# SOME REMARKS ON ISOLATED SINGULARITIES 

Byung Kyoo Shon

## 1. Introduction

Let $D(a ; r)$ be the open disc with center at a and radius r in the complex plane, and $D^{\prime}(a ; r)$ be the punctured disc with center at a and radius $r$. We denote by $H(G)$ the class of all holomorphic functions in a plane open set $G$. The letter $G$ will from now on denote a plane open_set.

Difinition. If $a \in G$ and $f \in H(G-\{a\})$, then f is said to have an isolated singularity at the point a. If f can be so defined at a that the extended function is holomorphic in $G$ the singularity is said to be removable.

If $a \in G$ and $f \in H(G-\{a\})$, then one of the following three cases must occur[4, p.227]:
(a) f has a removable singularity at a.
(b) There are complex numders $\mathrm{c}_{1}, \cdots, \mathrm{c}_{\mathrm{m}}$, where $m$ is $a$ positive integer and $\mathrm{c}_{\mathrm{m}} \neq 0$, such that

$$
f(z)-\sum_{k=1}^{m} \frac{c_{k}}{(z-a)^{k}}
$$

has a removable singularity at a.
(c) If $r>0$ and $D(a ; r) \subset G$, then $f\left(D^{\prime}(a ; r)\right)$ is dense in the plane.

In case (b), $f$ is said to have $a$ pole of order $m$ at a. The function $\sum_{k=1}^{m} c_{k}(z-a)^{-k}, a$ polynomial in $(z-a)^{-1}$, is
called the principal part of $f$ at a. ln case (c), $f$ is said to have an essential singularity at a.
In this note, we investigate some properties of isolated singularities. In section 2 we find simple conditions on $f$ that are equivalent to the statement that $f$ has $a$ removable singularity at a (and similarly for poles and essential singularities). In section 3 we consider the exterided complex plane $\mathrm{C}_{\infty}$.

## 2. Isolated singularities.

We begin with the following theorem.
Theorem 1. If $a \in G$ and $f \in H(G-\{a\})$, then the following statements are equivalent:
(a) $f$ has $a$ removable singularity at a.
(b) $f(z)$ approaches $a$ finite limit as $z \rightarrow a$.
(c) $\lim _{z-a}(z-a) f(z)=0$.
(d) The Laurent expansion of $f$ about $a$ has no negative powers.

Proof. (a) implies (b): Let $g$ be the holomorphic extention of $f$. Since $g$ is continuous at $a$, it follows that

$$
\lim _{z \rightarrow a} f(z)=\lim _{z \rightarrow a} g(z)=g(a) ;
$$

hence $f(z)$ approaches a finite limit as $z \rightarrow a$.
(b) implies (c): Obvious.
(c) implies (d): The function $g$ defined in $G$ by
is continuous in $G$ and holomorphic in $G-\{a\}$. Then it
follows from $a$ theorem [2, p.31] that $g \in H(G)$. Thus

$$
g(z)=\sum_{n=1}^{\infty} c_{n}(z-a)^{n}(z \in D(a ; r) \subset G)
$$

Consequently we have

$$
f(z)=\sum_{n=0}^{\infty} c_{{ }_{1}}(z-a)^{n}\left(z \in D^{\prime}(a ; r) \subset G\right) .
$$

(d) implies (a): Let $f(z)=\sum_{n=0}^{\infty} c_{n}(z-a)^{n}$ be its Laurent expansion in $D^{\prime}(a ; r) \subset G$. Then the function $g$ defined in $G$ by

$$
g(z)= \begin{cases}f(z) & \text { if } z \neq a, \\ c_{0} & \text { if } z=a,\end{cases}
$$

is holomorphic in $G$ and agrees with $f$ in $G-\{a\}$.
We consider now the characterization of poles.
Theorem 2. If $a \in G$ and $f \in H(G-\{a\})$, then the following statements are equivalent:
(a) $f$ has $a$ pole at $a$.
(b) $\lim _{z-a} f(z)=\infty$.
(c) There is $a$ positive integer $m$ and $a g \in H(G)$ with $g(a) \neq 0$ such that $f(z)=(z-a)^{-m} g(z)$.
(d) There is $a$ positive integer $m$ such that $(z-a)^{m} f(z)$ approaches $a$ finite nonzero limit as $z \rightarrow a$.
(e) The Laurent expansion of $f$ about $a$ has $a$ positive but finite number of negative powers.

