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SOME REMARKS ON ISOLATED SINGULARITIES

Byung Kyoo Shon

1. Introduction
Let D(<z；r) be the open disc with center at a and rad

ius r in the complex plane, and D\a^r) be the punctu
red disc with center at a and radius r. We denote by 
H(G) the class of all holomorphic functions in a plane 
open set G. The letter G will from now on denote a plane 
Qp皿一心，

Difinition. If a^G and fUH(G— ｛까), then f is said 
to have an isolated singularity at the point a. If f can be 
so defined at a that the extended function is holomorphic 
in G the singularity is said to be removable.

If czWG and then one of the following
three cases must occur[4, P・ 227]：

(a) f has a removable singularity at a.
(b) There are complex numders c：, •••, cm, where m is 

a positive integer and c*Q such that
m Cl 

s日c

has a removable singularity at a.
(c) If r) Q and D(iz；r) CG, then jF(Q'(0；O)is dense in 
the plane.

In case (b), f is said to have a pole of order m at a. 

The function 乏二cjzw)새, a polynomial in (2—is 
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called the principal part of f at a. In case (c), f is said 
to have an essential singularity at a.

In this note, we investigate some properties of isolated 
singularities. In section 2 we find simple conditions on f 
that are equivalent to the statement that f has a remo
vable singularity at a (and similarly for poles and esse- 
끄tial singularities). In section 3 we consider the exte
nded complex plane Co이

2. Isolated singularities.
We begin with the following theorem.

Theorem 1. If a@G and 了UH(G _ {까), then the foll- 
statemeats are equivalent：

(a) f has a removable singularity at a.
(b) f(z) approaches a finite limit as z^a.
(c) lim (z—cz)■广(z)=0.z-a

(d) The Laurent expansion of f about a has no negative 
powers.

Proof, (a) implies (b): Let g be the holomorphic ext
ention. of f. Since g is continuous at a, it follows that

lim/(2)=limg(z) =g(")； z-a

hence /(z) approaches a finite limit as z—xz.
(b) implies (c): Obvious.
(c) implies (d): The function g defined in G by

((z-a) f(z) if z^a, 
g(z) = <

I 0 if z=a,

is continuous in G and holomorphic in G— {a}. Then it 
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follows from a theorem [2,p.3口 that gGH(G). Thus

g(z)=上 cn(2-a)n (zeD (a；r) CG). 
n=i

Consequently we have

/(2)—Z7 C +1(2—<2)n(NU£)'(0；n)UG). "=0
oo

(d) implies (a)： Let /(z) =2二 c„(z—a)n be its Laur- n=0
€nt expansion in (a財)CG. Then the function g def-
ined in G by

f/(2)if K二M
二h

(c0 if z~a9

is holomorphic in G and agrees with f in G—{까.

We consider now the characterisation of poles.

Theorem 2- If aWG and {a})9 then the foll
owing statements are equivalent：

(a) f has a pole at a.
(b) limjf(z) = 8. 

z-a

(c) There is a positive integer m and a gWH(G) with
g(0) =o such that f(z) = (z—aym g(z).

(d) There is a positive integer m such. th.at(g—
•approaches a finite nonzero limit as z~>a.

(e) The Laurent expansion of f about a has a positive 
but finite number of negative powers.

m
Proof, (a) implies (b)： Let >二 ck (n—“)盘 be the prin- k-i

cipal part of at q and let g, be the holomorphic extension 
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of f{z~~ayk • Since cm Q and g is continuous at a9 it 

follows that

lim/(2)=limw二 ck(z—a)~k +g(z) = 8・ 2-a N-a

(b) implies (c): Let Af be positive real number. Since 
lim/(2)=oo, there exists r)0 such that D{a\r) UG and

I>M whenever 户).Then 1/J缶H(D，(a財'))
and lim [/(2)]-1 =0. Hence, Zz(z) = [f(z)* for z^a and 2-a
h(a) =0, is holomorphic in D(a\r). However, since h{a) 
=0 it follows that k(z)= (z一a) hA (0) for some h^H 
(D(a；r)) with hi (a)=0 and some integer m>l. Define 
g«z)=l〃项a), and g(z) = (z—◎)”项(z) in G— {a}. Then 
gUH(G), •广(N)= (z-2)5g(z), and g(0)五0.

