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SYMPLECTIC 4-MANIFOLDS VIA SYMPLECTIC SURGERY

ON COMPLEX SURFACE SINGULARITIES

Heesang Park and András I. Stipsicz

Abstract. We examine a family of isolated complex surface singularities
whose exceptional curves consist of two complex curves with high genera
intersecting transversally. Topological data of smoothings of these sin-
gularities are determined. We use these computations to construct sym-
plectic 4-manifolds by replacing neighborhoods of the exceptional curves
with smoothings of the singularities.

1. Introduction

A standard way for showing that a topological 4-manifold admits infinitely
many non-diffeomorphic smooth structures involves two main steps. In the first
step one constructs one smooth structure on the manifold which is compatible
with a symplectic structure, that is, admits a non-degenerate closed 2-form.
The existence of the symplectic structure implies that the Seiberg-Witten in-
variants of the smooth manifold are non-trivial [19], hence in the second step
we can apply various operations (logarithmic transformation, Luttinger surgery,
knot surgery) for which the change of the smooth structure (through the change
of its Seiberg-Witten invariants) can be computed. Under favourable circum-
stances this approach can be used to show that the topological 4-manifold at
hand admits infinitely many distinct smooth structures.

Many smooth cut-and-paste constructions have been shown to be compatible
with symplectic structures. Most notably, Gompf [6] and McCarthy-Wolfson [9]
showed that the normal sum operation along symplectic submanifolds preserves
symplectic structures, and (more relevant to our present discussion) the rational
blow-down procedure of Fintushel-Stern [3, 15] is also symplectic [17, 18]. In
the rational blow-down construction the tubular neighbourhood of embedded
spheres (with certain intersection and self-intersection patterns) is replaced
by some other 4-manifold with boundary. This tubular neighbourhood can
be identified with the resolution of some isolated complex surface singularity,
while the other 4-manifold in the construction is diffeomorphic to a particular
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smoothing of the same singularity. This surgery operation (of replacing the
resolution of a singularity with one of its smoothings) have been extended
to further singularities in [4, 5] and ultimately to all singularities and any
smoothings in [14].

In the original rational blow-down construction one considered singularities
with resolutions involving only rational curves, while in the extension of [14]
higher genus curves in the resolutions are also allowed. Very few examples
of singularities are known for which the resolution admits higher genus sur-
faces, and the characteristic numbers of some smoothings of the singularities
are described. Such examples seem to be extremally important in the study of
the following two questions: (a) do symplectic 4-manifolds with characteristic
numbers c21 and c2 violating the Bogomolov-Miyaoka-Yau inequality c21 ≤ 3c2
(established for complex surfaces, cf. [1], and for symplectic 4-manifolds admit-
ting Einstein metrics [8]) exist? Indeed, for complex surfaces (and symplectic
4-manifolds admitting Einstein metrics) the equality c21 = 3c2 implies that the
manifold is a quotient of the 4-ball, and hence admits infinite fundamental
group. Therefore the related question is equally interesting: (b) do symplectic
4-manifolds with finite fundamental group and c21 = 3c2 exist?

The improvement of the Bogomolov-Miyaoka-Yau (BMY) inequality from
[10] shows that complex surfaces near the BMY line (i.e., where c21 = 3c2
holds) do not contain rational curves. This result suggests that in construct-
ing potential interesting symplectic 4-manifolds using the surgery operation
discussed above (replacing the resolution with a smoothing) it is inevitable to
consider singularities with resolutions admitting higher genus curves.

With this motivation, we have the following result:

Theorem 1.1. Let p be a positive prime number with p ≤ 7 and let s and t
be positive integers with s ≡ −1 and t ≡ 1 (mod p). Then there is an isolated

complex surface singularity (Ss,t,p, 0) whose minimal resolution consists of two

complex curves A and B such that A and B intersect each other transversally

once, A2 = −p − 1, g(A) = (s−1)(p−1)
2 , and B2 = −1, g(B) = (t−1)(p−1)

2

(where g(A) and g(B) denote the genera of the curves, and A2, B2 are the

self-intersections).
The singularity (Ss,t,p, 0) admits a smoothing (or Milnor fiber) M with topo-

logical data as follows:

(a) b1(M) = 0.
(b) The Milnor number µ(M) = b2(M) is given by

µ(M) = (p− 1)((s+ t)(s+ t− 1) + pt(t− 1) + 1− s− t).