Proof. (a) implies (b): Let $\sum_{k=1}^{m} c_{k}(z-a)^{-k}$ be the principal part of $f$ at $a$ and let $g$ be the holomorphic extension
of $f(z-a)^{-k}$. Since $c_{m} \neq 0$ and $g$ is continuous at $a$, it follows that

$$
\lim _{z \rightarrow a} f(z)=\lim _{z \rightarrow \infty} \sum_{k=1}^{\infty} c_{k}(z-a)^{-k}+g(z)=\infty .
$$

(b) implies (c): Let $M$ be $a$ positive real number. Since $\lim _{z \rightarrow \infty} f(z)=\infty$, there exists $r>0$ such that $D(a ; r) \subset G$ and $|f(z)| \geq M$ whenever $z \in D^{\prime}(a ; r)$. Then $1 / f \in H\left(D^{\prime}(a ; r)\right)$ and $\lim _{z \rightarrow a}[f(z)]^{-1}=0$. Hence, $h(z)=[f(z)]^{-1}$ for $z \neq a$ and $h(a)=0$, is holomorphic in $D(a ; r)$. However, since $h(a)$ $=0$ it follows that $h(z)=(z-a) h_{1}(z)$ for some $h_{1} \in H$ ( $D(a ; r)$ ) with $h_{1}$ (a) $\neq 0$ and some integer $m \geq 1$. Define $g(a)=1 / h_{1}(a)$, and $g(z)=(z-a)^{m} f(z)$ in $G-\{a\}$. Then $g \in H(G), f(z)=(z-a)^{-m} g(z)$, and $g(a) \neq 0$.
(c) implies (d) : Obvious.
(d) implies (e) : If $(z-a)^{m} f(z)$ approaches a finite nonzero limit, then $(z-a)^{m} f(z)$ has a removable singularity at a by Theorem 1 .

Hence there exists $r>0$ such that $D(a ; r) \subset G$ and

$$
(z-a)^{m} f(z)=\sum_{n=0}^{\infty} c_{n}(z-a)^{n}\left(c_{0} \neq 0, z \in D^{\prime}(a ; r)\right)
$$

so we find upon dividing by $(z-a)^{m}$ that the Laurent expansion of $f$ about $a$ has $a$ positive but finite number of negative powers.
(e) implies (a): Let $f(z)=\sum_{n=-m}^{\infty} c_{n}(z-a)^{n}\left(c_{\sigma_{m}} \neq 0\right)$ be its

Laurent expansion in $D^{\prime}(a ; r) \subset G$. Define $g(a)=c_{0}$, and $g(z)=\sum_{n=0}^{\infty}=c_{n}(z-a)^{n}$ in $D^{\prime}(a ; r)$. Then $g \in H(D(a ; r))$, and hence
has a removable singularity at $a$.
For a more detailed discussion of isolated singularities, we consider the conditions

$$
\begin{aligned}
& \text { (A) } \lim _{z \rightarrow a}|z-a|^{3} f(z)=0, \\
& \text { (B) } \lim _{z=a}|z-a|^{5} f(z)=\infty,
\end{aligned}
$$

