond
to formal deformations of V. We will proceed along this line in all
dimensions and see that we can affirmatively answer all of the above
questions in a natural manner.

This paper consists of three parts. The first part is preliminaries for
the subject of this paper; compact strongly pseudoconvex CR mani-
folds and the moduli problem. We will review that the embeddability
of a compact strongly pseudoconvex CR manifold is a critical prop-
erty both in geometry and in analysis. Next, as a model case of the
moduli problem, we review the moduli of compact complex manifolds.
We recall that the moduli need not exists in general and, instead, the
semi-universal family is taken as a center of the theory of moduli. We
will review the construction of the semi-universal family of compact
complex manifolds in the differentiable viewpoint, due to K. Kodaira,
D. C. Spencer and M. Kuranishi. The Kodaira-Spencer’s method re-
viewed in this part is the model of (the construction of the Kuranishi
semi-universal family of) our deformation theory of CR structures.

The second part is the presentation of the problem which we con-
sider. Before the presentation, we will review the deformation theory
of normal isolated singularities. We will see that the flatness (resp.
the stable embeddability) is a natural requirement in the holomorphic
viewpoint (resp. in the differentiable viewpoint), in order for the cor-
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rect definition of deformations of singular varieties (resp. of normal
isolated singularities). In the latter half of the second part, we present
the Kuranishi program for constructing the semi-universal family of de-
formations of normal isolated singularities by means of deformations of
CR structures and analyze the meaning of the conditions dimg V >4
and depth O~ > 3 in the preceding partial solution.

In the third part, we will see how to accomplish the Kuranishi
program. At first, we will see that the stable embeddability is the
differentiable-counterpart of the flatness condition. It was shown in [6]
for the surface singularity case. Then, we will briefly see how to ac-
complish the Kuranishi program using the theory of stably embeddable
deformations of CR structures. Details of the third part will appear in
[25].

The author would like to express his hearty thanks to Professor
C. K. Han, Professor K. T. Kim and organizers of the International
Conference on Several Complex Variables in Korea for providing him
with an opportunity to give a talk and write an expository paper on
this subject.

Part I. Preliminaries

§1 Geometry and analysis on CR. manifolds

In this section, we review geometry and analysis on a compact
strongly pseudoconvex CR manifold, in particular, that the embed-
dability of a CR manifold is a critical property both in geometry and
analysis.

1.1. Strongly pseudoconvex CR structures

The following definition of a CR structure is an abstract model of
the structure on a real hypersurface of a complex manifold.

DEeFINITION 1.1.1. Let M be an orientable C'*°-manifold of dimg M
=2n—1 (n > 2). A CR structure on M is a complex subbundle
S < CTM of rankeS = n — 1 having the following property;

(1) SN = {0} where S :=§,
(2) [X,Y] € C®(M,S) holds for all X,Y € C*(M,S5).
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If M is a real hypersurface of a complex manifold X, then
°T" =T X3y NCTM

is a CR structure which is called the CR structure on M induced from
the complex structure of X.

Let S be a CR structure on M. If we fix a line sub-bundle F < TM
such that F o TM/Re(S @ S), then we have a type-decomposition

(1.1.2) CTM=CF®SaoS.

This type-decomposition naturally induces a type-decomposition of dif-
ferential forms, and then a differential complex (Ag’q, 8) is introduced
analogously to the O-complex on complex manifolds, where we denote
AP? = C%(M, A1(S)*). A holomorphic vector bundle on a CR mani-
fold is defined analogously to the differential geometric definition of a
holomorphic vector bundle over a complex manifold (cf. [34]) and the
Op-operator is naturally defined for holomorphic vector bundle valued
(0, g)-forms.

If we choose a local dual form 8 of F, the Levi-form is defined as an
hermitian form;

Ls,: 8p®S8p > (u, v) — V—16([4,7])(p) € C

with p € M and @, ¥ € C*(M, S) such that i{p) = u, 9(p) = v. We
call a CR structure strongly pseudo-convex if the Levi-form has a defi-
nite sign at any point of M. (This property is independent of the choice
of #.) We remark that the CR structure on a real hypersurface defined
by a strictly plurisubharmonic function is strongly pseudoconvex.

1.2. Geometry and analysis on a compact strongly pseudo-
convex CR manifold

A CR structure S on M is embeddable if there exists a CR embedding
into some complex Euclidean space; that is, there exists an embedding

f:M—CN

such that S, = dfy 1(T]96;)CN ) holds for all p € M. The geometric fea-
ture of the embeddability of a compact CR manifold is in the following
theorem of F. Harvey and H. Lawson.
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THEOREM 1.2.1 ([16]). Let M be a compact CR manifold embed-
ded in CV. Then there exists an analytic subvariety V of CV such
that M = 0V as a current.

Under some assumption of the Levi form (it is satisfied for a strongly
pseudoconvex CR manifold), we have a strict form of the above Harvey-
Lawson theorem which gives the basic correspondence between isolated
singularities and compact strongly pseudoconvex CR manifolds.

(I) Geometry on a compact strongly pseudoconvex CR manifold.
Let M be a compact strongly pseudoconvex CR manifold.

THEOREM 1.2.2. M is embeddable if and only if M is a real hyper-
surface of a Stein space.

Proof. Suppose that fo := (f1,...,fn) : M — CV is a CR embed-
ding. For p € M, there exist f;,..., fi, such that z — (f;,(z),...,
fi, (x)) (dimpM = 2n — 1) is a CR embedding of a neighborhood of p
as a real hypersurface of an open domain of C”. Let

F;:= (filv"')f’in) : Ui_ﬁ)DiCCn

be such an embedding, M; := F;(U;) and D; (resp. D; ) a domain of
C"™ such that F;(U;) is the convex boundary of D (resp. the concave
boundary of D;) and D; = D UD; UM; holds. Let F; : U; — D; C
Cr, F; 1 U; — D; C C", be two embeddings as above. Then the
coordinate transformation

Fij: f;(UsnU;) — fi(Us N U;)
on U; NUj is uniquely extended to a biholomorphic transformation
F‘ij: D;DD;—*D;CD.L_

by the Lewy extension theorem. By the uniqueness of the extension,
we can patch D ’s together and obtain a strip of a complex manifold
W whose convex boundary is M. Next, by [31] (dimgM > 5) or
[36] (dimrM > 3), we can uniquely complete the holes of W in the
concave side to obtain a normal Stein space V such that 8V = M.
Finally, by [28] (dimgr M > 5) or [10] (dimgM > 3), we can enlarge V
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to a normal Stein space V' such that V ¢C V' holds. Therefore M is
a real hypersurface of a normal Stein space V',

On the contrary, we suppose that M is a real hypersurface of a Stein
space V. Since a Stein space is holomorphically embedded in some com-
plex Euclidean space, the restriction of that holomorphic embedding
gives a CR embedding of M. O

A remarkable fact in geometry is the following theorem due to
L. Boutet de Monvel.

