ON SOME PROPERTIES OF THE FUNCTION SPACE \mathcal{M}

JOUNG NAM LEE

ABSTRACT. Let M be the vector space of all real S-measurable functions defined on a measure space (X, \mathcal{S}, μ) . In this paper, we investigate some topological structure of \mathcal{T} on \mathcal{M} . Indeed, (M, \mathcal{T}) becomes a topological vector space. Moreover, if μ is σ -finite, we can define a complete invariant metric on \mathcal{M} which is compatible with the topology \mathcal{T} on \mathcal{M} , and hence (M, \mathcal{T}) becomes a F-space.

1. Introduction

Let (X, \mathcal{S}, μ) be an arbitrary measure space. We consider the set of all real valued \mathcal{S} -measurable(or simply measurable) functions defined on (X, \mathcal{S}, μ) and identify μ -equivalent measurable functions. This means that we deal with a set $\mathcal{M} \equiv \mathcal{M}(X, \mathcal{S}, \mu)$ of real valued measurable functions which contains exactly one representative for each μ -equivalence class. Thus the set \mathcal{M} is the set of all non μ -equivalent real valued measurable functions on (X, \mathcal{S}, μ) . Also \mathcal{M} is a vector space over the real field R under the pointwise addition and the pointwise scalar multiplication.

For $E \in \mathcal{S}$ with $\mu(E) < \infty$ and $f, g \in \mathcal{M}$, we define

$$d_E(f,g) = \int_E \frac{|f-g|}{1+|f-g|} d\mu.$$

Then one can easily see that d_E is an invariant pseudometric on \mathcal{M} .

Received June 24, 2002.

²⁰⁰⁰ Mathematics Subject Classification: 28A33, 46E30.

Key words and phrases: μ -equivalent, σ -finite measure, S-measurable function, F-space.

This paper was supported by the research fund of Seoul National University of Technology.

Now we shall give the topology \mathcal{T} on \mathcal{M} determined by a family of pseudometric on \mathcal{M} , $\mathcal{D} = \{d_E : E \in \mathcal{S}, \mu(E) < \infty\}$; that is, a subbasis for the topology is formed by the sets

$$B_E(f,\delta) = \{g \in \mathcal{M} : d_E(f,g) < \delta\}, f \in \mathcal{M}, \delta > 0, d_E \in \mathcal{D}.$$

This topology \mathcal{T} on \mathcal{M} will be called the topology of convergence in measure on the measurable subsets of X whose measure is finite.

Indeed, $(\mathcal{M}, \mathcal{T})$ becomes a topological vector space over R, and then the convergence of a sequence (f_n) to a function f in \mathcal{M} relative to the topology \mathcal{T} is equivalent to that of (f_n) to f with respect to d_E for every $d_E \in \mathcal{D}$.

Moreover, we show that if a measure space (X, \mathcal{S}, μ) is a σ - finite, one can define a complete invariant metric d on \mathcal{M} which is compatible with the topology \mathcal{T} on \mathcal{M} , and hence $(\mathcal{M}, \mathcal{T})$ becomes a F-space over R.

2. Topological structure \mathcal{T} of \mathcal{M}

In this section we shall topologize the set \mathcal{M} by a family of pseudometrics on \mathcal{M} . And then it will be seen that \mathcal{M} is in fact a topological vector space over the real filed R. We also examine a relationship between the convergence of a sequence (f_n) in \mathcal{M} with respect to the topology \mathcal{T} on \mathcal{M} and that of (f_n) in \mathcal{M} with respect to pseudometric on \mathcal{M} which induced \mathcal{T} .

DEFINITION 2.1. Let $\mathcal{D} = \{d_E : E \in \mathcal{S}, \mu(E) < \infty\}$ be the family of pseudometrics on E. Then we provide the topology \mathcal{T} on \mathcal{M} determined by \mathcal{D} ; that is, a subbasis for the topology is formed by the sets

$$B_E(f,\epsilon) = \{g \in \mathcal{M} : d_E(f,g) < \epsilon\}, f \in \mathcal{M}, \epsilon > 0, d_E \in \mathcal{D}.$$

This topology \mathcal{T} on \mathcal{M} will be called the topology of convergence in measure on every measurable subsets of X whose measure is finite.