where $s$ is some real number.
Lemma 3. Let $f$ have an isolated singularity at $a$ and suppose $f \not \equiv 0$. If either $(A)$ or ( $B$ ) holds for some real numder $s$, then there is an integer $m$ such that ( $A$ ) holds if $s\rangle m$ and ( $B$ ) holds if $s\langle m$; furthermore, $f$ has a removable singularity at a if $m \leq 0$ and has a pole at a if $m>0$.
Proof. If ( $A$ ) holds for a certain $s$, then it holds for all larger $s$, and hence for some integer $p$. Then $(z-a)^{p}$ $f(z)$ has a removable singularity at a. Suppose $f \in H\left(D^{*}\right.$ $(a ; r))$, and let $g$ be the holomorphic extension of $(z-a)^{p}$ $f(z)$. Since $g(a)=0$ and $g \neq 0$, there exists a unique positive integer $k$ such that

$$
g(z)=(z-a)^{k} g_{1}(z) \quad(z \in D(a ; r))
$$

where $g_{1} \in H(D(a ; r))$ and $g_{1}(a) \neq 0$. Hence we have

$$
\text { (1) } \lim _{z-a}|z-a|^{3} f(z)=\lim _{z-0}\left|(z-a)^{s+4-p} g_{1}(z)\right|
$$

$$
= \begin{cases}0 & \text { if } s\rangle p-k \\ \infty & \text { if } s\langle p-k .\end{cases}
$$

Thus ( $A$ ) holds for all $s>m=p-k$, while ( $B$ ) holds for all $s<m$.
Assume now that ( $B$ ) holds for some $s$; then it holds for all smaller $s$, and hence for some integer $n$. By Theorem 2, there is a positive integer $p$ and $a g_{2} \in H(D(a$; $r)$ ) with $g_{2}(a) \neq 0$ such that

$$
(z-a)^{\star} f(z)=(z-a)^{-\ominus} g_{2}(z) .
$$

Put $m=n+p$. Then we have

$$
\text { (2) } \begin{aligned}
\lim _{z \rightarrow a}|z-a|^{\mid}|f(z)| & =\lim _{x \rightarrow a}\left|(z-a)^{2-\infty} g_{2}(z)\right| \\
& = \begin{cases}0 & \text { if } s\rangle m \\
\infty & \text { if } s\langle m .\end{cases}
\end{aligned}
$$

Finally, suppose $m \leq 0$. Then, by (1) and (2), we have

$$
\lim _{z-a}(z-a) f(z)=\lim _{z-a}(z-a)^{1-m} g_{i}(z)=0 \quad(i=1,2),
$$

and bence $f$ has a removable singularity at $a$. If $m>0$, then

$$
\lim _{z-a} f(z)=\lim _{z-a}(z-a)^{-m} g_{1}(z)=\infty \quad(i=1,2) .
$$

Hence $f$ has a pole at a.
Theorem 4. If $a \in G$ and $f \in H\{G-\{a\})$, then the following statements are equivalent:
(a) f has an essential singularity at a.
(b) $f(z)$ does not approach a finite or infinite limit as $\boldsymbol{z} \rightarrow \boldsymbol{a}$.
(c) The Laurent expansion of $f$ about a has an infinite number of negative powers.
(d) Neither $\lim _{z-a}|z-a|^{\mid}|f(z)|=0$ nor $\lim _{z-a}|z-a|^{\prime}|f(z)|=\infty$
holds for any real number $s$.
(e) To each complex number $w$ there corresponds a sequence $\left\{z_{n}\right\}$ such that $z_{n} \rightarrow a$ and $f\left(z_{n}\right) \rightarrow w$ as $n \rightarrow \infty$.

Proof. The equivalence of (a), (b) and (c) follows from Theorem 1 and Theorem 2. By Lemma 3, (a) implies (d). And (d) implies (a), by Theorem 1 and Theorem 2.Thus it suffices to show that (a) is equivalent to (e).

Suppose (a) holds. Choose $\delta>0$ such that $D(a ; 1 / \delta) \subset G$. Then $D(a ; 1 / \delta+n) \subset G$ for $n=1,2, \cdots$. Choose $w_{n} \in f\left(D^{2}(a ; 1\right.$ $/ \delta+n)) \cap D(w ; 1 / n)$, and choose $z_{n} \in D^{\prime}(a ; 1 / \delta+n)$ such that $f\left(z_{n}\right)=w_{n}$. Then $z_{n} \rightarrow$ and $f\left(z_{n}\right) \rightarrow w$; hence (e) holds.

