PUSAN KYÖNGNAM MATHEMATICAL JOURNAL

Vol. 1, 55~64, 1985

SOME REMARKS ON ISOLATED SINGULARITIES

BYUNG KYOO SHON

1. Introduction

Let D(a;r) be the open disc with center at a and radius r in the complex plane, and D'(a;r) be the punctured disc with center at a and radius r. We denote by H(G) the class of all holomorphic functions in a plane open set G. The letter G will from now on denote a plane open set.

DIFINITION. If $a \in G$ and $f \in H(G - \{a\})$, then f is said to have an isolated singularity at the point a. If f can be so defined at a that the extended function is holomorphic in G the singularity is said to be removable.

If $a \in G$ and $f \in H(G - \{a\})$, then one of the following three cases must occur[4, p. 227]:

(a) f has a removable singularity at a.

(b) There are complex numders c_1, \dots, c_m , where *m* is *a* positive integer and $c_m \neq 0$, such that

$$f(z) - \sum_{k=1}^{m} \frac{c_k}{(z-a)^k}$$

has a removable singularity at a.

(c) If r > 0 and $D(a;r) \subset G$, then f(D'(a;r)) is dense in the plane.

In case (b), f is said to have a pole of order m at a. The function $\sum_{k=1}^{m} c_k (z-a)^{-k}$, a polynomial in $(z-a)^{-1}$, is called the principal part of f at a. In case (c), f is said to have an essential singularity at a.

In this note, we investigate some properties of isolated singularities. In section 2 we find simple conditions on f that are equivalent to the statement that f has a removable singularity at a (and similarly for poles and essential singularities). In section 3 we consider the extended complex plane C_{∞} .

2. Isolated singularities.

We begin with the following theorem.

THEOREM 1. If $a \in G$ and $f \in H(G - \{a\})$, then the following statements are equivalent:

(a) f has a removable singularity at a.

- (b) f(z) approaches a finite limit as $z \rightarrow a$.
- (c) $\lim_{z \to a} (z-a)f(z) = 0.$

(d) The Laurent expansion of f about a has no negative powers.

PROOF. (a) implies (b): Let g be the holomorphic extention of f. Since g is continuous at a, it follows that

$$\lim_{x\to a} f(z) = \lim_{x\to a} g(z) = g(a);$$

hence f(z) approaches a finite limit as $z \rightarrow a$.

(b) implies (c): Obvious.

(c) implies (d): The function g defined in G by

$$g(z) = \begin{cases} (z-a) \ f(z) \ if \ z \neq a, \\ 0 \qquad if \ z = a, \end{cases}$$

is continuous in G and holomorphic in $G - \{a\}$. Then it

56

follows from a theorem [2, p. 31] that $g \in H(G)$. Thus

$$g(z) = \sum_{r=1}^{\infty} c_n (z-a)^n \ (z \in D \ (a;r) \ \subset G).$$

Consequently we have

$$f(z) = \sum_{n=0}^{\infty} c_{+1}(z-a)^n \ (z \in D'(a;r) \subset G).$$

(d) implies (a): Let $f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$ be its Laur-

ent expansion in D' $(a;r) \subset G$. Then the function g defined in G by

$$g(z) = \begin{cases} f(z) & \text{if } z \neq a, \\ c_0 & \text{if } z = a, \end{cases}$$

is holomorphic in G and agrees with f in $G - \{a\}$.

We consider now the characterization of poles.

THEOREM 2. If $a \in G$ and $f \in H(G - \{a\})$, then the following statements are equivalent:

- (a) f has a pole at a.
- (b) $\lim_{z\to a} f(z) = \infty$.

(c) There is a positive integer m and a $g \in H(G)$ with $g(a) \neq 0$ such that $f(z) = (z-a)^{-m} g(z)$.

(d) There is a positive integer m such that $(z-a)^{m}f(z)$ approaches a finite nonzero limit as $z \rightarrow a$.

(e) The Laurent expansion of f about a has a positive but finite number of negative powers.