THEOREM 1.2.3 ([7]). Any compact strongly pseudoconvex CR
manifold of dimg M > 5 is embeddable.

(II) Analysis on a compact strongly pseudoconvex CR manifold. Let
M be a compact strongly pseudoconvex CR manifold as above.

THEOREM 1.2.4 ([20]). M is embeddable if and only if the range
of 9y in the L*-space is closed.

Analytical counterpart of Theorem 1.2.3 is the following.

THEOREM 1.2.5 ([11]). The range of 8y is closed for any compact
strongly pseudoconvex CR manifold of dimg M > 5.

1.3. Op-analysis on a compact strongly pseudoconvex em-
beddable CR. manifold

In order to speak of the harmonic analysis, M need to be embeddable
(cf. Theorem 1.2.3). Let M be a compact strongly pseudoconvex CR
manifold embedded in CV and denote by °T" the CR structure induced
from the complex structure of CN. For the deformation theories of
CR structures, we need the vector bundle valued 8p-analysis. Since
the tangential Cauchy-Riemann operator 8 contains derivations only
in °T", we employ the Folland-Stein norm || ||(x) as a function norm
(cf. [12] for the Folland-Stein norm).

(I) The case of dimgM > 5:

The following Hodge-Kodaira-type decomposition is proved by di-
rectly showing a priori estimate.

THEOREM 1.3.1 ([11], [12]). Let E be a holomorphic vector bundle
on M. Then, for 1 < q <n -2, we have
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(1) u = ppu + DpNou holds for u € AY%(E), where p, denotes the
orthogonal projection onto the harmonic space Hg’q(E) = {u €
Ap?(E) | Oy = 0},

(2) [INvull(kt2) < C|lul|(x) holds.

(II) The case of dimg M = 3:
_ The Hodge-Kodaira-type decomposition is obtained by utilizing the
O-analysis on the inside strongly pseudoconvex domain and the esti-
mate is proved by the technique of [5].

THEOREM 1.3.2 ([20], [5], [26]). Let X be a two-dimensional
complex manifo,]d and M = 0% for some strongly pseudoconvex bounded
domain ! C X and E = Ejps for a holomorphic vector bundle E on
X'. Then,

(1) u = ppu + QpByu holds for u € AY(E), where p, denotes the orthog-

onal projection onto the space HY(E) := {u € AY(E) | yu = 0},

(2) u = ppu+08,Qpu holds for u € Ag’l(E), where pp denotes the orthog-

onal projection onto the space HY''(E) := {u € AY™(E)|8fu = 0},

(3) 11@vullr+1) € Cllullx) and ||ppul|ry < Cllul|x) hold.

1.4. Perturbations of CR structure

Let M be a strongly pseudoconvex CR manifold with the reference
CR structure °T" . We fix a type-decomposition

CITM =CF&°T &°T
and denote ) ,
T =CFe°T
where °T" := °T".
THEOREM 1.4.1 ([2]). A small perturbation of °T" is given by
T .= {u— (@) | € C°(M,°T )}

where ¢ € Ag’l (T’) satisfying the integrability condition

Bu6— 56, 6] — R(9) = 0

with denoting by Rs3(¢) the third order term.
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PROPOSITION 1.4.2. f € C®(M) is a CR fuction with respect to
the CR structure ¢T" if and only if it satisfies the perturbed Cauchy-
Riemann equation

Bef=hf— ¢ f=0.

§2 Moduli and the semi-universal family

As a model case of the moduli problem, we review the moduli of
compact complex manifolds. For simplicity, we restrict ourselves to the
case of non-singular moduli (or families with non-singular parameter
spaces). We note that everything in this section can be generalized
to the case of singular moduli (or families with singular parameter
spaces).

2.1. Moduli of compact complex manifolds

Moduli is a natural parameterization of the objects we consider.
It goes back to Riemann. Compact Riemann surfaces have natural
holomorphic parameters of dimension 0, 1 and 3g — 3 according to its
genus 0, 1 and g > 2 respectively. It is a dimension of the space

{all compact Riemann surfaces of genus g}/{biholomorphic equivalence}

which is called the moduli space of compact Riemann surfaces of genus
g. In their fundamental paper of the deformation theory, K. Kodaira
and D. C. Spencer (c¢f. [18] or [17]) showed that, in the higher di-
mensional case, such moduli space need not exist even locally and the
semi-universal family (a complete and effective family, in their termi-
nology) should be taken as a center of the theory of moduli.

According to K. Kodaira and D. C. Spencer, a family of deformations
of a compact complex manifold X, parametrized by a neighborhood of
D c C¢, is a proper surjective holomorphic map

(2.1.1) 7:X D

with 771(0) = X and such that dm, : TH0X — T;&(;)D is surjective for
all z € A. Among all families of deformations of X, the universal fam-
ily is defined as a family from which any other family of deformations
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of X is obtained by a uniquely determined parameters-change. Then,
the parameter space of the universal family (if it exists) provides the
local structure of the moduli space around (the point of the moduli
space corresponding to) X. As was shown in [18], the universal family
need not exist and its substitute is the semi-universal family: A fam-
ily is called semi-universeal if any other family of deformations of X is
obtained from that family by a parameters-change which is uniquely
determined up to the first order term. Therefore, the existence and
the construction of the semi-universal family is a principal problem of
deformation theories.