Conversely, assume that (e) holds. Suppose $D(a ; r) \subset$ $G$. Let $U$ be a nonempty open set, and choose a point $w \in U$ with $w \neq f(\mathrm{a})$. Choose $\delta>0$ such that $D(w ; \delta) \subset U$. Let $\left\{z_{n}\right\}$ be a sequence such that $z_{n} \rightarrow a$ and $f(z) \rightarrow w$. (Since $w \neq f(a), z_{n} \neq a$ for infinitely many $n$ ). Then there exists an integer $N$ such that $0\langle | z_{N}-a j\langle r$ and $| f\left(z_{N}\right)$ $-w \mid\left\langle\delta\right.$. Thus $f\left(z_{N}\right) \in f\left(D^{\prime}(a ; r)\right) \cap U$. Since $U$ is anarbitrary open set, it follows that $f\left(D^{\prime}(a ; r)\right)$ is dense.

## 3. The extended complex plane.

For many purpose it is useful to extend the system $\mathbf{C}$ of complex numbers by introduction of a symbol $\infty$ to represent infinity. For any $r>0$, let $D^{\prime}(\infty ; r)$ be the set of all complex numbers $z$ such that $|z|>r$, put $D(\infty ; r)=D^{+}$ $(\infty ; r) \bigcup\{\infty\}$. The set $\mathbf{C}_{\infty}=\mathrm{C} \cup\{\infty\}$ is topologized in

## the following manner:

Definition. A subset of $\mathbf{C}_{\infty}$ is open if and only if it is the union of discs $D(a ; r)$, where the a's are arbitrary points of $\mathbf{C}_{\infty}$ and the $r$ 's are arbitrary positive numbers.

Theorem 5. Let $\tau$ be the topology as in the above definition. Then $U \in \tau$ if and only if $U$ is an open subset of $\mathbf{C}$ or $\mathbf{C}_{\infty}-U$ is a closed compact subset of $\mathbf{C}$. That is, the set $\mathrm{C}_{\infty}$ with the topology $\tau$ is the one point compactification of $\mathbf{C}$.

Proof. Suppose $U \in r$. If $\infty \notin U$, it is clear that $U$ is an open subset of C. Suppose $\infty \in U$, and let $U=\cup D$ ( $a ; r$ ). If $a \in \mathbf{C}$, then $D(a ; r)^{\text {i }}$ is a closed subset of $\mathbf{C}$. And $D(a$; $r)^{c}$ is a closed bounded subset of $\mathbf{C}$ if $a=\infty$. Consequently,

$$
\mathrm{C}_{\infty}-U=\cap_{a+\infty} D(a ; r)^{c} \cap{\underset{a}{ }}_{n} U(a ; r)^{c}
$$

is a closed bounded subset of $\mathbf{C}$; hence $\mathbf{C}_{\infty}-U$ is a closed compact subset of $\mathbf{C}$.

Conversely, suppose that $U$ is an open subset of $\mathbf{C}$ or $\mathbf{C}_{\infty}-U$ is a closed compact subset of $\mathbf{C}$. If $U$ is an open subset of $\mathbf{C}$, it is clear that $U \in r$. If $\mathbf{C}_{\infty}-U$ is a closed compact subset of $\mathbf{C}$, then $\mathrm{C}_{\infty}-U$ is a bounded subset of C. Thus there exists $r>0$ such that $|z| \leq r$ for every $z \in$ $\mathrm{C}_{\infty}-U$, and so $D(\infty ; r) \subset U$. On the other hand, $\mathrm{C}-\left(\mathrm{C}_{\infty}-\right.$ $U)=\mathbf{C} \cap U$ is an open subset of $\mathbf{C}$. Hence $\mathbf{C} \cap U=\cup D$ ( $a$; $r_{a}$ ), and so

$$
\mathrm{U}=(\mathbf{C} \cap U) \cup\{\infty\}=\cup D\left(a ; r_{a}\right) \cup D(\infty ; r)
$$