PROOF. (a) implies (b): Let $\sum_{k=1}^{m} c_k (z-a)^{-k}$ be the principal part of f at a and let g be the holomorphic extension

of $f(z-a)^{-*}$. Since $c_m \neq 0$ and g is continuous at a, it follows that

$$\lim_{z\to a} f(z) = \lim_{z\to a} \sum_{k=1}^{n} c_k (z-a)^{-k} + g(z) = \infty.$$

(b) implies (c): Let M be a positive real number. Since $\lim_{z \to a} f(z) = \infty$, there exists r > 0 such that $D(a;r) \subset G$ and $|f(z)| \ge M$ whenever $z \in D'(a;r)$. Then $1/f \in H(D'(a;r))$ and $\lim_{z \to a} [f(z)]^{-1} = 0$. Hence, $h(z) = [f(z)]^{-1}$ for $z \ne a$ and h(a) = 0, is holomorphic in D(a;r). However, since h(a) = 0 it follows that $h(z) = (z-a) h_1(z)$ for some $h_1 \in H$ (D(a;r)) with $h_1(a) \ne 0$ and some integer $m \ge 1$. Define $g(a) = 1/h_1(a)$, and $g(z) = (z-a)^m f(z)$ in $G - \{a\}$. Then $g \in H(G)$, $f(z) = (z-a)^{-m} g(z)$, and $g(a) \ne 0$.

(c) implies (d) : Obvious.

(d) implies (e): If $(z-a)^m f(z)$ approaches a finite nonzero limit, then $(z-a)^m f(z)$ has a removable singularity at a by THEOREM 1.

Hence there exists r > 0 such that $D(a;r) \subset G$ and

$$(z-a)^{\mathfrak{m}}f(z) = \sum_{n=0}^{\infty} c_n(z-a)^n \quad (c_0 \neq 0, z \in D^{\mathfrak{m}}(a; r)),$$

so we find upon dividing by $(z-a)^m$ that the Laurent expansion of f about a has a positive but finite number of negative powers.

(e) implies (a): Let
$$f(z) = \sum_{n=-\infty}^{\infty} c_n (z-a)^n$$
 (c., $\neq 0$) be its

Laurent expansion in $D'(a;r) \subset G$. Define $g(a) = c_0$, and $g(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$ in D'(a;r). Then $g \in H(D(a;r))$, and hence

has a removable singularity at a.

For a more detailed discussion of isolated singularities, we consider the conditions

(A)
$$\lim_{z \to a} |z - a|^s f(z) = 0,$$

(B)
$$\lim_{z \to a} |z - a|^s f(z) = \infty,$$

where s is some real number.

LEMMA 3. Let f have an isolated singularity at a and suppose $f \not\equiv 0$. If either (A) or (B) holds for some real numder s, then there is an integer m such that (A) holds if $s \rangle m$ and (B) holds if $s \langle m$; furthermore, f has a removable singularity at a if $m \leq 0$ and has a pole at a if $m \rangle 0$.

PROOF. If (A) holds for a certain s, then it holds for all larger s, and hence for some integer p. Then $(z-a)^p$ f(z) has a removable singularity at a. Suppose $f \in H(D^*$ (a;r)), and let g be the holomorphic extension of $(z-a)^p$ f(z). Since g(a)=0 and $g \neq 0$, there exists a unique positive integer k such that

$$g(z) = (z-a)^{k} g_{1}(z) (z \in D(a;r))$$

where $g_1 \in H(D(a;r))$ and $g_1(a) \neq 0$. Hence we have

(1)
$$\lim_{z \to a} |z - a|^{z} f(z) = \lim_{z \to a} |(z - a)^{z + k - p} g_1(z)|$$

BYUNG KYOO SHNN

$$= \begin{cases} 0 & \text{if } s \rangle p - k \\ \infty & \text{if } s \langle p - k. \end{cases}$$

Thus (A) holds for all $s \ge m = p - k$, while (B) holds for all $s \le m$.

