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ON SOME PROPERTIES OF
THE FUNCTION SPACE M

JouNGg NAM LEE

ABSTRACT. Let M be the vector space of all real S-measurable
functions defined on a measure space (X, S, x). In this paper, we
investigate some topological structure of 7 on M. Indeed, (M, T)
becomes a topological vector space. Moreover, if u is o-finite, we
can define a complete invariant metric on M which is compatible
with the topology 7 on M, and hence (M, T) becomes a F-space.

1. Introduction

Let (X,S, ) be an arbitrary measure space. We consider the set
of all real valued S-measurable(or simply measurable) functions defined
on (X, S, 1) and identify pu-equivalent measurable functions. This means
that we deal with a set M = M(X,S, p) of real valued measurable func-
tions which contains exactly one representative for each p-equivalence
class. Thus the set M is the set of all non u-equivalent real valued mea-
surable functions on (X,S,u). Also M is a vector space over the real
field R under the pointwise addition and the pointwise scalar multipli-
cation.

For E € § with u(F) < oo and f, g € M, we define

_ |f — gl
dE(f,g)—/E—-——1+|f_g|du‘

Then one can easily see that dg is an invariant pseudometric on M.
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Now we shall give the topology 7 on M determined by a family of
pseudometric on M, D = {dg : E € S, u(FE) < oo}; that is, a subbasis
for the topology is formed by the sets

Be(f,0)={ge M :dp(f,g) <5}, fEM, §>0, dp € D.

This topology 7 on M will be called the topology of convergence in
measure on the measurable subsets of X whose measure is finite.

Indeed, (M, T) becomes a topological vector space over R, and then
the convergence of a sequence (fy,) to a function f in M relative to the
topology 7 is equivalent to that of (f,) to f with respect to dg for every
dg €D.

Moreover, we show that if a measure space (X, S, 1) is a o- finite, one
can define a complete invariant metric d on M which is compatible with
the topology 7 on M, and hence (M, 7T') becomes a F-space over R.

2. Topological structure 7 of M

In this section we shall topologize the set M by a family of pseudo-
metrics on M. And then it will be seen that M is in fact a topological
vector space over the real filed B. We also examine a relationship be-
tween the convergence of a sequence (f,) in M with respect to the
topology 7 on M and that of (f,) in M with respect to pseudometric
on M which induced 7.

DEFINITION 2.1. Let D = {dg : E € S, u(F) < oo} be the family of
pseudometrics on E. Then we provide the topology 7 on M determined
by D ; that is, a subbasis for the topology is formed by the sets

Be(f,e) ={g e M :dg(f,9) <€}, f € M,e>0,dg € D.

This topology 7 on M will be called the topology of convergence in
measure on every measurable subsets of X whose measure is finite.

We note that a basic open neighborhood of f in the topology 7 is of
the form

U(f;e;dE1’dE27"' ’dEn) ={g€MdEk(f,g) < G,kz 1,2,-~- ,n}

= m BEk(f7€)

k=1

where dg,,dg,, - ,dg, € D and € > 0.
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EXAMPLE 2.2. (a) Let X be any non-empty set, and let S = {¢, X }.
If we define a set function ¢ on § by

0, if A=¢
A) =
) {w,ﬁA:X

then y is a measure on S. Hence (X, S, ) is a measure space. Clearly
every S-measurable functions on (X, S) is a constant function. Thus

M ={f|f:(X,8) — R is a constant function}

and
D={dg:FcS,uE)<oo}={dy}

Since dy = f¢ IITJ];—fI—gldu =0 for all f,g € M, it follows that

By(f,€) ={g € Mldy(f,9) <e} =M

where f € M and € > 0.

Thus the topology 7 on M induced by D = {d,} is {¢, M}. There-
fore (M, T) is an indiscrete topological space.

(b) Let X and S be as in (a). Let p be defined for A € S by

0, if A=¢
A) =
H4) {L if A=X.
Then (X, S, ) is a finite measure space. By the same reason as in (a),
M= {f|f: (X,S) — R is a constant function}.

It is readily seen that (M,dx) is a metric space. We observe that
frge Mwith f=a, g =0,

_ |f — gl
dx(f,9) —/de#

_ la — 0]
‘/X1+|a—md“

) - e A
_ =g
) “Thla-p
Since p(a, §) = I%T for all o, 3 € R is clearly a metric on R,

it follows from (2) that (M, dy) is isometric isomorphic to the metric
space (R, p).
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THEOREM 2.3. The topological space (M, T) is topological vector
space over R.