In the modern deformation theory due to A. Grothendieck and
M. Schlessinger (cf. [32] and [29]), the formal construction of the semi-
universal family is performed by successive extensions of families of
finite order deformations and the problem of the actual construction
is reduced to an analytic problem, where a family of n-th order de-
formations is a family whose parameter space has the structure local
ring O, = Or/ m”T+1 with denoting my the maximal ideal of O7. The
extension is completely controlled by the following two classes repre-
sented by the cohomology classes in H!(X,0x) and in H2(X,0x) re-
spectively; the infinitesimal deformation class which represents a fam-
ily of first order deformations modulo first order biholomorphisms and
the obstruction class which represents an obstruction for the exten-
sion of a family of finite order deformations. The method of successive
extensions of finite order deformations is closely related to the Kodaira-
Spencer’s technique which will be stated in subsection 2.2. The relation
between the concept of a family of actual deformations and that of a
family of finite order deformations is similar to that between a holo-
morphic function and a finite segment of its Taylor series.

2.2. Holomorphic description and differentiable description

In the case of complex manifolds, both of the viewpoints are directly
connected. From the holomorphic view point, a complex manifold ie
determined by patchings of holomorphic local charts, while from the
differentiable view point, it is determined by a complex structure on the
underlying differentiable manifold. Both of the descriptions of complex
manifolds are equivalent to each other by the theorem of A. Newlander-
L. Nirenberg ([27]).

From the holomorphic view point, a family of deformations is given
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by a holomorphic parameterization of the patchings of holomorphic
local charts, which directly provides a family of deformations of a com-
plex manifold as was defined in subsection 2.1. In this manner, the
semi-universal family of a compact complex manifold was constructed
by O. Forster and K. Knorr ([13]).

From the differentiable view point, there are two ways to treat the
moduli of compact complex manifolds. First way is due to K. Kodaira
and D. C. Spencer and the other due to M. Kuranishi. In both of the
ways, the construction of the semi-universal family relies on the fact
that a perturbation of the complex structure on a complex manifold X
is given by a ¢ € Ag&l (TP X) satisfying the integrability condition

(22.1) 86~ 516,61 =0.

In the way due to K. Kodaira and D. C. Spencer (cf. [18] or
[17]), a family of complex structures is given as a powerseries ¢(t)
in AN (TYOX)([t1, . . . ,t4)] satisfying

(1) 6(0) =0,
(2) 99(t) — 5le(1), 6(1)] = 0,
(3) &(t) is convergent with respect to the Sobolev norm || [|.

This description of a family of deformations of the complex struc-
ture is not formulated in the general deformation theoretic context
(ie., not formulated by a deformation functor). But H'(X,T*°X)
is considered as the space of infinitesimal deformation classes and
the obstruction class to the extension of a family qb("‘_l)(t) satisfying
A1 (£) = 1{p(H—1 (1), 6+~ (2)} = 0 mod m* to a family ¢(¥)(2) sat-
isfying 9p(#)(t) — £[¢¥)(t), () (t)] = 0 mod m*+! appears in H?(X,
TH0X), where we denote by m* the ideal of all polynomials of ¢t =
(t1,-..,tq) of degree greater than or equals to . As a counterpart
of the semi-universal family of deformations of X, K. Kodaira and
D. C. Spencer constructed a powerseries ¢(t) in A} (TY0X)[[ty, . . -, ta]]
satisfying (1)—(3) as above and

(4) ¢(t) = Se_; $oto + ... where 8py =0(c =1,...,d), [$1],- -, [6d]

is a base of H(T1°X) and +... denotes the terms in m?.

In their argument, (3) is proved by the method of majorants based
on the elliptic estimate for the Green’s operator ||Gullx < C||u||s—2-
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Then, by the theorem of A. Newlander-L. Nirenberg ([27]) and the
Kodaira~Spencer’s completeness theorem (cf. [19] or [17] Theorem 6.1),
&(t) as above provides the semi-universal family of deformations of X.

REMARK 2.2.2. Though the Kodaira-Spencer’s construction as
above was done under the assumption H?(X,T%°X) = 0 (cf. [17]),
it can be generalized to the case of H2(X,T19X) # 0.

There is another way due to Kuranishi (cf. [21]). He directly con-
sidered the orbit space of complex structures on X as the moduli space
of complex manifolds diffeomorphic to X

{ € 4 @ox)180 - 516,01~ 0} /i),

But, in general, it is impossible to put a complex analytic structure on
it even locally (like as the universal family need not exist in the holo-
morphic view point) since the dimension of the automorphism group of
the complex structure (corresponding to) ¢ which acts as the isotopy
group at ¢ may change with ¢. To avoid this difficulty, he considered
a modified orbit space

(2.2.3)

{qb e ASHTYOX) [||9]|k : small, g — %[qs, &} = 0} JEC®(X, THOX),

where LC°(X,T%°X) denotes the orthogonal complement of H°(X,
T%°X) and we use the same notation for the set of diffeomorphisms
induced from +C% (X, T1°X) by the exponential map, and put a com-
plex structure on it by taking a slice (called the Kuranishi slice) to the
action of LC®(X, T X);

(2.2.4)

{6 € 452(r03) 6] smait, 86 510,6] =0, 5% =0}

Then, it is proved that the Kuranishi slice is isomorphic to the pa-
rameter space of the semi-universal family of deformations of X (at
least, as reduced complex spaces, c¢f. (2.2.3) or [21]). In this case,
HY(X,T'0%X) is realized as the tangent space at the origin of the
space (2.2.4). In these arguments, the main analytical tool is an appli-
cation of the Banach inverse mapping theorem based on the estimate
1Gulls < Clfufli—2.
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Part I1. The Kuranishi program for constructing the semi-
universal family of normal isolated singularities

§3 Deformations of a normal isolated singularity

The moduli of a (even compact) singular variety contains a new
factor which does not appear in the manifolds-case. It is because the
local structure of a singular variety has non-trivial moduli, while any
local neighborhood of a complex manifold has only trivial moduli. In
this paper, we consider only the moduli of germs of complex spaces
with only isolated singular points.

Let V be an irreducible and reduced complex analytic space with
Sing(V) = {0}. Since we consider a germ of V at 0 € V, we may assume
that V is an analytic subspace of a neighborhood of 0 in CV defined by
a finite number of holomorphic equations hy(w) = -+ = hy,(w) = 0.
There are two natural ways to perturb V. The one way is to perturb the
defining equations and the other is to perturb the complex structure
on its regular part (or on a neighborhood of the boundary). Though
any of them produces a new singularity, these ways perturbing V" are so
naive that, without any restriction, we may be leaded to the following
pathological phenomena.