Assume now that (B) holds for some s; then it holds for all smaller s, and hence for some integer n. By Theorem 2, there is a positive integer p and $a g_2 \in H(D(a; r))$ with $g_2(a) \neq 0$ such that

$$(z-a)^* f(z) = (z-a)^{-*} g_2(z).$$

Put m=n+p. Then we have

(2)
$$\lim_{z \to a} |z - a|^{z} |f(z)| = \lim_{z \to a} |(z - a)^{z - z} g_{2}(z)|$$

$$= \begin{cases} 0 & \text{if } s \rangle m \\ \\ \infty & \text{if } s \langle m \rangle. \end{cases}$$

Finally, suppose $m \leq 0$. Then, by (1) and (2), we have

$$\lim_{z\to a} (z-a)f(z) = \lim_{z\to a} (z-a)^{1-m} g_i(z) = 0 \quad (i=1,2),$$

and hence f has a removable singularity at a. If m > 0, then

$$\lim_{z \to a} f(z) = \lim_{z \to a} (z - a)^{-m} g_i(z) = \infty \quad (i = 1, 2).$$

Hence f has a pole at a.

THEOREM 4. If $a \in G$ and $f \in H(G - \{a\})$, then the following statements are equivalent:

(a) f has an essential singularity at a.

(b) f(z) does not approach a finite or infinite limit as $z \rightarrow a$.

60

(c) The Laurent expansion of f about a has an infinite number of negative powers.

(d) Neither $\lim_{z \to a} |z - a|^s |f(z)| = 0$ nor $\lim_{z \to a} |z - a|^s |f(z)| = \infty$

holds for any real number s.

(e) To each complex number w there corresponds a sequence $\{z_n\}$ such that $z_n \rightarrow a$ and $f(z_n) \rightarrow w$ as $n \rightarrow \infty$.

PROOF. The equivalence of (a), (b) and (c) follows from Theorem 1 and Theorem 2. By Lemma 3, (a) implies (d). And (d) implies (a), by Theorem 1 and Theorem 2. Thus it suffices to show that (a) is equivalent to (e).

Suppose (a) holds. Choose $\delta > 0$ such that $D(a; 1/\delta) \subset G$. Then $D(a; 1/\delta + n) \subset G$ for $n = 1, 2, \cdots$. Choose $w_n \in f(D^*(a; 1/\delta + n)) \cap D(w; 1/n)$, and choose $z_n \in D^*(a; 1/\delta + n)$ such that $f(z_n) = w_n$. Then $z_n \to a$ and $f(z_n) \to w$; hence (e) holds.

Conversely, assume that (e) holds. Suppose $D(a;r) \subset G$. Let U be a nonempty open set, and choose a point $w \in U$ with $w \neq f(a)$. Choose $\delta > 0$ such that $D(w;\delta) \subset U$. Let $\{z_n\}$ be a sequence such that $z_n \rightarrow a$ and $f(z) \rightarrow w$. (Since $w \neq f(a)$, $z_n \neq a$ for infinitely many n). Then there exists an integer N such that $0 < |z_N - a| < r$ and $|f(z_N) - w| < \delta$. Thus $f(z_N) \in f(D'(a;r)) \cap U$. Since U is an arbitrary open set, it follows that f(D'(a;r)) is dense.

3. The extended complex plane.

For many purpose it is useful to extend the system C of complex numbers by introduction of a symbol ∞ to represent infinity. For any r > 0, let $D'(\infty; r)$ be the set of all complex numbers z such that |z| > r, put $D(\infty; r) = D^*$ $(\infty; r) \cup \{\infty\}$. The set $C_{\infty} = C \cup \{\infty\}$ is topologized in

the following manner:

DEFINITION. A subset of C_{∞} is open if and only if it is the union of discs D(a;r), where the a's are arbitrary points of C_{∞} and the r's are arbitrary positive numbers.

THEOREM 5. Let τ be the topology as in the above definition. Then $U \equiv \tau$ if and only if U is an open subset of C or $C_{\infty}-U$ is a closed compact subset of C. That is, the set C_{∞} with the topology τ is the one point compactification of C.

PROOF. Suppose $U \in \tau$. If $\infty \in U$, it is clear that U is an open subset of C. Suppose $\infty \in U$, and let $U = \bigcup D(a;r)$. If $a \in C$, then $D(a;r)^c$ is a closed subset of C. And $D(a;r)^c$ is a closed bounded subset of C if $a = \infty$. Consequently,

$$\mathbf{C}_{\infty} - U = \underset{a_{\pm\infty}}{\cap} D(a;r)^{c} \cap \underset{a_{\pm\infty}}{\cap} U(a;r)^{c}$$

is a closed bounded subset of C; hence $C_{\infty} - U$ is a closed compact subset of C.