(c) implies (d) : Obvious.
(d) implies (e) : If (2—approaches a finite 

nonzero limit, then (z—a) mf(2) has a removable singu
larity at a by Theorem 1.

Hence there exists ,〉0 such that Z)(C)UG and

匸 cn(z-a)n 0)孑£O,zuQ'(0；尸))， «=o

so we find upon dividing by (z~a)m that the Laurent 
expansion of / about a has a positive but finite number 
of negative powers.

co
(e) implies (a) : Let jf(z)=匸 cn (z—a)n (c_”#：0) be its

n—-m
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Laurent expansion in. D\a\r) UG・ Define g(0) =%, and 

g(N)=Z二 cn (z—a)n in D' (a；r). Then g^H(D(a；r))9 

and hence

has a removable singularity at a.
For a more detailed discussion of isolated singularities,, 

we consider the conditions

(A) liml =0,z^a

(B) liml z—alsf(2) =8, z-a

where s is some real number.

Lemma 3・ Let f have an isolated singularity at a ani 
suppose f ^0. If either (A) or (B) holds for some real 
numder 5, then, there is an integer m such that (4) holds 
if s)m and (B) holds if s〈彻；furthermore, f has a rem
ovable singularity at a if m<0 and has a pole at a if 
m>0.

Proof. If (A) holds for a certain s, then it holds for 
all larger s, and hence for some integer p. Then (z—a)p

has a removable singularity at a. Suppose 了WH(D* 
(a；r))9 and let g be the holomorphic extension of {z~a}p

Since g(g)=0 and g 壬0, there exists a unique 
positive integer k such that

g(z) = (z~a)k gi(z) (2£D(6Z；r))

where gr WH(D(a；r、)、) and gi(Q)=0. Hence we have

(1) liml z—o|V(z) =lim|(z—"y+igi (z) 1 z—a z_a
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J 0 if s)p—k
=lc° if s〈0—為.

Thus (A) holds for all s)m=D—瓦 while (B) holds for 
all s〈也.

Assume now that (B) holds for some s, then it holds 
for all smaller s, and hence for some integer n. By The
orem 2, there is a positive integer p and a g2 
r)) with g2(a)M0 such that

(z—O nf(z) =(2—cz) "g2 (矽・

Put m~n+Then, we have

(2) lim| m—a时&况=1血|(z-")「호F(z)i z^a g-a

/ 0 if s)m
[8 if s(m.

Finally, suppose m<0- Then, by (1) and (2), we have 

liva(z-a)f(z) =lim (z—")^ g?(z) =0 (2=1,2),

and hence f has a removable singularity at a. If m}09 
then

limf(2)= lim(2—a)"m g(z) = 8 (/=1,2)・ z-a z-.a

Hence f has a pole at a.

Theorem 4. If aWG and fG—H(G— {◎}), tlien the foll~ 
owing statements are equivalent：

(a) f has an essential singularity at a.
(b) f(2)does not approach a finite or infinite limit as
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(c) The Laurent expansion of f about a has an infinite 
number of negative powers.

(d) Neither lim*—就[广(2)[= 0 nor lim\z—a\slf (2)I=ooz-*a z-a

holds for any real number s.
(e) To each, complex number w there corresponds a 

sequence {&} such that zn-^a and f w as n-%a

Proof. The equivalence of (a), (b)and (c) follows from 
Theorem 1 and Theorem 2. By Lemma 3, (a) implies (d)^ 
And (d) implies (a), by Theorem 1 and Theorem 2.Thus 
it suffices to show that (a) is equivalent to (e).

Suppose (a) holds. Choose such that
Then D(tz；l/o4-^) CZGfor n=l,2, •••. Chooser，后尸(刀‘(0；1 
"+勿))「〕D(如 1/莒)，and choose zn EzD' (a；l/§+n) such 
that f(2n) ~wn. Then >a and whence (e) holds.

Conversely, assume that (e) holds. Suppose D(a；r)U 
G. Let be a nonempty open set, and choose a point 
w^U with w 7^/(a). Choose 分〉0 such that D(w^3) UU. 
Let {zn} be a sequence such that 2n—and f(z 
(Since z妇勻f(0), zn a for infinitely many n). Then 
there exists an integer N such that 0〈|林一水,and |/(21V) 
— z이〈d. Thus /(2N)E/(D5 ((2 ； r)) n C7. Since U is anarbit- 
rary open set, it follows that /(D5(^；r)) is dense.