(c) The canonical class

K =
(p− 1)(s+ t− 2) + p− 2

−p
A+

(s − 1)(p− 1) + (t− 1)(p− 1)(p+ 1)− 2

−p
B.



SYMPLECTIC 4-MANIFOLDS VIA SYMPLECTIC SURGERY 1215

(d) The signature σ(M) of the Milnor fiber M is

σ = −
1

3
(2µ+K2 + 2 + 2(p− 1)(s+ t− 2)).

We will also show symplectic 4-manifolds containing symplectic surfaces
which intersect according to the intersection patterns of the resolutions of the
singularities encountered above. The above data can be used to determine the
characteristic numbers of the symplectic 4-manifolds we get by replacing the
tubular neighbourhoods of the two curves with the smoothings.

The paper is organized as follows. In Section 2 we construct isolated com-
plex surface singularities whose exceptional curves consist of two curves of
high genera, and we determine the topological data of the resolutions and the
smoothings. In Section 3 we construct symplectic 4-manifolds which contain
the curves A and B with properties in Theorem 1.1. We then perform symplec-
tic smoothing surgery to get other symplectic 4-manifolds and we determine
the characteristic numbers of the resulting symplectic 4-manifolds.

Acknowledgements. The first named author was supported by Konkuk Uni-
versity in 2014 and the second named author was supported by ERC Advanced
Grant LDTBud and by the Lendület program (ADT) of the Hungarian Acad-
emy of Sciences.

2. The singularities

In this section we construct the isolated complex surface singularities claimed
in Theorem 1.1 and we compute the topological data of smoothings of the
singularities.

The singularity

Let s and t be positive integers and p be a prime number such that s+ t ≡ 0
(mod p) and t ≡ 1 (mod p). Consider the hypersurface singularity (S, 0) =
(Ss,t,p, 0) in C3 given by the equation

(1) (xs + ys)(xt + y(p+1)t) + zp = 0.

The minimal resolution

One can find the resolution graph of (S, 0) by the fact that {(xs + ys)(xt +
y(p+1)t)+zp = 0} is a p-fold cover of C2 branched along {(xs+ys)(xt+y(p+1)t) =
0}.

We now introduce notations defined in [12, 13] to explain the process of
finding the minimal resolution graph.

Definition 2.1 ([12, 13]). Let u, v and a be positive integers with gcd(u, v, a) =
1. Find integer 0 ≤ x < a

gcd(u,a) such that

(2) v + x ·
u

gcd(u, a)
≡ 0, (mod

a

gcd(u, a)
)
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If x 6= 0, the graph G(u, v, a) is defined by the following linear chain with the
dual graph

b b b
u

gcd(u, a)

−d1 −d2 −dl

(m1) (m2) (ml)

v

gcd(u, a)

where each vertex represents spheres with self-intersection numbers −di such
that

(3)

a
gcd(u,a)

x
= d1 −

1

d2 −
1

. . . −
1

dl

, di > 2

and the arrowheads represent surfaces having multiplicities u
gcd(u,a) and

v
gcd(v,a) .

Here the multiplicity m1 satisfies the equation

(4) v + x ·
u

gcd(u, a)
= m1 ·

a

gcd(u, a)

and mi (i > 2) is obtained by the equations

(5) −d1m1 +
u

gcd(u, a)
+m2 = 0 and− dimi +mi−1 +mi+1 = 0 for i > 2.

If x = 0, G(u, v, a) is defined by only one edge with no vertex.

In [12, 13] there is an algorithm to find the minimal resolution of the singu-
larity (S, 0). Below we explain the procedure briefly in our case (see [12, 13]
for further details). The procedure involves four steps.

Step 1: The dual graph of the embedded resolution of the plane curve
{(xs + ys)(xt + y(p+1)t) = 0} is given by the following graph

b b b b b b b
−1

−2 −2 −2 −2 −2 −2

Bp+1 Bp Bk+1 Bk Bk−1 B2 B1

(s + (p + 1)t) · · · (s + kt) · · · (s + t)

t times s times

in C2♯(p + 1)CP2 (C2 blown-up (p + 1) times), where vertices Bk represent
exceptional curves and arrowheads represent proper transforms.