Consequently $U \in \tau$.
We note that the extended complex plane $\mathrm{C}_{\infty}$ is homeomorphic to a sphere. In fact, a homeomorphism $\varphi$ of $\mathrm{C}_{\infty}$
onto the unit sphere (where equation in three-dimensional space is $x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}=1$ ) can be explicitely exhibited : put $\varphi(\infty)=(0,0,1)$. and put

$$
\varphi(z)=\left(2 x /|z|^{2}+1, \quad 2 y /|z|^{2}+1, \quad|z|^{2}-1 /|z|^{2}+1\right)
$$

for all complex numbers $z=x+i y[1, \mathrm{p} .18 ; 3, \mathrm{p} .9] . \varphi$ is called a stereographic projection.

The behavior of a complex function $f$ at $\infty$ may be studied by considering $\tilde{f}(z)=f(1 / z)$ at 0 . It is clear that $f \in H\left(D^{\prime}(\infty ; r)\right)$ if and only $\bar{f} \in H\left(D^{\prime}(0 ; 1 / r)\right)$. The formal definitions are as follows;

Definition. If $f$ is holomorphic in a punctured disc $D^{\prime}$ ( $\infty ; r$ ), we say that $f$ has an isolated singularity at $\infty$. We say that $f$ has a removable singularity, a pole, or an essential singularity at $\infty$ if $\tilde{f}$ has, respectively, a removable singularity, a pole, or, an essential singularity at 0 .

Theorem 6. Let $f$ be an entire function. Then
(a) $f$ has a removable singularity at $\infty$ if and only if it is constant.
(b) $f$ has a pole at $\infty$ of order $m$ if and only if it is a polynomial of degree $m$.
(c) $f$ has an essential singularity at $\infty$ if and only if it is not a polynomial.
Proof. (a) It is clear that every constant function has a removable singularity at $\infty$. Conversely, suppose that $f$ has a removable singularity at $\infty$. Since $\bar{f}$ has a removable singularity at $0, \tilde{f}(z)$ approaches a finite limit as
$z \rightarrow 0$. We define $f(\infty)$ to be this limit, and we thus see that $f$ is entire on $\mathbf{C}_{\infty}$. Since $\mathbf{C}_{\infty}$ is compact, $f$ is bounded. Hence, by Liouville's theorem, $f$ is constant.
(b) Suppose $f$ has a pole of order m. Then $\hat{f}(z)-\sum_{k=1}^{m}$ $c_{k} z^{k}\left(c_{m} \neq 0\right)$ has a removable singularity at 0 ; hence $g(z)$ $=f(z)-\sum_{k=1}^{m} c_{k} z^{k}$ has removable singularity at $\infty$. Since $g$ is entire, it follows from (a) that $g$ is constant. Thus $f$ is a polynomial of degree $m$. Conversely, suppose that $f(z)=\sum_{k=0}^{m} c_{k} z^{k}\left(c_{m} \neq 0\right)$ is a polynomial of degree $m$. Then

$$
h(z)=z^{m} f(z)=c_{m}+c_{m-1} z+\cdots+c_{0} z^{m}
$$

is an entire function and $h(0)=c_{m} \neq 0$. Hence $f$ has a pole at $\infty$ of order $m$, by Theorem 2 .
(c) Immediate from (a) and (b).

## References

1. L. V. Ahlfors, Complex analysis, 3rd ed., McGraw-Hill, New York, 1979.
2. R. B. Ash, Complex variables, Academic Press, New York, 1971.
3. J.B. Conway, Functions of one complex variable, SpringerVerlag, New York, 1978.
4. W. Rudin, Real and complex analysis, 2nd ed., McGraw-Hill, New York, 1974.

Dong Eui University