3. The extended complex plane.
For many purpose it is useful to extend the system C 

of complex numbers by introduction of a symbol 00 to re
present infinity. For any r>0, let Z)'(。。；,)be the set of 
all complex numbers z such that |지〉户, put D(oo；r) ~Dr 
(oo；r)|J{co}< The set COT = CU{°°} is topologized in 
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the following manner：

Definition. A subset of CTO is open if and only if it is 
the union of discs D（a；r）, where the a's are arbitrary 
points of Coo and the r's are arbitrary positive numbers.

Theorem 5. Let r be the topology as in the above defi
nition. Then U& if and only if U is an open subset of 
C or Cco-U is a closed compact subset of C. That is, the 
set Cco with the topology t is the one point compactific
ation. of C.

P钗oof. Suppose U&. it is clear that U is an
open subset of C. Suppose co^U, and let U=^{JD （“；,）. 
If then Z）4zz；r）c is a closed subset of CL And D（q； 
r）c is a closed bounded subset of C if a=oo. Consequently,

ClU= Ci £）（0;尸）。c c U（a^r）c d*8 a=8
is a closed bounded subset of C； hence is a closed 
compact subset of C.

Conversely, suppose that U is an open subset of C or 
Coo—U is a closed compact subset of C. If U is an open 
subset of C, it is clear that UUs If C^—U is a closed 
compact subset of C, then Cg—U is a bounded subset of 
€. Thus there exists r>0 such tha비끼 < r for every zU 
Coo—£7, and so D（8W）UU・ On the other hand, C—（C。。一 

U） =C「］U is an open subset of C* Hence CC］U~UD （a； 
ra）, and so

U=（C「［U） L） {8} = 니 IJZ）（8；,）.

Consequently U&.
We note that the extended complex plane C” is homeo

morphic to a sphere. In fact, a homeomorphism 甲 of 
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onto the unit sphere (where equation in three-dimensio
nal space is + x22 + x32 =1) can be explicitely exh
ibited :put 9(8)= (0,0,1). and put

9(z) = (次/1 끼 2+1, 2y/\z\2+l9 I 지2一 1/|지 2 +1) 

for all complex numbers z=%+颂 [1, p. 18；3, p.9]・ <p is 
called a stereographic projection.

The behavior of a complex function / at oo may be 

studied by considering 孑(公)=/(1/2) at 0. It is clear 

that JUH(」D'(8；,)) if and only 在H(D'(0；l/尸))• The 
formal definitions are as follows；

Definition. If f is holomorphic in a punctured disc D, 
(oo；r), we say that / has an isolated singularity at 8. 
We say that f has a removable singularity, a pole, or 

an essential singularity at oo if / has, respectively, a 
removable singularity, a pole, or, an essential singular
ity at 0.

Theorem 6- Let f be an. entire function. Then
(a) f has a removable singularity at oo if and only if 

it i융 constant.
(b) f has a pole at oo of order m if and only if it is a 

polynomial of degree m.
(c) f has an essential singularity at oo if and only if it 

is not a polynomial.

Proof, (a) It is clear that every constant function has 
a removable singularity at oo. Conversely, suppose that 

f has a removable singularity at oo. Since f has a rem

ovable singularity at 0,孑(z) approaches a finite limit as 
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ztQ We define /(oo) to be this limit, and we thus see 
that f is entire on CL. Since CL is compact, f is bounded^ 
Hence, by LiouvilleJs theorem, f is constant.

~ m
(b) Suppose f has a pole of order m. Then

*=i

盘(gM：0) has a removable singularity at 0； hence g(泠 
~f(z)—^2ckzk has removable singularity at oo. Since g 

is entire, it follows from (a) that g is constant. Thus 
/ is a polynomial of degree m. Conversely, suppose that

= £二M (cm^0) is a polynomial of degree m.Then

A(2)=zV(2)^Cm+cm^ ZH----

is an entire function and ^(0)—cm^0. Hence f has a po
le at 8 of order m, by Theorem 2・

(c) Immediate from (a) and (b).
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