• Title/Summary/Keyword: inverter

Search Result 5,618, Processing Time 0.034 seconds

Driving Method of Direct Type Multi-Lamp Backlight with High Uniformity (고균일도 직하형 백라이트 구동방법)

  • Chun, Young-Tea;Lim, Sung-Kyoo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.123-127
    • /
    • 2004
  • Cold cathode fluorescent lamp (CCFL) has been used as a light source for direct type backlights for LCD monitors or TV. One inverter for one CCFL was necessary for maintaining the lamp current so that many inverters were used to drive as many CCFLs of direct type backlight for LCD TV. An inverter for driving 16 CCFLs was developed to reduce the backlight cost. The length and diameter of CCFL were 450mm and 4mm, respectively. Backlight including 16 CCFLs for 26" LCD TV was assembled by using one inverter. The uniformities of the assembled backlight operated by the conventional inverter and the newly developed inverter were 75% and 88%, respectively.

  • PDF

Effect of Channel Length in LDMOSFET on the Switching Characteristic of CMOS Inverter

  • Cui, Zhi-Yuan;Kim, Nam-Soo;Lee, Hyung-Gyoo;Kim, Kyoung-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.21-25
    • /
    • 2007
  • A two-dimensional TCAD MEDICI simulator was used to examine the voltage transfer characteristics, on-off switching properties and latch-up of a CMOS inverter as a function of the n-channel length and doping levels. The channel in a LDMOSFET encloses a junction-type source and is believed to be an important parameter for determining the circuit operation of a CMOS inverter. The digital logic levels of the output and input voltages were analyzed from the transfer curves and circuit operation. The high and low logic levels of the input voltage showed a strong dependency on the channel length, while the lateral substrate resistance from a latch-up path in the CMOS inverter was comparable to that of a typical CMOS inverter with a guard ring.

Reduction of Components in New Family of Diode Clamp Multilevel Inverter Ordeal to Induction Motor

  • Angamuthu, Rathinam;Thangavelu, Karthikeyan;Kannan, Ramani
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.1
    • /
    • pp.58-69
    • /
    • 2016
  • This paper describes the design and implementation of a new diode clamped multilevel inverter for variable frequency drive. The diode clamp multilevel inverter has been widely used for low power, high voltage applications due to its superior performance. However, it has some limitations such as increased number of switching devices and complex PWM control. In this paper, a new topology is proposed. New topology requires only (N-1) switching devices and (N-3) clamping diodes compared to existing topology. A modified APO-PWM control method is used to generate gate pulses for inverter. The proposed inverter topology is coupled with single phase induction motor and its performance is tested by MATLAB simulation. Finally, a prototype model has built and its performance is tested with single phase variable frequency drive.

A Study on the Multi-level PV-PCS Using Cascade 3-Phase Transformer (직렬형 3상 변압기를 이용한 다중레벨 PV-PCS)

  • Kim, Ki-Seon;Song, Sung-Geun;Cho, Su-Eog;Choi, Joon-Ho;Kim, Kwang-Heon;Park, Sung-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2359-2369
    • /
    • 2009
  • The study on the multi-level inverter has been increasingly progressing to reduce the switching loss and improve the THD of output current in photovoltaic inverter. Recently, the main topics of multi-level inverter are to reduce the number of devices maintaining the power quality. Therefore, the novel topology was proposed for these problem which is composed of the isolated H-bridge multi-level inverter using the three phase low frequency transformer. The proposed multi-level inverter may not be need for a independent DC power, diode and capacitor. Specially, It has a advantage in generating high voltage source. The proposed approach is verified through simulation and experiment.

A Study on Single-Stage High Frequency Resonant Inverter (단일전력단으로 구성된 고주파 공진 인버터에 관한 연구)

  • Won J. S.;Kang J. W.;Kim D. H.;Jung S. G.;Lee Y. S.;Lee B. S.
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.750-753
    • /
    • 2002
  • A novel single-stage half-bridge high frequency resonant inverter using ZVS(Zero Voltage Switching) with high input power factor suitable for induction heating applications is presented in this paper. The proposed high frequency resonant Inverter integrates half-bridge boost rectifier as power factor corrector(PFC) and half-bridge resonant inverter into a single stage. The input stage of the half-bridge boost rectifier is working in discontinuous conduction mode (DCM) with constant duty cycle and variable switching frequency. Simulation results through the Pspice have demonstrated the feasibility of the proposed inverter. This proposed inverter will be able to be practically used as a power supply in various fields as induction heating applications, DC-DC converter etc.