(I) Deformation of the defining equations.

ExaMpLE 3.1. Let f : C? — C* be a holomorphic map given by
(wo, w1, wa, w3) = (22, 22w, zw?, w?). Then V; := f(C?) is a singular
surface defined by holomorphic equations wows —wiwy = wowz —wi =
wiwz — w2 = 0. Let V; be a subvariety defined by wows — wiws — t =
wows — wi = wyws — w3 = 0. Then, since V; = {w € C*|w;, =
wy = wowz —t = 0} for ¢ # 0, we have dimgV; = 1 (¢ # 0) whereas
dimcVp = 2.

In order to avoid this pathological behavior, the correct definition
of a family of deformations of V requires an additional condition;
(3.2) any linear relation among k1 (w), - . ., ke (w), Y01 gy(w)hy(w) =0,
is lifted to a linear relation among hi(w,t), ..., hn(w,t).
This additional requirement is generalized as follows; a family of
deformations of a singular variety is defined as a flat surjective holo-
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morphic map _
7 :V — D such that 771(0) = V.

In the case of deformations of the germ of a complex space, the flat-
ness condition is equivalent to the requirement (3.2) and it assures the
constancy of dimensions and some other cohomological invariants.

Like as the case of deformations of compact complex manifolds, a
family is called semi-universal if any other family of deformations of V
is obtained from that family by a parameters-change which is uniquely
determined up to the first order term.

In the theory of deformations of V', the space of infinitesimal de-
formation classes (resp. of obstruction classes) is Ext!(Q},, Ov) (resp.
Ext2(Q, Ov)) (cf. [35] and [29]), and the formal construction of the
semi-universal family of deformations of the germ of an isolated sin-
gularity was done by [32]. The actual semi-universal family was con-
structed by G. Tjurina ({35] under the assumption that V is normal
and Ext?(2,, Oy) = 0) and H. Grauert ([15] in general).

(IT) Deformation of the complex structure on the regular part.

A point p € V' of a singular variety V' is normal if its structure
local ring Oy p 18 integrally closed in its quotient field. In our case, it
is equivalent to the property; the restriction map H°(V,O) — HO(V \
K,Q) is an isomorphism for any Stein neighborhood V' of p and any
holomorphically convex compact subset K. Therefore the normality of
the singular variety is required in order to control the singularities by
mean of its regular part.

Let us consider deformations of the complex structure on the regular
part of V. It produces a family of deformations of a tubular neighbor-
hood of the boundary; 7y : U — D. As at the end of the proof of The-
orem 1.2.2, by [31] or [36], each complex manifold I := 7' (t) (t € D)
is completed to a normal Stein space V; which is uniquely determined
by U;. However, in the following example due to O. Riemenschnei-
der we can read that the family my : 4 — D itself need not to be
completed to a family of deformations of V.

ExAMPLE 3.3. ([30]). For any compact Riemann surface C of
genus > 2, there exists a negative line bundle Ly on C, an affine nor-
mal subvariety Vo C C¥ being the contraction of the zero-section of
Lo, and a family 7 : X — A := {t € C|t| < §} of deformations of
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Lo with f = f¢ € H(Lo,O) (F € HOQC, Lyh)) being impossible to be
extended to a holomorphic function f € H°(X, ), where we denotes
by ¢ a (local) fibre coordinate of L.

By this example, O. Riemenschneider concluded that the family
m: X — A cannot be blown down to any family of deformations of V.
Now, we remark that the function f in Example 3.3 cannot be extended
to a holomorphic function f € H°(U, ©) for any open part U of X such
that Y N 7=1(0) = U := V \ K with a Stein neighborhood V and a
holomorphically convex compact subset K as above. In fact, since
the obstruction to the extension of f is an algebraic condition about
fe HYC, Ly 1), it is also an obstruction to the extension to a function
in Ho(U, ©) as well. We shall see that we can also read in this example
that there exists a family of deformations of U as above such that it
is not completed to a family of deformations of V;. For, if a family
wy U — A with 7;1(0) = U is completed to a family 7 : V — A of
deformations of V, then the restriction map H°(U, Q) — HO(U, ) is
surjective by the following commutative diagram

H(U,0) ——— HOU,0)

I [~

HOV,0) —— H°(V,,0)

since V is Stein.

A reasonable condition to assure the surjectivity of H°(U,O) —
HO(U, O) is the stable embeddability; a family of complex manifolds is
stably embeddable if it is embeddable in CV by a family of holomorphic
embeddings. In Theorem 5.1.4 below, we will see that the stable em-
beddability is a correct requirement in order for a family nyy : U — A
to be completed to a family of deformations of Vj.

§4 The Kuranishi program

In the rest of this paper, we study the moduli of varieties with only
normal isolated singularities from deformation of CR structures on a
link of the singularity.
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4.1. The Germ of a normal isolated singularity and the CR
structure on its link

Let V' be a normal analytic subvariety of CV as in the introduc-
tion and V := V' N B(c). Then, M := V' 1 §2N~1 is called a link of
the singularity 0 € V'. M is an oriented differentiable manifold (the
orientation on V' induces the one on M ) and moreover the complex
structure of (the regular part of) V' induces a strongly pseudoconvex
CR structure on M. Therefore we have a compact strongly pseudo-
convex CR manifold M which is embedded in C¥,

On the contrary, by Theorem 1.2.1, any compact strongly pseudo-
convex embeddable CR manifold is a real hypersurface of a normal
Stein space. We remark that the normal Stein space is uniquely deter-
mined by the CR manifold M because, by the Lewy extension theorem,
we have

H>®(V,0) ~ HZ (M)

where H°°(V, ) denotes the space of all holomorphic functions on V
which are extendable to C*-functions on V' across M and H, (M) =
{f € C(M)|8ef = 0}.

This is the basic correspondence between compact strongly pseu-
doconvex embeddable CR manifolds and normal isolated singularities,
that we will rely on in our approach to (the semi-universal family of)
deformations of germs of normal isolated singularities.

