• Title/Summary/Keyword: invariant measure

Search Result 107, Processing Time 0.027 seconds

Fingerprint Verification Based on Invariant Moment Features and Nonlinear BPNN

  • Yang, Ju-Cheng;Park, Dong-Sun
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.800-808
    • /
    • 2008
  • A fingerprint verification system based on a set of invariant moment features and a nonlinear Back Propagation Neural Network(BPNN) verifier is proposed. An image-based method with invariant moment features for fingerprint verification is used to overcome the demerits of traditional minutiae-based methods and other image-based methods. The proposed system contains two stages: an off-line stage for template processing and an on-line stage for testing with input fingerprints. The system preprocesses fingerprints and reliably detects a unique reference point to determine a Region-of-Interest(ROI). A total of four sets of seven invariant moment features are extracted from four partitioned sub-images of an ROI. Matching between the feature vectors of a test fingerprint and those of a template fingerprint in the database is evaluated by a nonlinear BPNN and its performance is compared with other methods in terms of absolute distance as a similarity measure. The experimental results show that the proposed method with BPNN matching has a higher matching accuracy, while the method with absolute distance has a faster matching speed. Comparison results with other famous methods also show that the proposed method outperforms them in verification accuracy.

A New Approach to the Lebesgue-Radon-Nikodym Theorem. with respect to Weighted p-adic Invariant Integral on ℤp

  • Rim, Seog-Hoon;Jeong, Joo-Hee
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.3
    • /
    • pp.299-306
    • /
    • 2012
  • We will give a new proof of the Lebesgue-Radon-Nikodym theorem with respect to weighted p-adic q-measure on $Z_p$, using Mahler expansion of continuous functions, studied by the authors in 2012. In the special case, q = 1, we can derive the same result as in Kim, 2012, Kim et al, 2011.

SIZE OF THE CLUSTERS UNDER LOW DENSITY ZERO-RANGE INVARIANT MEASURES

  • Jeon, In-Tae
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.813-826
    • /
    • 2005
  • Regarding all particles at a fixed site as a cluster, the size of the largest cluster under the zero range invariant measures is well studied by Jeon et al.[5] for the case of density one. Here, the density of the finite zero-range process is given by the ratio between the number m of particles and the number n of sites. In this paper, we study the lower density case, i.e., the case m = o(n). Especially, when m ~ $n^{\beta}$,0 < ${\beta}$ < 1, we show that there is an interesting cutoff point around $\beta$ = 1/2.

Improvement of ASIFT for Object Matching Based on Optimized Random Sampling

  • Phan, Dung;Kim, Soo Hyung;Na, In Seop
    • International Journal of Contents
    • /
    • v.9 no.2
    • /
    • pp.1-7
    • /
    • 2013
  • This paper proposes an efficient matching algorithm based on ASIFT (Affine Scale-Invariant Feature Transform) which is fully invariant to affine transformation. In our approach, we proposed a method of reducing similar measure matching cost and the number of outliers. First, we combined the Manhattan and Chessboard metrics replacing the Euclidean metric by a linear combination for measuring the similarity of keypoints. These two metrics are simple but really efficient. Using our method the computation time for matching step was saved and also the number of correct matches was increased. By applying an Optimized Random Sampling Algorithm (ORSA), we can remove most of the outlier matches to make the result meaningful. This method was experimented on various combinations of affine transform. The experimental result shows that our method is superior to SIFT and ASIFT.

THE TOEPLITZ OPERATOR INDUCED BY AN R-LATTICE

  • Kang, Si Ho
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.3
    • /
    • pp.491-499
    • /
    • 2012
  • The hyperbolic metric is invariant under the action of M$\ddot{o}$bius maps and unbounded. For 0 < $r$ < 1, there is an r-lattice in the Bergman metric. Using this r-lattice, we get the measure ${\mu}_r$ and the Toeplitz operator $T^{\alpha}_{\mu}_r$ and we prove that $T^{\alpha}_{\mu}_r$ is bounded and $T^{\alpha}_{\mu}_r$ is compact under some condition.