Step 2: Consider a ramified p-fold cover of C2♯(p + 1)CP2 whose branch
locus is the total transform of {(xs + ys)(xt + y(p+1)t) = 0}. Then there are
singularities given by xs+ktys+(k+1)t = zp on the ramification locus in the p-fold
covering space.

Step 3: In [12, 13], there is an algorithm for finding a resolution graph of
the singularities given by xs+ktys+(k+1)t = zp. The resolution corresponding
to the singularity xs+ktys+(k+1)t = zp is G(s+ kt, s+(k+1)t, p): Vertices and
arrowheads in G(s + kt, s + (k + 1)t, p) represent exceptional curves and the
proper transform of xs+ktys+(k+1)t = zp respectively if x 6= 0, and there is no
exceptional curve if x = 0. Thus a resolution of the singularity (S, 0) is the
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union of the proper transforms Ck of the ramification locus and curves Dk+1
j

from vertices of G(s+kt, s+(k+1)t, p). Therefore we get the following lemma.

Lemma 2.2. The dual graph of a resolution of (S, 0) is equal to the following

graph:

b b b b b b bb b b b b b
−p −1 −1 −1 −1 −1 −2p

Cp+1 Cp Ck+1 Ck Ck−1 C2 C1

G(s + (k + 1)t, s + kt, p)

G(s + kt, s + (k − 1)t, p)

In more detail,

b b bb b b b b b
−1 −d

k+1
1 −d

k+1
2

−d
k+1
lk+1 −1 −dk1 −dk2

−dk
lk −1

Ck+1 D
k+1
1

D
k+1
2

D
k+1
lk+1

Ck Dk
1 Dk

2 Dk
lk

Ck−1

where

(a) the genus of C1 and Cp+1 are
(s−1)(p−1)

2 and
(t−1)(p−1)

2 respectively,

and C2
1 = −2p and C2

p+1 = −p,

(b) the genera of Ck are zero and C2
k = −1 (2 ≤ k ≤ p),

(c) the genera of Dj
i are zero and the self-intersection numbers of Dj

i , say

−dji , satisfy the following equations:

p

k∗ − 1
= dk1 −

1

dk2 −
1

. . . −
1

dlk

(3 ≤ k ≤ p)

and

p

p− 1− (k − 1)
∗ = dk+1

lk+1
−

1

dk+1
lk+1−1 −

1

. . . −
1

dk+1
1

(2 ≤ k ≤ p− 1),

where c∗ is the number such that 0 ≤ c∗ ≤ p− 1 and c∗c ≡ 1 (mod p).

Proof. Since the multiplicities of B1 and Bp+1 are divisible by p, C1 and Cp+1

are p-fold coverings of B1 and Bp+1 with s + 1 and t + 1 branch points re-
spectively. Then, by the Riemann-Hurwitz formula, (a) is proved. The curves
Ck are proper transforms of ramification loci corresponding to the branch loci
Bk (2 ≤ k ≤ p) because the multiplicities of Bk are relatively prime to p
(2 ≤ k ≤ p). Thus the genera of Ck are zero. Since s + t ≡ 0 (mod p) and
s+(p+1)t ≡ 0 (mod p), G(s+ t, s+2t, p) and G(s+pt, s+(p+1)t, p) are only
edges with no vertices, respectively. On the other hand, G(s+ kt, s(k + 1)t, p)

gives exceptional curves Dk+1
i for 2 ≤ k ≤ p − 1. The self-intersection num-

bers −dji of Dj
i can be computed by Equation (3). Consider Equation (2) for
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G(s+ kt, s+ (k − 1)t, p) for 3 ≤ k ≤ p:

s+ (k − 1)t+ xk · (s+ kt) ≡ 0 (mod p).

Since s + t ≡ 0 (mod p) and t ≡ 1 (mod p), we have (k − 1)xk + k − 2 ≡ 0
(mod p). By Fermat’s theorem, we have (k − 1)p−1 ≡ 1 (mod p). Multiply

(k − 1)xk + k − 2 ≡ 0 (mod p) with (k − 1)p−2 and get xk ≡ (k − 1)p−2 − 1
(mod p). Consequently, we have xk = (k − 1)

∗
−1, where c∗ is the number such

that 0 ≤ c∗ ≤ p − 1 and c∗c ≡ 1 (mod p). Consider G(s + kt, s + (k + 1)t, p)

for 2 ≤ k ≤ p− 1 to find dk+1
i :

s+ (k + 1)t+ xk+1 · (s+ kt) ≡ 0 (mod p).