4.2. The Kuranishi program

In {22], M. Kuranishi proposed the following program for construct-
ing the semi-universal family of deformations of the germ of V of
dimcV > 3, relying on the basic correspondence between germs of
normal isolated singularities and compact strongly pseudoconvex CR
manifolds, stated in subsection 4.1: (1) First, construct a theory of
moduli (or of deformations) of CR structures on M so that it controls
the moduli (or deformations) of the regular part of V. (2) Second, find
a way singular points are added to complete it.

In order to accomplish the Kuranishi program, we have to clear the
following three geometric or analytic difficulties:

(i) Under the basic correspondence, infinitely many non-isomorphic CR
manifold correspond to the same singularity. Hence, we have to
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(it)

(iii)

construct a deformation theory of CR structures based on some
equivalence relation coarser than the CR equivalence.

In the case of compact complex manifolds, the construction of the
semi-universal family due to K. Kodaira, D. C. Spencer or M. Kuran-
ishi (cf. subsection 2.2) heavily relied on the fact that the d-equation
is elliptic; in particular, on the elliptic estimate ||Gul[x < C|ullk-2
with denoting by || ||x the k-th order Sobolev norm. We have to
clear the difficulty that the 8,-equation is not elliptic.

We have to find a CR-condition corresponding to the flatness con-
dition on families of singularities.

4.3. A partial answer ([22], [3], [24], [8])
By [22], [3], [24] and (8], the following partial answer was obtained.

THEOREM 4.3.1. Suppose that dimgV > 4 and depthOy > 3 hold.

Then there exists a family of deformations of the CR structure on M
such that
(1) its parameter space is isomorphic to the semi-universal family of

deformations of the germ of V,

(2) moreover, that family of CR structures is realized as a family of

real hypersurfaces of the semi-universal family of deformations of
the germ of V.

In the rest of this section, we will give a brief review on the proof of

this theorem and single out the ideas which are needed for the complete
accomplishment of the Kuranishi program.

(4.3.2) [22] cleared the difficulty (i) by removing the effect (on per-

turbations of the CR structure) of wiggles of M in a tubular neigh-
borhood. In order to clear the difficulty (ii), it is proposed to apply
the Kuranishi’s technique stated in subsection 2.2 with replacing the
Banach inverse mapping theorem by the Nash-Moser iteration method.
In [22], a C*®-slice {¢} having the following property is constructed; for
any perturbation U, of the regular part of V' there exists an embedding

fo: M =U,

such that
(1) f. is CR with respect to some CR structure ¢ in that slice,
(2) the assignment w — ¢ is of class C°.
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This property is called the Kuranishi versality and it implies that the
slice {@} contains all deformations of the regular part of V through the
basic correspondence stated in subsection 4.1.

(4.3.3) The difficulty caused by the adoption of the Nash-Moser it-
eration method was cleared by T. Akahori under the assumption that
dimgV > 4. Therefore, the difficalty (i) was cleared under that dimen-
sional condition. The main idea of [3] is that if we restrict the argument
in the subspace AY(°T") APHT") and if we employ a norm which
measures the derivative-loss only in the direction of °T" @°T" then the
second difficulty does not appear. This is based on the fact that if ¢ isin
Ap' (°T") then the integrability condition Opd— 20, 6] —Ra(4) = 0 con-
tains derivations only in °7T" &°T". By applying the Kodaira-Spencer’s
technique stated in subsection 2.2 to a new subcomplex (I'(M, E,), &)
(cf. (3]) of the Kuranishi's complex (A4(T"),8) and employing a
norm weaker than the Sobolev norm, a family of CR structures with
holomorphic parameters was constructed such that it has the same
property as the Kuranishi versality in the context of holomorphic pa-
rameterization. (There can be an alternative way; we can apply the
Kuranishi’s technique in stead of the Kodaira-Spencer’s one to the Aka-
hori’s new subcomplex and obtain a complex analytic slice ([23]); and
we can also employ the Folland-Stein norm instead of the Akahori’s
norm.)

(4.3.4) [3] together with [24] accomplished the first step of the Ku-
ranishi program for dimcV > 4. It is proved in [24] that the Akahori’s
family of CR structures on M is realized as a family of CR structures
induced on a family of real hypersurfaces of a family of deformations
of a tubular neighborhood of M.

(4.3.5) [33] essentially cleared the difficulty (iii) and accomplished
the second step under the assumption depth@Qy > 3. In [33], it is
shown that if depth Oy > 3 then the representation hull of functor of
deformations of U and that of V' are isomorphic to each other. This
implies that if depth Oy > 3 then the parameter spaces of the formal
semi-universal families of deformations of U and of V are isomorphic
to each other as formal complex spaces. Then, by the Artin approxi-
mation theorem ([4]), we have (1) of Theorem 4.3.1. (2) of Theorem
4.3.1 follows from a further comparison of the Akahori’s family of CR
structures and the semi-universal family of deformations of V by the
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argument of [24] taking account of (1).

(4.3.6) There is another way to prove (1) of Theorem 4.3.1. R. O. Buch-
weitz and J. J. Millson ([8]) proved (1) as an application of the following
general comparison method due to W. M. Goldman and J. J. Millson:
Let (L,d) be a differential graded Lie algebra and choose a comple-
ment C1(L) to the 1-coboundary dL° C L. We construct a functor
Yy : A — Sets as follows where .4 denotes the category of Artin local
C-algebras: Let A € Obj(A4) and m C A the maximal ideal. Then we
define Y7.(4) := {n € CY(L) ® m|dn + 3[n,n] = 0}.

THEOREM 4.3.7 ([14] THEOREM 4.1). Suppose f : L1 — Lo is a
homomorphism of differential graded Lie algebras such that f induces
an isomorphism on first cohomology and an injection on second coho-
mology. Then the representation hulls Ry, and Ry, of Yy, and Y,
respectively are isomorphic to each other.

4.4. Remaining problem

In the assumptions of Theorem 4.3.1, the dimensional condition was
required in order for the Akahori’s analysis to work and the depth-
condition was required in order to rule out the difference between de-
formations of a tubular neighborhood of M and that of V. And, at
the beginning, the Kuranishi program was proposed for normal iso-
lated singularities of dimaV > 3 since all three dimensional compact
strongly pseudoconvex CR. manifolds need not to be boundaries of sin-
gular varieties. Then, the following questions naturally arise:

Is there any CR approach to treat deformations of normal isolated

surface singularities?