Conversely, suppose that U is an open subset of C or $C_{\infty}-U$ is a closed compact subset of C. If U is an open subset of C, it is clear that $U \in \tau$. If $C_{\infty}-U$ is a closed compact subset of C, then $C_{\infty}-U$ is a bounded subset of C. Thus there exists r > 0 such that $|z| \le r$ for every $z \in C_{\infty}-U$, and so $D(\infty;r) \subset U$. On the other hand, $C-(C_{\infty}-U) = C \cap U$ is an open subset of C. Hence $C \cap U = \bigcup D$ (a; r_{α}), and so

$$\mathbf{U} = (\mathbf{C} \cap U) \cup \{\infty\} = \bigcup D(a; r_a) \bigcup D(\infty; r).$$

Consequently $U \in \tau$.

We note that the extended complex plane C_{∞} is homeomorphic to a sphere. In fact, a homeomorphism φ of C_{∞}

62

onto the unit sphere (where equation in three-dimensional space is $x_1^2 + x_2^2 + x_3^2 = 1$) can be explicitly exhibited : put $\varphi(\infty) = (0, 0, 1)$. and put

$$\varphi(z) = (2x/|z|^2+1, 2y/|z|^2+1, |z|^2-1/|z|^2+1)$$

for all complex numbers z=x+iy [1, p. 18;3, p. 9]. φ is called a stereographic projection.

The behavior of a complex function f at ∞ may be studied by considering $\tilde{f}(z) = f(1/z)$ at 0. It is clear that $f \in H(D'(\infty;r))$ if and only $\tilde{f} \in H(D'(0;1/r))$. The formal definitions are as follows;

DEFINITION. If f is holomorphic in a punctured disc $D'(\infty;r)$, we say that f has an isolated singularity at ∞ . We say that f has a removable singularity, a pole, or an essential singularity at ∞ if \tilde{f} has, respectively, a removable singularity, a pole, or, an essential singularity at 0.

THEOREM 6. Let f be an entire function. Then

(a) f has a removable singularity at ∞ if and only if it is constant.

(b) f has a pole at ∞ of order m if and only if it is a polynomial of degree m.

(c) f has an essential singularity at ∞ if and only if it is not a polynomial.

PROOF. (a) It is clear that every constant function has a removable singularity at ∞ . Conversely, suppose that f has a removable singularity at ∞ . Since \tilde{f} has a removable singularity at 0, $\tilde{f}(z)$ approaches a finite limit as $z \rightarrow 0$. We define $f(\infty)$ to be this limit, and we thus see that f is entire on \mathbb{C}_{∞} . Since \mathbb{C}_{∞} is compact, f is bounded. Hence, by Liouville's theorem, f is constant.

(b) Suppose f has a pole of order m. Then $\tilde{f}(z) - \sum_{k=1}^{m} c_k z^{-k} (c_m \neq 0)$ has a removable singularity at 0; hence $g(z) = f(z) - \sum_{k=1}^{m} c_k z^k$ has removable singularity at ∞ . Since g is entire, it follows from (a) that g is constant. Thus f is a polynomial of degree m. Conversely, suppose that $f(z) = \sum_{k=0}^{m} c_k z^k (c_m \neq 0)$ is a polynomial of degree m. Then

$$h(z) = z^{m} f(z) = c_{m} + c_{m-1} z + \dots + c_{y} z^{m}$$

is an entire function and $h(0) = c_m \neq 0$. Hence f has a pole at ∞ of order m, by Theorem 2.

(c) Immediate from (a) and (b).

References

- L. V. Ahlfors, Complex analysis, 3rd ed., McGraw-Hill, New York, 1979.
- 2. R. B. Ash, Complex variables, Academic Press, New York, 1971.
- J. B. Conway, Functions of one complex variable, Springer-Verlag, New York, 1978.
- W. Rudin, Real and complex analysis, 2nd ed., McGraw-Hill, New York, 1974.

Dong Eui University