ON STAR MOMENT SEQUENCE OF OPERATORS

  • Park, Sun-Hyun
    • Honam Mathematical Journal
    • /
    • v.29 no.4
    • /
    • pp.569-576
    • /
    • 2007
  • Let $\cal{H}$ be a separable, infinite dimensional, complex Hilbert space. We call "an operator $\cal{T}$ acting on $\cal{H}$ has a star moment sequence supported on a set K" when there exist nonzero vectors u and v in $\cal{H}$ and a positive Borel measure ${\mu}$ such that <$T^{*j}T^ku$, v> = ${^\int\limits_{K}}\;{{\bar{z}}^j}\;{{\bar{z}}^k}\;d\mu$ for all j, $k\;\geq\;0$. We obtain a characterization to find a representing star moment measure and discuss some related properties.

ON SOME PROPERTIES OF THE FUNCTION SPACE M

  • Lee, Joung-Nam
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.4
    • /
    • pp.677-685
    • /
    • 2003
  • Let M be the vector space of all real S-measurable functions defined on a measure space (X, S, $\mu$). In this paper, we investigate some topological structure of T on M. Indeed, (M, T) becomes a topological vector space. Moreover, if $\mu$, is ${\sigma}-finite$, we can define a complete invariant metric on M which is compatible with the topology T on M, and hence (M, T) becomes a F-space.

MEASURE DERIVATIVE AND ITS APPLICATIONS TO $\sigma$-MULTIFRACTALS

  • Kim, Tae-Sik;Ahn, Tae-Hoon;Kim, Gwang-Il
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.229-241
    • /
    • 1999
  • The fractal space is often associated with natural phenomena with many length scales and the functions defined on this space are usually not differentiable. First we define a $\sigma$-multifractal from $\sigma$-iterated function systems with probability. We introduce the measure derivative through the invariant measure of the $\sigma$-multifractal. We show that the non-differentiable function on the $\sigma$-multifractal can be differentiable with respect to this measure derivative. We apply this result to some examples of ordinary differential equations and diffusion processes on $\sigma$-multifractal spaces.

  • PDF

SOME PROPERTIES OF THE BEREZIN TRANSFORM IN THE BIDISC

  • Lee, Jaesung
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.779-787
    • /
    • 2017
  • Let m be the Lebesgue measure on ${\mathbb{C}}$ normalized to $m(D)=1,{\mu}$ be an invariant measure on D defined by $d_{\mu}(z)=(1-{\mid}z{\mid}^2)^{-2}dm(z)$. For $f{\in}L^1(D^n,m{\times}{\cdots}{\times}m)$, Bf the Berezin transform of f is defined by, $$(Bf)(z_1,{\ldots},z_n)={\displaystyle\smashmargin{2}{\int\nolimits_D}{\cdots}{\int\nolimits_D}}f({\varphi}_{z_1}(x_1),{\ldots},{\varphi}_{z_n}(x_n))dm(x_1){\cdots}dm(x_n)$$. We prove that if $f{\in}L^1(D^2,{\mu}{\times}{\mu})$ is radial and satisfies ${\int}{\int_{D^2}}fd{\mu}{\times}d{\mu}=0$, then for every bounded radial function ${\ell}$ on $D^2$ we have $$\lim_{n{\rightarrow}{\infty}}{\displaystyle\smashmargin{2}{\int\int\nolimits_{D^2}}}(B^nf)(z,w){\ell}(z,w)d{\mu}(z)d{\mu}(w)=0$$. Then, using the above property we prove n-harmonicity of bounded function which is invariant under the Berezin transform. And we show the same results for the weighted the Berezin transform in the polydisc.

COMPACT OPERATOR RELATED WITH POISSON-SZEGö INTEGRAL

  • Yang, Gye Tak;Choi, Ki Seong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.333-342
    • /
    • 2007
  • Suppose that ${\mu}$ is a finite positive Borel measure on the unit ball $B{\subset}C^n$. The boundary of B is the unit sphere $S=\{z:{\mid}z{\mid}=1\}$. Let ${\sigma}$ be the rotation-invariant measure on S such that ${\sigma}(S)=1$. In this paper, we will show that if $sup_{{\zeta}{\in}S}\;{\int}_{B}\;P(z,{\zeta})d{\mu}(z)$<${\infty}$ where $P(z,{\zeta})$ is the Poission-Szeg$\ddot{o}$ kernel for B, then ${\mu}$ is a Carleson measure. We will also show that if $sup_{{\zeta}{\in}S}\;{\int}_{B}\;P(z,{\zeta})d{\mu}(z)$<${\infty}$, then the operator T such that T(f) = P[f] is compact as a mapping from $L^p(\sigma)$ into $L^p(B,d{\mu})$.

  • PDF