With the same process, we get xk+1 = p−1−(k−1)∗, providing the proof of (c).

To prove (b), let (S̃, E)
π
−→ (S, 0) be the resolution given by the above process,

where E = ∪Ei are the exceptional curves, that is, E = ∪Ei = ∪Ci ∪ (∪Di).
Define a polynomial map f : (S, 0) → (C, 0) by f(x, y, z) = (xs + ys)(xt +
y(p+1)t) + zp. The pullback of f ◦ π determines a principal divisor, denoted by
(f ◦ π). Then

(f ◦ π) = ΣiniEi + π−1({f = 0} − {0}),

where ni is multiplicity of f ◦ π along Ei. Since the homology class [(f ◦ π)] in

H2(S̃, ∂S̃;Z) is zero, [(f ◦ π)] · Ci = 0. This implies that

(s+ kt)C2
k +mk

1 +mk+1
lk+1

= 0,

where mj
i is multiplicity of Dj

i . Therefore

C2
k =

−mk
1 −mk+1

lk+1

s+ kt
.

Furthermore we get

mk
1 =

s+ (k − 1)t+ ((k − 1)∗ − 1)(s+ kt)

p
,

mk+1
lk+1

=
s+ (k + 1)t+ (p− 1− (k − 1)∗)(s+ kt)

p

from Equation (4) on G(s + kt, s + (k − 1)t, p) and G(s + kt, s + (k + 1)t, p).
Therefore we get C2

k = −1, completing the proof of (b). �

Step 4: Finally blowing down (−1)-curves, we get the minimal resolution
of the singularity (S, 0).

Proposition 2.3. For p ≤ 7 the minimal resolution graph has the the following

properties:

(a) The resolution consists of the union of two curves A and B, intersecting

each other transversally once.

(b) A2 = −p− 1 and g(A) = 1
2 (s − 1)(p − 1) while B2 = −1 and g(B) =

1
2 (t− 1)(p− 1).
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Proof. Consider the case p = 7. A resolution graph of (S, 0) is the following:

b b b b b b b bb b b b b b b b b b b
C8 C7 C6 C5 C4 C3 C2 C1

−7 −1 −2 −2 −3 −1 −4 −2 −1 −7 −1 −2 −4 −1 −3 −2 −2 −1 −14

It is easy to check that after blowing down the (rational) (−1)-curves in the
above graph, the resulting graph will consist of two curves A and B with the
stated properties. The further cases of p < 7 and prime work similarly. �

Remark 2.4. We expect that the blow-down of the graph of Lemma 2.2 has
properties (a) and (b) of Proposition 2.3 for every prime number p and positive
integers s and t such that s + t ≡ 0 (mod p) and t ≡ 1 (mod p). (Indeed, we
expect that the minimal resolution has the above properties (a) and (b) in the
Proposition 2.3 for every positive numbers p, s, and t with s+ t ≡ 0 (mod p)
and gcd(p, t) = 1.)

Topological data of the smoothing

We start with a short generic discussion about the computation of topolog-
ical data of the Milnor fiber of a hypersurface singularity. Suppose therefore
that f : (C3, 0) → (C, 0) defines the isolated singularity (S, 0) and p : (S̃, E) →
(S, 0) = (f−1(0), 0) is its minimal good resolution. We write the exceptional
divisor p−1(0) = E as the union of irreducible components: E = E1∪· · ·∪Em.

Let h = rankH1(E) and pg = dimC H1(S̃,OS̃). The canonical class K of S̃
can be written as

∑
riEi, where the ri are rational numbers, determined by

the adjunction formula 2g(Ei)− 2 = E2
i +K ·Ei. The Milnor number and the

signature of the Milnor fiber of the singularity of f−1(0) can be computed as
follows:

Proposition 2.5 ([2]). The Milnor number µ = dimC C{x, y, z}/(∂f
∂x

, ∂f
∂y

, ∂f
∂z

)

is equal to µ = K2−h+m+12pg. The signature of the Milnor fiber is equal to

σ = − 1
3 (2µ+K2 +m+ 2h), where m is the number of irreducible components

of exceptional curves E in the minimal good resolution and h = rankH1(E).