We note that a basic open neighborhood of f in the topology $\mathcal T$ is of the form

$$U(f;\epsilon;d_{E_1},d_{E_2},\cdots,d_{E_n}) = \{g \in \mathcal{M} : d_{E_k}(f,g) < \epsilon, k = 1,2,\cdots,n\}$$
$$= \bigcap_{k=1}^n B_{E_k}(f,\epsilon)$$

where $d_{E_1}, d_{E_2}, \cdots, d_{E_n} \in \mathcal{D}$ and $\epsilon > 0$.

EXAMPLE 2.2. (a) Let X be any non-empty set, and let $S = {\phi, X}$. If we define a set function μ on S by

$$\mu(A) = \begin{cases} 0, & \text{if } A = \phi \\ \infty, & \text{if } A = X \end{cases}$$

then μ is a measure on S. Hence (X, S, μ) is a measure space. Clearly every S-measurable functions on (X, S) is a constant function. Thus

$$\mathcal{M} = \{f | f : (X, \mathcal{S}) \to R \text{ is a constant function}\}$$

and

$$\mathcal{D} = \{ d_E : E \in \mathcal{S}, \mu(E) < \infty \} = \{ d_{\phi} \}.$$

Since $d_{\phi} = \int_{\phi} \frac{|f-g|}{1+|f-g|} d\mu = 0$ for all $f, g \in \mathcal{M}$, it follows that

$$B_{\phi}(f,\epsilon) = \{g \in \mathcal{M} | d_{\phi}(f,g) < \epsilon\} = \mathcal{M}$$

where $f \in \mathcal{M}$ and $\epsilon > 0$.

Thus the topology \mathcal{T} on \mathcal{M} induced by $\mathcal{D} = \{d_{\phi}\}$ is $\{\phi, \mathcal{M}\}$. Therefore $(\mathcal{M}, \mathcal{T})$ is an indiscrete topological space.

(b) Let X and S be as in (a). Let μ be defined for $A \in S$ by

$$\mu(A) = \begin{cases} 0, & \text{if } A = \phi \\ 1, & \text{if } A = X. \end{cases}$$

Then (X, \mathcal{S}, μ) is a finite measure space. By the same reason as in (a),

$$\mathcal{M} = \{ f | f : (X, \mathcal{S}) \to R \text{ is a constant function} \}.$$

It is readily seen that (\mathcal{M}, d_X) is a metric space. We observe that $f, g \in \mathcal{M}$ with $f \equiv \alpha, g \equiv \beta$,

$$d_X(f,g) = \int_X \frac{|f-g|}{1+|f-g|} d\mu$$

$$= \int_X \frac{|\alpha-\beta|}{1+|\alpha-\beta|} d\mu$$

$$= \frac{|\alpha-\beta|}{1+|\alpha-\beta|} \mu(X)$$

$$|\alpha-\beta|$$

$$= \frac{|\alpha - \beta|}{1 + |\alpha - \beta|}.$$

Since $\rho(\alpha, \beta) = \frac{|\alpha - \beta|}{1 + |\alpha - \beta|}$ for all $\alpha, \beta \in R$ is clearly a metric on R, it follows from (2) that (\mathcal{M}, d_X) is isometric isomorphic to the metric space (R, ρ) .

THEOREM 2.3. The topological space $(\mathcal{M}, \mathcal{T})$ is topological vector space over R.

PROOF. For any $f, g \in \mathcal{M}$ and $\lambda \in R$, since f + g and λf are clearly measurable functions, we have $f + g \in \mathcal{M}$ and $\lambda f \in \mathcal{M}$. Thus \mathcal{M} is a vector space over R.