ProoF. For any f,g € M and A € R, since f + g and Af are clearly
measurable functions, we have f + g € M and \f € M. Thus M is a
vector space over R.

Now it remains only to show that the vector operations are continu-
ous. First, we show that the addition + is continuous. Let fy, g9 € M
and € > 0, and consider the open neighborhood U( fo; go; €; dE, ,dEg,, - - - ,
dg,) of fo+ go in 7. If U denotes the open neighborhood

E;dEl)dEg)“. 7dEn)

(fo,— dg,,dg,, -+ ,dg,) x U(go; 5

in the product topology on M x M, then clearly (f,g) € U implies that

_ |(f +9) = (fo + o)
de, (f + 9, fo + g0) —[Ek 1+ [(f +g) — (fo + g0)l

|f — fol +19 — 90|
</Ek 1+ |f = fol +19 — 90

|f — fol lg — gol
S[Ek 1+|f—fo|d“+/ﬁk Th 79— go] %
= dEk(f, fo) +dg. (9, 90)
+§——6(k}—1 2 )

2

This shows that addition is continuous. Next we prove that scalar mul-
tiplication is continuous. Let fo € M and Ap € R be fixed. For any
dg €D,

de(Af, Xofo) < de(Af, Afo) + dr(Afo, Ao fo)

_ [Af — Aol |Afo — Ao fol
B /E 1+ IAf—Afold“+/,; 1+ [\ fo —A0f0|d“

_ IMLf = fol IA = Xoll fol
_/1+|)\Hf fold +/1+|/\—)\ol|f0|du

If = fol IA — Xoll fol
< bob [ e n i
(3) = (14 |Xo])de(f, fo) + de(]A — Aol fo,0).
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Provided |A — Ag| < 1. Now we see that Lebesgue Dominated Conver-
gence Theorem (1, p.44] implies

. 6| fol ‘
4 ———— = lim dg(6fp,0) = 0.
@ tim [ P = lim di(60,0)
Let € > 0. For any dg,,dg,, -+ ,dg, in D it follows from (4) that there
exist positive real numbers 41,62, , 68, in (0,1) such that 0 < § < dy

implies |dg, (0f0,0)| < §.

Let 6o = min{d;,d2,--- ,0,} , then 0 < § < & implies |dg, (Jp,0)| < 5
for all k = 1,2,---,n. Now consider the open neighborhood U(Ag fo;
€ dElvdEm e adEn) of )‘OfO in 7.

If U denotes the open neighborhood

{r€ R: A= ol < 80} x Ulfos (1 + Aol)s diy sy, ds,)

in the product topology on R x M, then Af € U and (3) imply that
dg, (Af, A0 fo) < (1+ |Aol)de(f, fo) + de, (IA — Aol fo,0)
<L+ /2 (L4 o) + 2 =€

for every k=1,2,--- ,n.
This proves that scalar multiplication is continuous. 0

THEOREM 2.4. A sequence (f,) in M converges to f € M in the
topology 7T if and only if for any dg € D, dg(f.,f) — 0 asn — co.

PRrROOF. (Necessity) Let € > 0 be given. Then for each dg € D, the
neighborhood U(f;€; dg) is an open neighborhood of f in 7. Since (fy)
converges to f in (M, T), there exists some N such that if n > N, then
frn € U(f;€;dg), that is dg(fn, f) < €. Thus nli—%o de(fn, f) =0.

(Sufficiency) Let U be an open set containing f in the topology 7.
Then by the definition of 7, there exist dg,,dg,, -+ ,dg, € D such that

U(f;e;dEl,dEz,-“ 7dEn) cU.

Since lim dg(f,,f) = 0 for all dg € D, for each dg,,dg,, - ,dg, ,
n—00

there exist some N,k =1,2,--- ,n such that if n > N, k=1,2,--- ,n
then dg, (fn, f) <e.

Now let N = max{Ny, N, -+ ,N,}, then for all n > N,dg, (fn, f) <
€ for all k = 1,2,---,n. Thus f, € U(f;¢dE,,dE,, - ,dg,) for all
n > N . Hence (f,) converges to f in the topology 7. d
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3. Metrization of topological vector space M

Until further notice, (X, S, u) will be an arbitrary o-finite measure
space, and {E,} is an increasing sequence of subsets of X in S such that
o0

U E, =X and u(E,) < oo for alln > 1. In this section, we investigate
n=1

some topological structures of the function space M. Indeed, we shall
show that it is possible to define a complete invariant metric on M which
is compatible with the topology. For any two functions f,g € M, let
d: M x M — R be defined by