The singularity given by Equation (1) is given as a ramified cover along a
singular plane curve. For an isolated plane curve singularity the Milnor number
satisfies the following equation.

Proposition 2.6 ([11]). For an isolated plane curve singularity (C, 0) ⊂ (C2, 0)

µ(C, 0) = d(d− 1) +
∑

x∈Sing(C̃)

µ(C̃, x) + 1− r,

where C̃ is the proper transform of C after one blow-up at the singular point 0,

the sum runs through all singular points x of C̃ lying over 0, r is the number

of different tangent lines of (C, 0), and d is the multiplicity of C at 0.

Regarding the first Betti number of an isolated singularity, we have:
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Proposition 2.7 ([7]). Let Xt be the Milnor fiber of a smoothing of a pure-

dimensional isolated normal surface singularity (X0, 0), then b1(Xt) = 0.

Using the above formulae, we can compute topological invariants of the
smoothings of (S, 0).

Lemma 2.8. For the singularity (S, 0) = (Ss,t,p, 0) specified by the function of

Equation (1) we have

(a) The Milnor number

µ = (p− 1)((s+ t)(s+ t− 1) + pt(t− 1) + 1− s− t).

(b) The canonical class

K =
(p− 1)(s+ t− 2) + p− 2

−p
A+

(s − 1)(p− 1) + (t− 1)(p− 1)(p+ 1)− 2

−p
B.

(c) The signature σ of the Milnor fiber is

σ = −
1

3
(2µ+K2 +m+ 2h)

with m = 2, h = (p − 1)(s + t − 2). So we can calculate the signature

σ explicitly by (a) and (b).

Proof. We have

µ(S, 0) = dimC C{x, y, z}/(
∂f

∂x
,
∂f

∂y
,
∂f

∂z
)

= (p− 1) dimC C{x, y}/(
∂f

∂x
,
∂f

∂y
)

= (p− 1)µ((xs + ys)(xt + y(p+1)t) = 0, 0).

Let H0 be the plane curve singularity ((xs+ys)(xt+y(p+1)t) = 0, 0) in C2. Let

H1 be the proper transform of H0 in C2♯CP2 after one blow-up at the singular

point 0 and let Hk+1 be the proper transform in C2♯(k+1)CP2 of Hk after one
blow-up at the unique infinitely near singular point, say hk, for 0 ≤ k ≤ p. We
can check that 0 in H0 is a singular point with multiplicity s+ t and has s+1
different tangent line. Thus we have

µ(H0, 0) = (s+ t)(s+ t− 1) + Σh∈Sing(H1)µ(H1, x) + 1− s− 1

from Proposition 2.6. It is not difficult to show that the curve Hk has only
one infinitely near singular point hk lying over 0 with multiplicity t and one
tangent line for 1 ≤ k ≤ p − 1, and Hp has only one infinitely near singular
point hp with multiplicity t and t different tangent lines, and the singularity
(H0, 0) is resolved after p+ 1 times blowing up. Therefore by Proposition 2.6

µ(Hk, hk) = t(t− 1) + µ(Hk+1, hk+1) for 1 ≤ k ≤ p− 1

and

µ(Hp, hp) = t(t− 1) + 1− t.
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Thus we have

µ(S, 0) = (p− 1)((s+ t)(s+ t− 1) + pt(t− 1) + 1− s− t),

hence (a) is proved. By the adjunction formula (b) follows easily. Since the

exceptional curve E consists of two curves A and B with genera (s−1)(p−1)
2 and

(t−1)(p−1)
2 respectively, we have m = 2, h = (p− 1)(s+ t− 2). Then K2 can be

calculated explicitly by (b). We can compute σ by Proposition 2.5, completing
the proof of (c). �

Proof of Theorem 1.1. Composing the results of Proposition 2.3 and Proposi-
tion 2.8, the claim of the theorem follows at once. �

3. An example of symplectic surgery on the singularity

In this section we give examples of symplectic manifolds which contain the
curve configuration (A,B) described in Section 2. Let s and t be positive
integers and p be a prime number such that s+ t ≡ 0 (mod p), t ≡ 0 (mod p),
and p ≤ 7. Consider the projective line CP1 and a complex curve Σ with genus
(s−1)(p−1)

2 , and fix points p1, . . . , p2(p+1) in Σ and q1, . . . , qtp−t−p+3 in CP
1.