Now it remains only to show that the vector operations are continuous. First, we show that the addition + is continuous. Let $f_0, g_0 \in \mathcal{M}$ and $\epsilon > 0$, and consider the open neighborhood $U(f_0; g_0; \epsilon; d_{E_1}, d_{E_2}, \cdots, d_{E_n})$ of $f_0 + g_0$ in \mathcal{T} . If U denotes the open neighborhood

$$U(f_0; \frac{\epsilon}{2}; d_{E_1}, d_{E_2}, \cdots, d_{E_n}) \times U(g_0; \frac{\epsilon}{2}; d_{E_1}, d_{E_2}, \cdots, d_{E_n})$$

in the product topology on $\mathcal{M} \times \mathcal{M}$, then clearly $(f, g) \in U$ implies that

$$\begin{split} d_{E_k}(f+g,f_0+g_0) &= \int_{E_k} \frac{|(f+g)-(f_0+g_0)|}{1+|(f+g)-(f_0+g_0)|} d\mu \\ &\leq \int_{E_k} \frac{|f-f_0|+|g-g_0|}{1+|f-f_0|+|g-g_0|} d\mu \\ &\leq \int_{E_k} \frac{|f-f_0|}{1+|f-f_0|} d\mu + \int_{E_k} \frac{|g-g_0|}{1+|g-g_0|} d\mu \\ &= d_{E_k}(f,f_0) + d_{E_k}(g,g_0) \\ &\leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon(k=1,2,\cdots,n). \end{split}$$

This shows that addition is continuous. Next we prove that scalar multiplication is continuous. Let $f_0 \in \mathcal{M}$ and $\lambda_0 \in R$ be fixed. For any $d_E \in \mathcal{D}$,

$$d_{E}(\lambda f, \lambda_{0} f_{0}) \leq d_{E}(\lambda f, \lambda f_{0}) + d_{E}(\lambda f_{0}, \lambda_{0} f_{0})$$

$$= \int_{E} \frac{|\lambda f - \lambda f_{0}|}{1 + |\lambda f - \lambda f_{0}|} d\mu + \int_{E} \frac{|\lambda f_{0} - \lambda_{0} f_{0}|}{1 + |\lambda f_{0} - \lambda_{0} f_{0}|} d\mu$$

$$= \int_{E} \frac{|\lambda||f - f_{0}|}{1 + |\lambda||f - f_{0}|} d\mu + \int_{E} \frac{|\lambda - \lambda_{0}||f_{0}|}{1 + |\lambda - \lambda_{0}||f_{0}|} d\mu$$

$$\leq (1 + |\lambda_{0}|) \int_{E} \frac{|f - f_{0}|}{1 + |f - f_{0}|} d\mu + \int_{E} \frac{|\lambda - \lambda_{0}||f_{0}|}{1 + |\lambda - \lambda_{0}||f_{0}|} d\mu$$

$$= (1 + |\lambda_{0}|) d_{E}(f, f_{0}) + d_{E}(|\lambda - \lambda_{0}||f_{0}, 0).$$
(3)

Provided $|\lambda - \lambda_0| < 1$. Now we see that Lebesgue Dominated Convergence Theorem [1, p.44] implies

(4)
$$\lim_{\delta \to 0} \int_{E} \frac{\delta |f_0|}{1 + \delta |f_0|} = \lim_{\delta \to 0} d_E(\delta f_0, 0) = 0.$$

Let $\epsilon > 0$. For any $d_{E_1}, d_{E_2}, \dots, d_{E_n}$ in \mathcal{D} it follows from (4) that there exist positive real numbers $\delta_1, \delta_2, \dots, \delta_n$ in (0,1) such that $0 < \delta < \delta_k$ implies $|d_{E_k}(\delta f_0, 0)| < \frac{\epsilon}{2}$.

Let $\delta_0 = \min\{\delta_1, \delta_2, \cdots, \delta_n\}$, then $0 < \delta < \delta_0$ implies $|d_{E_k}(\delta_0, 0)| < \frac{\epsilon}{2}$ for all $k = 1, 2, \cdots, n$. Now consider the open neighborhood $U(\lambda_0 f_0; \epsilon; d_{E_1}, d_{E_2}, \cdots, d_{E_n})$ of $\lambda_0 f_0$ in \mathcal{T} .