Is there any way to weaken the dimensional condition?

What is the CR analogue of the flatness condition?

The answer of this paper is that all of these questions are affirma-
tively answered if we consider only stably embeddable deformations of
the CR structure on M.

Part III. Accomplishment of the Kuranishi program

§5 Stably embeddable deformations of CR structures

Let V' and M be as in §4. In this section, we consider how to remove
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the depth-condition of Theorem 4.3.1 and what is the CR analogue of
the semi-universal family of deformations of V.

5.1. Deformations of a tubular neighborhood of M and
deformations of V

Since the condition depth @y > 3 in Theorem 4.3.1 was assumed
in order to rule out the difference between deformations of a tubular
neighborhood of M and deformations of V', we first compare families of
deformations of a tubular neighborhood of M and that of deformations
of V' (cf (4.3.5)), at the first order deformation level. We recall that
the spaces of first order deformation classes of U := V' \ 0 and of V are
HY(U, TYOU) (cf. [18]) and Ext(Q},, Ov) (cf. [35] or [29]) respectively.

ProrosITION 5.1.1.
Ext'(Q}, Ov) ~ Ker{H (U, T*°U) &8 H (U, T3°CY 1))}

where Fy denotes the homomorphism induced from the bundle homo-
morphism dfy : TH°U — TOC¥ ;; with denoting fo : U — CV the
natural embedding.

For the proof, see [25] Proposition 1.7.
We understand the implication of this isomorphism as follows. From
the exact sequence associated to the embedding fo: V — C¥;

(5.1.2) 0~ T2 B LGN [ Ny e — 0,

we have

Ker{H'(U, T*°V) &8 HY(U, TGN ;,)}
(5.1.3) ~ Im{H*(U, Ny on ) — HY(U, T*°U)}.

We note that H°(U, Ny s~ ) represents the space of first order dis-
placements of U in CV (cf. [18]). Then, Proposition 5.1.1 together
with (5.1.3) implies that a family of first order deformations of U cor-
responds to a family of first order deformations of V' if and only if it is
embedded in CV as a family of submanifolds. A family of deformations
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of U which is realized as a family of submanifolds of C¥ is called a
family of stably embeddable deformations of U.

This correspondence, between deformations of V' and stably embed-
dable deformations of the complex structure on U, holds not only at
the first order deformation level but also in the higher order deforma-
tions. In fact, we can prove the following theorem by a similar way as
Theorems 4.1, 4.2 and 5.1 of [6].

THEOREM 5.1.4. (1) Let ¢(t) € AY (THOU)([ta,. .., ta]] and f(t) €
A% (T1’00N|U) [[tl, .- ,td]] satisfy
(3) $(0) = 0, f(0) =0,
(b) e(t) — 3[6(t), 6(2)] = 0,
(c) O(fo+ f(t)) —o(t)- (fo+ f(2)) =0.
Then there exists h(t) € @™ H(B(c), O)[[t1,...,tq)] satisfying
(d) h"Y(O) = h’")’ ('Y = 1) ce am):
(e) hy(t)o (fo+ f(t)=0(y=1,...,m),
(f) any relation ZTzl pyhy = 0 is lifted to p(t) € @™H(B(c),0)
([t1y. .., td]] with 2?21 Py (DR (t) = 0.
(2) If h(t) € @™ H°(B(c), O)[[t1, - - - , t4]] satisfies (d)—(f) as above, then
there exist ¢(t) € ADH(TLOU)[t1,...,t4)] and f(t) € AR(T*OCNy)
([t1,-- -, tq]] satisfying (a)—(c).
Therefore, not all but only stably embeddable deformations of U
correspond to deformations of V', at least in the formal deformation
level.

5.2. Stably embeddable deformations of CR. structures

The CR analogue of the stably embeddable deformations of the com-
plex structure on U is deformations of the CR structure on M which
can be simultaneously embedded into C¥V.

First, we give some fundamental definitions in the theory of stably
embeddable deformations of the CR structure on M. For simplicity,
we assume that the parameter space D of the family is non-singular.

DEFINITION 5.2.1. A family of deformations of the CR structure
on M is a ¢(t) in AP (T"){[t1, - -, tq]] satisfying
(1) ¢(0) =0,
(2) Bpo(t) — 316(t), ¢(t)] — Rs(6(2)) = 0,

(3) ¢(t) is convergent with respect to the Folland-Stein norm.
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DEFINITION 5.2.2. A family of deformations of the CR structure on
M, ¢(t) is stably embeddable in CV if there exists f(t) € Ag’l(Tl’OCNIM)
[y, -- td]] satisfying
i
(2) 9 "(fo +f(t)) =0,
(3) ( ) is convergent with respect to the Folland-Stein norm.

THEOREM 5.2.3. The space of first order deformation classes of
stably embeddable deformations of CR structures

~ Ker{ H\(T') 58 HY(T"OCV 1)}

where Fpy is the homomorphism induced from the bundle homomor-
phism 0 o dfy : T" — THOCN

Proof. First, we note that

By (gt) — 3[t, pt] — R3(¢t) = 0 mod m?
B;,bt(fo + ft) = 0 mod m?

holds if and only if dpp = 0 and B f — Fo¢ = 0 hold. Next, let
(¢1, f1) and (¢o, f2) satisfy Oppr = Opd2 = 0 and Opfr — Fogy =
Ovfo — Fo¢p2 = 0. Since the families of first order deformations of
CR structures ¢t and ¢ot are obtained from wiggles in a family of
deformations of a tubular neighborhood of M if and only if ¢ — ¢ €
O, AY(T") (this is calculated in [22]), the space of stably embeddable
first order deformation classes is

{(6, ) e (T & AR(THOCN p) |Bppp =0, Bpf — Fopp = 0}/ ~

where (¢1, f1) ~ (d2, f2) if ¢1 — da € BpANT') holds. Clearly it is
isomorphic to Ker{H(T") Ty (THOCN a0)}. O

Taking account of Proposition 5.1.1, the following proposition indi-
cates that stably embeddable deformations of the CR structure on M
correspond to deformations of V' at the first order deformation level.
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PROPOSITION 5.2.4 ([25], PROPOSITION 4.5).