Define the complex curve C = (
⋃tp−t−p+3

i=1 (Σ×{qi}))
⋃
(
⋃2p+2

j=1 ({pj}×CP
1)) and

take the branched double covering of Σ×CP
1 along C. After desingularization,

we get a genus (t−1)(p−1)
2 Lefschetz fibration X → Σ admitting sections with

self-intersection number −p− 1. Let M denote the blow-up of X in a regular
fiber. The fiber passing through the blown-up point, together with a section
now provides the configuration of two curves (A,B) with intersection patterns
as in the resolution graph of the singularity given by Equation (1) in Section 2.

Applying the symplectic smoothing surgery operation of replacing the neigh-
bourhood ν(A∪B) with the smoothing W of the corresponding singularity, we
get a symplectic 4-manifold MW (where the existence of the symplectic struc-
ture follows from [14]).

The topological invariants (the first betti number, Euler characteristic, and
signature) of the symplectic manifold MW can be computed from the topolog-
ical invariants of M as follows.

Proposition 3.1. (a) The first betti number b1(MW ) is zero.

(b) The topological Euler characteristic of MW is equal to

e(MW ) = 9 + 5p− 3p2 + 2s− ps− p2s− s2 + ps2 − 2t+ 2p2t

− st+ p2st− t2 + p2t2.

(c) The signature is

σ(MW ) =
17

3
−

38p

3
+ p2 − 2p3 − p4 −

16s

3
+

10ps

3
− p2s+ 3p3s

−
s2

3
+

ps2

3
+ p2s2 − p3s2 −

10t

3
+

8pt

3
−

10p2t

3
+ 2p3t+ 2p4t
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−
2st

3
−

pst

3
+ 4p2st− 3p3st−

t2

3
+

4p2t2

3
− p4t2.

Proof. Since the embedding map A ∪ B → X is onto on the first homol-
ogy, Proposition 2.7 implies that b1(MW ) = 0. We have e(W ) and σ(W )
by Lemma 2.8. Thus the topological Euler characteristic

e(MW ) = e(M \ ν(A ∪B)) + e(W ) = e(M)− e(A ∪B) + e(W )

= e(M) + e(W )− 3 + (p− 1)(s+ t− 2)

= (10 + 6p− 3p2 + s− p2s− 3t+ 3p2t+ st− 2pst+ p2st)

+ (p+ 2s− 2ps− s2 + ps2 + 2t− pt− p2t− 2st+ 2pst− t2 + p2t)

− 3 + (p− 1)(s+ t− 2)

= 9 + 5p− 3p2 + 2s− ps− p2s− s2

+ ps2 − 2t+ 2p2t− st+ p2st− t2 + p2t2,

and the signature

σ(MW ) = σ(M \ ν(A ∪B)) + σ(W ) = σ(M)− σ(A ∪B) + σ(W )

= σ(M) + σ(W ) + 2

= (−7− 4p+ 2p2 + 2t− 2p2t) + (
32

3
−

26p

3
− p2 − 2p3 − p4 −

16s

3

+
10ps

3
− p2s+ 3p3s−

s2

3
+

ps2

3
+ p2s2 − p3s2 −

16t

3
+

8pt

3

−
4p2t

3
+ 2p3t+ 2p4t−

2st

3
−

pst

3
+ 4p2st− 3p3st−

t2

3

+
4p2t2

3
− p4t2) + 2

=
17

3
−

38p

3
+ p2 − 2p3 − p4 −

16s

3
+

10ps

3
− p2s+ 3p3s−

s2

3

+
ps2

3
+ p2s2 − p3s2 −

10t

3
+

8pt

3
−

10p2t

3
+ 2p3t+ 2p4t−

2st

3

−
pst

3
+ 4p2st− 3p3st−

t2

3
+

4p2t2

3
− p4t2. �

Symplectic 4-manifolds containing similar configurations of symplectic sub-
manifolds can be found near the Bogomolov-Miyaoka-Yau (BMY) line c21 = 3c2.
(For 4-manifold near the BMY line, see [16].) We hope that using the sym-
plectic smoothing surgery, one will be able to construct symplectic manifolds
with b1 = 0 (or even with π1 = 0) on the BMY line. We hope to return to this
question in a future project.
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