If U denotes the open neighborhood

$$\{\lambda \in R: |\lambda-\lambda_0| < \delta_0\} imes U(f_0; rac{\epsilon}{2}(1+|\lambda_0|); d_{E_1}, d_{E_2}, \cdots, d_{E_n})$$

in the product topology on $R \times \mathcal{M}$, then $\lambda f \in U$ and (3) imply that

$$d_{E_k}(\lambda f, \lambda_0 f_0) \le (1 + |\lambda_0|) d_E(f, f_0) + d_{E_k}(|\lambda - \lambda_0| f_0, 0)$$

$$< (1 + |\lambda_0|) \epsilon/2 (1 + |\lambda_0|) + \frac{\epsilon}{2} = \epsilon$$

for every $k = 1, 2, \dots, n$.

This proves that scalar multiplication is continuous. \Box

THEOREM 2.4. A sequence (f_n) in \mathcal{M} converges to $f \in \mathcal{M}$ in the topology \mathcal{T} if and only if for any $d_E \in \mathcal{D}$, $d_E(f_n, f) \to 0$ as $n \to \infty$.

PROOF. (Necessity) Let $\epsilon > 0$ be given. Then for each $d_E \in \mathcal{D}$, the neighborhood $U(f;\epsilon;d_E)$ is an open neighborhood of f in \mathcal{T} . Since (f_n) converges to f in $(\mathcal{M},\mathcal{T})$, there exists some N such that if n > N, then $f_n \in U(f;\epsilon;d_E)$, that is $d_E(f_n,f) < \epsilon$. Thus $\lim_{n \to \infty} d_E(f_n,f) = 0$.

(Sufficiency) Let U be an open set containing f in the topology \mathcal{T} . Then by the definition of \mathcal{T} , there exist $d_{E_1}, d_{E_2}, \dots, d_{E_n} \in \mathcal{D}$ such that

$$U(f;\epsilon;d_{E_1},d_{E_2},\cdots,d_{E_n})\subset U.$$

Since $\lim_{n\to\infty} d_E(f_n,f)=0$ for all $d_E\in\mathcal{D}$, for each $d_{E_1},d_{E_2},\cdots,d_{E_n}$, there exist some $N_k,k=1,2,\cdots,n$ such that if $n>N_k,k=1,2,\cdots,n$ then $d_{E_k}(f_n,f)<\epsilon$.

Now let $N=\max\{N_1,N_2,\cdots,N_n\}$, then for all $n>N, d_{E_k}(f_n,f)<\epsilon$ for all $k=1,2,\cdots,n$. Thus $f_n\in U(f;\epsilon;d_{E_1},d_{E_2},\cdots,d_{E_n})$ for all n>N. Hence (f_n) converges to f in the topology \mathcal{T} .

3. Metrization of topological vector space \mathcal{M}

Until further notice, (X, \mathcal{S}, μ) will be an arbitrary σ -finite measure space, and $\{E_n\}$ is an increasing sequence of subsets of X in \mathcal{S} such that $\bigcup_{n=1}^{\infty} E_n = X$ and $\mu(E_n) < \infty$ for all $n \geq 1$. In this section, we investigate some topological structures of the function space \mathcal{M} . Indeed, we shall show that it is possible to define a complete invariant metric on \mathcal{M} which is compatible with the topology. For any two functions $f, g \in \mathcal{M}$, let $d: \mathcal{M} \times \mathcal{M} \to R$ be defined by

$$d(f,g) = \sum_{n=1}^{\infty} 2^{-\infty} \frac{d_{E_n}(f,g)}{1 + d_{E_n}(f,g)}$$

where $d_{E_n}(f,g) = \int_{E_n} \frac{|f-g|}{1+|f-g|} d\mu$, $n=1,2,\cdots$. Then it easily follows that d is an invariant metric on \mathcal{M} .

THEOREM 3.1. The function space (\mathcal{M},d) is a complete metric space. The metric topology \mathcal{T}_d on (\mathcal{M},d) determined by d coincides with the topology \mathcal{T}_1 determined by a family of pseudometric, $\{d_{E_n}: n=1,2,\cdots\}$. Consequently $\lim_{n\to\infty}d(f_n,f)=0$ if and only if $\lim_{n\to\infty}d_E(f_n,f)=0$ for all $n=1,2,\cdots$.