Ker{H'(U, T%°U) & HY(U, T*9CV 1)}
~ Ker{H*(T') & HY(TOCN )}

Like as Theorem 5.1.4, we can prove that stably embeddable de-
formations of the CR structure on M correspond to deformations of
V not only at the first order deformation level but also in the formal
deformation level (it is proved in Theorems 4.1 and 5.1 of [6] for the
surface singularity case).

The following definition is the stably embeddable version of the Ku-
ranishi versality stated in (4.3.2).

DEFINITION 5.2.5. A family ¢(t) of stably embeddable deforma-
tions of the CR structure on M is Kuranishi versal if it has the fol-
lowing property; for any family of stably embeddable deformations of
a tubular neighborhood of M, 7w : & — &, there exists a holomorphic
map 7: S — D and a family of embeddings F : M x § — U satisfying

(1) 7(0) =0, Flpxo = idu,

(2) mo F = pg where py : M x § — S denotes the projection onto the
second factor,

(3) for any p € M C 7 *(0) and any holomorphic function f on a

neighborhood of p, 87" ) f o F(z, 5) = 0 holds.
A Kuranishi versal family is Kuranishi semi-universal if drg : ToS —
ToD in the above is uniquely determined.

The following theorem indicates that the Kuranishi semi-universal
family of stably embeddable deformations of the CR structure on M is

indeed the CR analogue of the semi-universal family of deformations
of V.

THEOREM 5.2.6 ([25] THEOREM 11.1). If the Kuranishi semi-
universal family of stably embeddable deformations of the CR structure
on M exists, then

(1) its parameter space Is isomorphic to the parameter space of the

semi-universal family of deformations of V,

(2) moreover, that family of deformations of the CR structure on M is
realized as a family of real hypersurfaces of the semi-universal family

of deformations of V.
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86 Construction of the Kuranishi semi-universal family

We construct the Kuranishi semi-universal family by applying the
Kodaira-Spencer’s technique stated in the subsection 2.2, which con-
sists of the following two components:

(1) Deformation complex; a differential complex whose first cohomology
is isomorphic to the space of infinitesimal deformation classes and
the second cohomology is isomorphic to the space of obstructions
classes.

(2) Harmonic analysis on the deformation complex; we can replace it
by some weaker homotopy formula.

6.1. Deformation complex

In order to find the deformation complex, we describe the spaces of
infinitesimal deformation classes and of obstruction classes.

PRrROPOSITION 6.1.1.
(1) The space of infinitesimal deformation classes

~ Ker{HY(T") &8 HY(TXCN )}
(2) The space of obstruction classes
o~ Ker{Hl (NU/CNIM) -{{+ Hl(@mlM)}

where H denotes the homomorphism induced from the restriction
of the bundle homomorphism H : TY°CN — @™lgn given by
H®) := (v(h1),...,v(hm,)).

For the proof, see Remark 3.11 of [25].

Then the total simple complex (K*, d) of the following double com-
plex K** is the deformation complex of stably embeddable deforma-
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tions of the CR structure on A;

0 0

! l
0 ——— HYTYWOCN ) —H— HY(@™1um) > 0
! 5 L

0 K00 = ATy — 50 AxTroey )y —E AV(emily) ——— 0

j'éb la_b léb
0——  AMT) D a0MrroeN ) —H s Al emly) —— 0
A igb J,él’
0—— AP 2 =

APHTIOCN )y —E s AYP(@™1y) ——— O

léb léb lé,,

where HO(T*OCV /) = {n € AY(T1OCYN 1) | 8pn = 0} and i denotes
the natural inclusion map. (K*, d) is given by

K= K% + ghe7l  g2e2
d(aq,bq_l, Cq_z) = (ébaq, 5bbq_1 =+ (—1)‘7Foaq, gbcq‘_g + (—1)q‘1Hbq_1)

where we denote KP9 := 0 for g < —2and dpb_q1 :=ib_1 and Hpe_q :=
1h_1.

Then, the following proposition together with Proposition 6.1.1 im-
plies that (K*, d) is the deformation complex of the stably embeddable
deformations of the CR structure on M.

PROPOSITION 6.1.2.

(1) HY(K*) =~ Ker{H}(T') &8 HL(T2OCN 1)}

(2) H(K*) = Ker{H(Ny ona) & H (@™ 131)}.
Proof is direct from the definition of (K*, d).

6.2. Homotopy formula
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THEOREM 6.2.1 ([25], THEOREMS 5.1, 5.2, 6.1, 12.2). For q =
1, 2, there exist operators Z; : K9 — K9NKer d and Qq : KINKer d —
K971 satisfying
(1) Zq|Ker d = jd]Ker ds
(2) doQqo0d =d.

Then, p, = (1 - Qg od)o Z, is the projection operator onto Imp, ~
HI(K*) and we have a homotopy formula (a substitute of the Hodge-
Kodaira decomposition);

(6.2.2) U = pgu+ dQgZgu + (1 — Zg)u, u € K9.

For these homotopy operators, we have the following estimates.

THEOREM 6.2.3 ([25], PROPOSITIONS 7.1, 7.2, 12.2).
(1) Let (a1,bo,c—1) € K. If Zi(ai,bo,c1) = (a’l,bz),c'_l)‘aﬂd

1 1

Ql(all,b;),cf_l) = (ag,b_,), then
llagllx+1) < Cllaglley < € |lal|cry-

(2) Let (az,bl,(}o) & Kz. Isz(az,bl,Co) = (a;,bil,c'o) and Qg(a;,b;_,c,o)

’? 1

= (ay,bg,¢_,), then
lla 11y + 1180 1) < Cllbr 1wy < € ball sy

6.3. Construction of the Kuranishi semi-universal family

The construction of the Kuranishi semi-universal family is carried
out by applying the Kodaira-Spencer’s technique to the following set-
ting; we consider

((11)’ f7 k) € Kl — KO,l +K1’0 +K2’_1
and its integrability condition
— 1 — -
(B0 - 51601 - Rol@). Totdo +-0), (4 F) o (5 + ) = 0,0,
in K2 = K% 4 K11 4 K29 where k(t) € HO(B(c), Ogn) denotes a

holomorphic extension of k and we consider (h + k(t)) o (fo+ f(2)) as
the Taylor series with powers of f(t) and centered at fo.
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REMARK 6.3.1. In a strict sense, (h +FE) o(fo+ f) is not an element
of K20, But this causes no trouble in the following formal construction
(D).