  • PDF

A Study on the PFC-Inverter with the ZVT-Switching Method (ZVT 스위칭 기법을 적용한 PFC-인버터)

  • 이성룡;전칠환;권순신
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.6
    • /
    • pp.560-567
    • /
    • 2000
  • A soft-switching PFC-Inverter for using AC motor drive such as the inverter air-conditioner with single phase medium size is proposed. In order to improve the power factor and the efficiency, in this paper, the ZVT topoloty in the conventional PFC-Inverter is adopted. So, the operation mode of the proposed ZVT PFC-Inverter is analyzed and the optimum circuit is designed. At last, the PSPICE, PSIM simulation and experiment results are presented in order to verify the validity of the proposed circuit.

  • PDF

Instantaneous Current Control for Parallel Inverter with a Current Share Bus (전류공유버스를 이용한 병렬 인버터 순시 제어기 설계)

  • 이창석;김시경
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.90-94
    • /
    • 1998
  • The parallel inverter is popularly used because of its fault-tolerance capability, high-current outputs at constant voltages and system modularity. The conventional parallel inverter usually employes active and reactive power control or frequency and voltage droop control. However, these approaches have the disadvantages that the response time of parallel inverter control is slow against load and system parameter variation to calculate active, reactive power, frequency and voltage. This paper describes a novel control scheme for power equalization in parallel connected inverter. The proposed scheme has a fast power balance control response, a simplicity of implementation, and inherent peak current limiting capability since it employes a instantaneous current/voltage control with output voltage and current balance and output voltage regulation. A design procedure for the proposed parallel inverter controller is presented. Futhermore, the proposed control scheme is verified through the simulation in various cases such as the system parameter variation, the control parameter variation and the nonlinear load condition.

  • PDF

A Current Sharing Circuit for the Parallel Inverter

  • Lee, Chang-Seok;Kim, Si-Kyung
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.176-181
    • /
    • 1998
  • The parallel inverter is popularly used because of its fault-tolerance capability, high-current outputs at constant voltages and system modularity. The conventional parallel inverter usually employs active and reactive power control of frequency and voltage droop control. However, these approaches have the disadvantages that the response time of parallel inverter control is slow against load and system parameter variation to calculate active, reactive power, frequency and voltage. This paper describes a novel control scheme for power equalization in parallel-connected inverter. The proposed scheme has a fast power balance control response, a simplicity of implementation, and inherent peak current limiting capability since it employees an instantaneous current/voltage control with output voltage and current balance and output voltage regulation. A design procedure for the proposed parallel inverter controller is presented. Furthermore, the proposed control scheme is verified through the experiment in various cases such as the system parameter variation, the control parameter variation and the nonlinear load condition.

  • PDF

Robust Control of a Grid Connected Three-Phase Two-Level Photovoltaic Inverter (3상 2레벨 계통연계형 태양광 인버터의 강인제어)

  • Ahn, Kyung-Pil;Lee, YoungIl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.538-548
    • /
    • 2014
  • This study provides a robust control of a grid-connected three-phase two-level photo voltaic inverter. The introduced control method uses the cascade control strategy to regulate AC-side current and DC-link voltage. A robust controller with integration action is used for the inner-loop AC-side current control, which maximizes the convergence rate using a linear matrix inequality-based optimization design method and eliminates the offset error. The robust controller design method considers the parameter uncertainty set to accommodate parameter mismatch and un-modeled components in the inverter model. An outer-loop proportional-integral controller is used to regulate DC-link voltage with linearization of DC/AC relation. The proposed control strategy is applied to a grid-connected 100 kW photo voltaic inverter.

Single-Phase 3-level PWM Inverter for Harmonics Reduction (고조파 저감을 위한 단상 3-레벨 PWM 인버터)

  • Gang, Pil-Sun;Park, Seong-Jun;Kim, Cheol-U
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.3
    • /
    • pp.125-132
    • /
    • 2002
  • This paper presents a single-phase 3-level PWM inverter to alleviate the harmonic components of output voltage and current under the conditions of identical supply DC voltage and switching frequency to the conventional inverter. Operational principles and analysis are performed, and the switching functions are derived. Deadbeat controller is also designed and implemented for the inverter to keep the output voltage being sinusoidal and to have the high dynamic performances even in the cases of load variations and the partial magnetization of filter inductor. The validity of proposed inverter is proved from the simulated and experimented results.