PROOF. Let (f_n) be a Cauchy sequence in (\mathcal{M}, d) . Then $d(f_n, f) \to 0$ as $m, n \to \infty$. For any $k \ge 1$, we note that $d_{E_k}(f_m, f_n) \le 2^k d(f_m, f_n)$ for all $m, n = 1, 2, \cdots$. Thus $d_{E_k}(f_m, f_n) \to 0$ for every k as $m, n \to \infty$, so that (f_n) converges in \mathcal{M} as E_k to a function $f \in \mathcal{M}$. Since

$$\sum_{i=1}^{k} 2^{-i} \frac{d_i(f_n, f)}{1 + d_i(f_n, f)}$$

converges uniformly in n, it follows from the iterated limit theorem [2, p.143] that

$$\lim_{n \to \infty} \sum_{k=1}^{\infty} 2^{-k} \frac{d_k(f_n, f)}{1 + d_k(f_n, f)} = \lim_{n \to \infty} \lim_{k \to \infty} \sum_{i=1}^{k} 2^{-i} \frac{d_i(f_n, f)}{1 + d_i(f_n, f)}$$
$$= \lim_{k \to \infty} \sum_{i=1}^{k} 2^{-i} \lim_{n \to \infty} \frac{d_i(f_n, f)}{1 + d_i(f_n, f)}$$
$$= 0.$$

Hence $\lim_{n\to\infty} d(f_n f) = 0$. Therefore d is a complete metric on \mathcal{M} .

Now we shall show that $\mathcal{T}_d = \mathcal{T}_1$. To show that $\mathcal{T}_d \subset \mathcal{T}_1$, it suffices to show that for any $f \in \mathcal{M}$ and for any subbasic open neighborhood of f relative to \mathcal{T}_d of the form $B(f,\epsilon) = \{g \in \mathcal{M} | d(f,g) < \epsilon\}$, there exists a sufficiently large positive integer m such that

$$B_{E_m}(f, 1/2^m) = \{g | d_{E_m}(f, g) < 1/2^m\} \subset B(f, \epsilon).$$

Choose a positive integer k such that $1/2^k < \epsilon$. If $g \in B_{E_m}(f, 1/2^m)$, then $d_{E_k}(f, g) < 1/2^m$, and hence

$$d_{E_1}(f,g) \le d_{E_2}(f,g) \le \dots \le d_{E_m}(f,g) < 1/2^m$$
.

Moreover, since

$$\frac{d_{E_i}(f,g)}{1+d_{E_i}(f,g)} \le d_{E_i}(f,g) \text{ for every } i=1,2,\cdots,$$

we see that

$$\begin{split} d(f,g) &= \sum_{i=1}^{\infty} \frac{d_{E_i}(f,g)}{2^i (1 + d_{E_i}(f,g))} \\ &= \sum_{i=1}^{m} \frac{d_{E_i}(f,g)}{2^i (1 + d_{E_i}(f,g))} + \sum_{i=m+1}^{\infty} \frac{d_{E_i}(f,g)}{2^i (1 + d_{E_i}(f,g))} \\ &\leq \frac{1}{2^m} (\sum_{i=1}^{m} \frac{1}{2^i} + \sum_{i=m+1}^{\infty} \frac{1}{2^i}) \\ &< \frac{1}{2^m} (\sum_{i=1}^{\infty} \frac{1}{2^i} + \sum_{i=1}^{\infty} \frac{1}{2^i}) \\ &= \frac{1}{2^{m-1}}. \end{split}$$

Now let m = k + 1, then $d(f, g) < 1/2^k$, and hence

$$B_{E_{k+1}}(f, 1/2^{k+1}) \subset B(f, 1/2^k) \subset B(f, \epsilon).$$

This implies that $\mathcal{T}_d \subset \mathcal{T}_1$. Next, to show that $\mathcal{T}_1 \subset \mathcal{T}_d$, it is enough to show that for any $f \in \mathcal{M}$ and for any subbasic open neighborhood of f relative to \mathcal{T}_1 of the form

$$B_{E_m}(f,\epsilon) = \{g \in \mathcal{M} | d_{E_m}(f,g) < \epsilon\},$$

there exists a sufficiently large positive integer l such that

$$B(f, 1/2^l) \subset B_{E_m}(f, \epsilon)$$
.