We give a brief explanation of this integrability condition:

(i) 0vd — [0, 4] — R3(¢) = 0 is the condition for ¢ € Ag’l(T/) to
represent a (integrable) CR. structure.

(1) For f = S5, P50 € Ap(THOCN ), (8 + 1% f + 1) €
@V C®(M) defines an embedding fo + f : M — CV and the condi-
tion 5?( fo+ f) = 0 is the condition so that the embedding (fo + f)
is CR. with respect to the CR structure ¢7" . _ N

(iii) Since holomorphic equations A -+ ko= (hy + k1yovosh + k) =
(0,...,0) defines a subvariety of B(c), the condition (h +k) o (fo +
f) = 0 implies that the image (fo + f)(M) is the boundary of that
subvariety.

In the rest of this section, we shall briefly review the construction
of the Kuranishi semi-universal family. For simplicity of the argument,
we assume that H2(K*) = 0.

(I) Formal construction.

We use the notation that (¢ (¢), f*)(¢), k() (¢)) denotes the poly-

nomial part of (¢(t), f(¢), k(2)) of degree u and (¢, (£), fu(t), k.(t)) the
homogeneous polynomial part of the same degree.

(@D @), FO(8), KO (1)) is defined by

d

(612, f1(8), k1 (8)) = D (o, fos b )to

o=1

where d(¢o, fo, ko) = (0,0,0) (0 =1,...,d) and {(ds, fo, ko) }1<o<a I8
a base of H*(K*). (This definition of (¢1(t), fi(t), k1(t)) assures that
drp in Definition 5.2.5 is uniquely determined if 7 exists.)

(u(t), fu(t), ku(t)) is defined inductively by the following way.

Let

(au(t),bu(t),c.(t)) = the p-th homogeneous term of
= B (0) = 5[ 1), 6 (0] ~ Ba(o (1),

3 o+ F4OW), (b +FEI@) 0 (o FHD @)
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(note that the right-hand side is well defined by the Taylor polynomials
of h and k(=1 (t) of degree up to ).
Then (¢,(t), fu(t), ku(t)) is defined by

(@ (8): fu(8), ku(2)) = Q2 Z2(au(t), bu(t), cu(t))

and we choose a holomorphic extension &, (t) € H*(B(c), O) lt1,-. . td)]
of k,,(t) due to [1] or Theorem A.1 of [6].

PROPOSITION 6.3.2. (¢(t), f(t),k(t)) defined as above satisfies

(B - 1600 (0] — Ral610),

Y (fo+ £1)), (B+E(®)) 0 (fo+ f(t)))z (0,0,0).
Proof. We prove, by induction on g, that it satisfies
(633:) (Bu(t) - 5[6(1), 6(0)] — Ra(o(t))

39 (fo + £0)), (h+F(®) 0 (fo + F(2))) = (0,0,0) mod mH+1.

For pu = 1, it is clearly satisfied by the definition of (¢(1)(t), F(V)(¢),
k) (1)).
We suppose that (6.3.3:4-1) holds.

LEMMA 6.3.4 ([25], PROPOSITION 8.4).

d(aﬂ (t)7 bln‘ (t)7 CI-L (t)) = (07 07 O,)
From Lemma 6.3.4 and the assumption H?(K*®) = 0, we infer that

d(Pu(t), Fu(®), Bu(t)) = (au(t), bu(t), cu(t)).

Therefore, we have
Bi(t) — 5[6(0), 6(0)] ~ Rs(0(t),
¢(t)(fo + £(1)), (h+E@®) 0 (fo + £())
= @) (0) = 3169 (2), 6 (6] ~ Bs(6%) (1),

279 (fo + £ ®), (h+EB (@) 0 (fo + £ (1))

= (0,0,0) mod m**1, m
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(IT) Convergence of the formal solution. The convergence of ¢(t)
and f(t) under the assumption ¢(t) € AOl °T)[[t1,. .., td]] follows
by applying the Kodaira- Spencer’s techmque for convergence (cf. [17]).
Let A(t) == & Y1 _f(t]_ + -+« + tg)* be a convergent powerseries
satisfying

At)? << SA(t)

where we employ the following notation; for power series A(t) :=
ZI:(il,...,id) art! and B(t) := ZI:(il,...,id) brt! in Rxolft1, - -, t4]], we
denote A(t) << B(t) if a; < by holds for all I.

PROPOSITION 6.3.5. Suppose that ¢(t) € A (°T')([t1,...,td]]
holds. Then, for sufficiently large b and ¢, we have

Al &y @) + 11l g1y () << A(2)

where we denote ||¢||x) () == >_; ||¢1||(k)t1 if p(t) := > prt’.
ﬁroof. We shall prove by induction on p that
(6.3.6:11) 18]y () + 115 ¥ 1y (8) << A(2)

holds for all .
It is clear that

(6.3.6:1) D[y (&) + [1f P ey (8) << A(2)

holds if b is chosen sufficiently large.
Suppose that (6.3.6:u-1) holds. By the assumption é(t) € Ay (°T")
[[t1,...,td]], we have

1Bl iy (8) << %Dy BFH g1y (8)

<< CLA(t)? << ?A(t).

Hence, by the estimate of homotopy operators (cf. Theorem 6.2.2 (2))
we have Cob )
2
16l (&) + N Fullrry (8) << == A(2).
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Here we note that the constants C; and Cs as above are independent
of p. Therefore, if we choose ¢ so that _C_‘ng < 1 holds then (6.3.6:u)
follows. O

(III) The technical assumption ¢(t) € A2 (°T")[[t1, ..., ta]] in Pro-

position 6.3.5 is satisfied by modifying the construction of the homo-
topy operators Zs and @Q; in Theorem 6.2.1, This is the main part to
clear analytical difficulty stated in (ii) of subsection 4.2 and see [25]
§85-6 and §12 for the detailed proof.

[15]
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