- —o0 dE f>g)
d(f’ 212 1+dE (.fa )

where dg, (f,g) = /E i—fl;—ilﬂ

lows that d is an invariant metric on M.

du, n=1,2,---. Then it easily fol-

THEOREM 3.1. The function space (M, d) is a complete metric space.
The metric topology T3 on (M,d) determined by d coincides with the
topology 7T, determined by a family of pseudometric, {dg, : n = 1,2,

-+ }. Consequently lim d(f,, f) =0 if and only if lim dg(fn,f) =0
n—o0 T—r0C
foralln=1,2,---

PRrROOF. Let (f,) be a Cauchy sequence in (M, d) . Then d(f,, f) —
0 as m,n — oco. For any k > 1, we note that dg, (fm, fn) < 28d(fm, fr)
for all my,n =1,2,---. Thus dg, (fm, frn) — 0 for every k as m,n — oo,
so that (f,) converges in M as Fj, to a function f € M. Since

k

—i di(fm f)
2 T a D

converges uniformly in n, it follows from the iterated limit theorem [2,
p.143] that

> _ dk fnaf) —t fn,f)
nli,néoz2 1+ di(fa, ) “ll'%kli’n‘}"zz 1+ i, )

u (fn,f)

= lim 27% lim ——™ e
k—oo < 1 n—oo 1+ (fnvf)

=0.
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Hence lim d(f,f) = 0. Therefore d is a complete metric on M.

Now we shall show that 7; = 7;. To show that 7; C 77 , it suffices
to show that for any f € M and for any subbasic open neighborhood of
f relative to 73 of the form B(f,€) = {g € M|d(f,g) < €}, there exists
a sufficiently large positive integer m such that

Bg,.(f,1/2™) ={glde,.(f,9) <1/2™} C B(f,€).

Choose a positive integer k such that 1/2% < €. If g € Bg, (f,1/2™),
then dg, (f,9) < 1/2™, and hence

dEl(fag) < dEz(f’g) << dEm(f’g) < 1/2m
Moreover, since

dE (fa )
1+dE (fa )

we see that

g, (f,g) forevery i=1,2,---,

. dE f)

e dE-b f,g) dEl f,g)

z—m@?fz w
=1 i=m+1
SR g |
<5mQm )
i=1 i=1
1
- 2m—1
Now let m = k + 1, then d(f, g) < 1/2*, and hence

Bg,,,(f,1/2**Y) C B(f,1/2") € B(f,¢).

This implies that 7y C 77. Next, to show that 7; C 73 , it is enough to
show that for any f € M and for any subbasic open neighborhood of f
relative to 7; of the form

BEm(fvﬁ) = {g € MIdEm(f,g) < 6})

IN
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there exists a sufficiently large positive integer [ such that

B(f,1/2") C Be,(f.¢)-
Choose a positive integer k such that 1/2% < e. If g € B(f,1/2!) then

i dE’ f7 < _1_
21 1+dE (f, )) al’
and hence we have
dEm (f; g)

2m(1+dg,(f,9))
This inequality can be solved for dg,_ (f,g). Consequently, we obtain
dg, (f,9) < 21_"1—1 Now let [ = k+m+1, thendg, (f,9) < 2k+1 7 <
Zik and hence

B(/, 2k+—1n+1) C Bg,(f,1/2") C By, (f,¢).

This implies that 73 C 7. O

DEFINITION 3.2. Let X be a topological vector space with topology
7. X is called a F-space if the topology 7 coincides with the metric
topology determined by a complete invariant metric d.

THEOREM 3.3. The metric topology T3 on M coincides with the
topology T in M convergence on each measurable subset of X whose
measure is finite. Consequently the topological vector space (M, T)
becomes a F-space.

PROOF. We recall that the topology 7 on M is topology determined

by
D={dg: E €S, ulE)< oo}

Since {dg, : n = 1,2,---} C D, it follows that 7y C 7. Now we
show that 7 C 7. For this purpose, it is enough to show that for any
f € M and for any subbasic open neighborhood relative to 7 of f of
the form Bg(f,d), there exists a subbasic neighborhood relative to 7
of f, Bn(f,e) = {9 : dg,(f,g9) < €} such that Bg, (f,¢) C Bg,(f,9).
Since E € S and u(E) < oo, we can sufficiently large n such that
u(E) < p(E,). Hence we have

|f — gl If — gl
/El+1f—g|d“§/En T+ 17— g™
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so that Bg, (f,6) C Bg(f,8). Therefore we have T = 7;. As we have
just shown above, 7 is induced by a complete invariant metric d. There-
fore (M, T) is a F-space. O
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