Choose a positive integer k such that $1/2^k < \epsilon$. If $g \in B(f, 1/2^l)$ then

$$d(f,g) = \sum_{i=1}^{\infty} \frac{d_{E_i}(f,g)}{2^i (1 + d_{E_i}(f,g))} < \frac{1}{2^l},$$

and hence we have

$$\frac{d_{E_m}(f,g)}{2^m(1+d_{E_m}(f,g))}<\frac{1}{2^l}.$$

This inequality can be solved for $d_{E_m}(f,g)$. Consequently, we obtain $d_{E_m}(f,g)<\frac{1}{2^{l-m}-1}$. Now let l=k+m+1, then $d_{E_m}(f,g)<\frac{1}{2^{k+1}-1}<\frac{1}{2^k}$ and hence

$$B(f, \frac{1}{2^{k+m+1}}) \subset B_{E_m}(f, 1/2^k) \subset B_{E_m}(f, \epsilon).$$

This implies that $\mathcal{T}_1 \subset \mathcal{T}_d$.

DEFINITION 3.2. Let X be a topological vector space with topology \mathcal{T} . X is called a F-space if the topology \mathcal{T} coincides with the metric topology determined by a complete invariant metric d.

THEOREM 3.3. The metric topology \mathcal{T}_d on \mathcal{M} coincides with the topology \mathcal{T} in \mathcal{M} convergence on each measurable subset of X whose measure is finite. Consequently the topological vector space $(\mathcal{M}, \mathcal{T})$ becomes a F-space.

PROOF. We recall that the topology \mathcal{T} on \mathcal{M} is topology determined by

$$\mathcal{D} = \{ d_E : E \in \mathcal{S}, \mu(E) < \infty \}.$$

Since $\{d_{E_n}: n=1,2,\cdots\}\subset\mathcal{D}$, it follows that $\mathcal{T}_d\subset\mathcal{T}$. Now we show that $\mathcal{T}\subset\mathcal{T}_d$. For this purpose, it is enough to show that for any $f\in\mathcal{M}$ and for any subbasic open neighborhood relative to \mathcal{T} of f of the form $B_E(f,\delta)$, there exists a subbasic neighborhood relative to \mathcal{T}_d of f, $B_n(f,\epsilon)=\{g:d_{E_n}(f,g)<\epsilon\}$ such that $B_{E_n}(f,\epsilon)\subset B_{E_n}(f,\delta)$. Since $E\in\mathcal{S}$ and $\mu(E)<\infty$, we can sufficiently large n such that $\mu(E)<\mu(E_n)$. Hence we have

$$\int_E \frac{|f-g|}{1+|f-g|} d\mu \leq \int_{E_n} \frac{|f-g|}{1+|f-g|} d\mu$$

so that $B_{E_n}(f,\delta) \subset B_E(f,\delta)$. Therefore we have $\mathcal{T} = \mathcal{T}_d$. As we have just shown above, \mathcal{T} is induced by a complete invariant metric d. Therefore $(\mathcal{M},\mathcal{T})$ is a F-space.

References

- [1] R. G. Bartle, The elements of integration, John Wiley and Sons, New York, 1964.
- [2] ______, The elements of real analysis 2nd ed, John Wiley and Sons, New York, 1976.
- [3] T. Husain, Topology and maps, Plenum Press, New York and London, 1977.
- [4] J. N. Lee, A note on the function space M, J. Korea Soc. Math. Educ. 33 (1994), 115–122.
- [5] B. A. Robert, Measure, Integration and Functional Analysis, Academic Press, New York, 1972.
- [6] H. L. Royden, Real analysis 2nd ed, MacMillan Publishing Co., Inc. New York, 1968.
- [7] H. H. Schaefer, Topological vector spaces, MacMillan Publishing Co., Inc. New York, 1966.
- [8] A. E. Taylor, General Theory of Functions and Integration, Blaisdell Publishing Co., New York, 1965.

School of the Liberal Arts Seoul National University of Technology Seoul 139-743, Korea

E-mail: ljnam@snut.ac.kr