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SIZE OF THE CLUSTERS UNDER LOW DENSITY
ZERO-RANGE INVARIANT MEASURES

INTAE JEON

ABSTRACT. Regarding all particles at a fixed site as a cluster, the
size of the largest cluster under the zero range invariant measures
is well studied by Jeon et al.[5] for the case of density one. Here,
the density of the finite zero-range process is given by the ratio
between the number m of particles and the number n of sites. In
this paper, we study the lower density case, i.e., the case m = o(n).
Especially, when m ~ nf,0 < 8 < 1, we show that there is an
interesting cutoff point around 8 = 1/2.

0. Introduction

Consider m Markovian particles moving around on finite number n
of sites with transition matrix {P;;}},_,. If there are k particles at
one site, say site ¢, then we regard the set of particles as a cluster of
size k, or k-cluster, locates at site i or i-site. The dynamics of the
sizes of the clusters is called the zero-range process and is an example
of an interacting random system with the following interaction. (See
[6]) Let g be a given monotone real valued function from nonnegative
integers. Any k-cluster locates at i-site waits an exponential amount of
time with parameter g(k), picks j sites with probability P;;, then gives
one particle to j site. As a result, the size of the cluster at site 7 is
reduced by one and the size of the cluster at site j is increased by one.
If {Pi;}7;_1is symmetric and irreducible, then, as Spitzer[7] has shown,
there is a unique invariant measure.

To find a new tractable situation similar to the well known Smolu-
chowski coagulation fragmentation dynamics (see [1, 3]), Jeon et al.[5]
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and Jeon and March[4] considered the density one case, i.e., m = n,
and showed that there are two striking transitions of the size of the
largest cluster under the invariant measures. For example, if g(k) =
k=% —00 < @ < o0 and let Z = (71,25, -+ ,Z,) be the equilibrium
zero range process with rate function g(k), then we have the following
theorem.

THEOREM 0.1. [5) Let Z} = maxi<i<n Z;.

(a) If @ > 1, then n — Z} converges to 0 in probability.

(b) If « =1, then n— Z} converges weakly to a Poisson distribution
of parameter 1.

(c) If0 < a < 1, then (n — Z})/n'T® converges to 1 in probability.

(d) If « =0, then Z}/logn converges to 2 in probability.

(e) Ifa <0, then Z} loglogn/logn converges to ™! in probability.

Since any configuration (2, Zs, - - , Z,,) satisfies Zy + Zy+-- -+ Z,, =
n, the configuration space consists of integer partitions of n and the
equilibrium measure is, then, a random measure of the partitions. The
analysis of this random structure can be carried out through the help
of Arratia and Tavaré’s results [2]. Consider one parameter family of
iid. random variables {X;}? , on {0,1,---}, where P{X; = k} =
2*/g\(k), g\(k) = g(k)g(k —1)--- 9(1)9(0),(0) = g!(0) = 1, for = € R.
Then one can prove easily that (Z1, Za, -+ , Z,) =4 (X1, X2, -, Xpn| X1+
X2+ -+ + X, = n), where =; means that the both terms are equal in
distribution. Now we simply choose x which maximizes P{X1+ Xy +
-+ + X,, = n} and successfully remove the dependence structure.

Our aim is to look at the lower density case, i.e., the case m = o(n).
One difficulty is that the above technique does not seem to be applicable
in this case, since the probability P{X; + X3 + --- + X,, = m} is too
small to analyze. Instead, we deal with, though less sophisticated, the
configuration space and the invariant measures directly.

In this paper, we consider the case m ~ n®,0 < 8 < 1. Suppose
B is close to 0, i.e., 8 << 1, then, since there are not many particles
compared to the sites, it is hard to form 2-clusters. On the other hand, if
@ is close to 1, then, since there are many particles, with high probability,
there exist bigger size clusters. Our natural guess is that, as 3 increases
from 0, the maximum cluster size should increase.

It turns out that there is an interesting cutoff point around 8 = 1/2.
Indeed, we are able to show that if g(I — 1)/g(l) is bounded and

1) if # < 1/2, then the maximum cluster size is 1. (Theorem 2.6)
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2) if # = 1/2, then the maximum cluster size is < 2. Moreover, the
number of 2. clusters converges to a Poisson distribution with parameter

%(% . (Theorem 2.7)

3) if § > 1/2, then the maximum cluster size is > 2. Moreover,
the probability that the number of 2-clusters is finite converges to 0.
(Theorem 2.11)

Note that, if g(I) =17%, —00 < a < o0, as given in Theorem 0.1, then
g(l —1)/g(1) is bounded. The condition that g(I — 1)/g(l) is bounded
is satisfied even g() decreases or increases exponentially. For example,
let g(I) = e for some constant a, then g(I — 1)/g(l) = e~*, which is
bounded for .

1. Zero-range process

Let N, ={1,2,--- ,n} and let Q = {0,1,2,... }». Fix a stochastic
matrix {PU}’LS’L,JS‘YL with Pij = Pji and Z?:l PZ_] = 1 for all i, which
makes the chain irreducible, and let g be a monotone real valued function
from nonnegative integers which is called “rate function”. Then Zero-
range process is the stochastic process with the following generator. For

n=(n(1),n(2), - ,n(n)),

(1.1) (Laf)m) =D Pygm@){f () = fF(m)},

i=1 j=1
where f is any bounded function on Q, and n*? is given by

if n(i) = 0, then n*7 =y
n(i)—1 iftk=1
if n(i) # 0, then n*I (k)= | n(y)+1 fk=y
n(k) otherwise.

Informally, we can describe the dynamics as following: If the process
is in state n at certain time, then at any site 7, each cluster waits for
exponential time with rate g(7(i)) independently to other sites, picks
site 7 with probability P;; and gives one particle to the site so that
n(i) decreases to n(i) — 1, while n(j) increases to n(j) +1. Let n; =
(Me(1),me(2), -+ ,m(n)),0 < t < 0o, be the Markov process with genera-
tor L,,. Since 7 preserves the total number of particles, i.e., > . n:(i) =
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S mo(z) for all t, if we let Q7 = {n € QF : Y. n(i) = m},1 <
m < oo, then the process restricted to Q) is ergodic, so there is a
unique invariant measure on 7}, say v, since P;; is irreducible. Let
Z = (21,23, ,Zy) be the equilibrium zero range process with rate
function g and let Z} = max;j<i<n Z;.

The following proposition gives the explicit invariant measure on Q7.
The proof can be found in [5, 7].

LEMMA 1.1. For any rate function g(l), and for any n € QF, let
(1.2) pnr(m) = [ [{g' (@)},
i=1

where g!(l) = g({)g(l — 1)g(I — 2)--- g(1)g(0), with convention g!(0) =
g(0) =1. Let

1 m m
vy (1) = php' (), where T' = ug(S4) = > urm).
neqQy

Then v} is the equilibrium measure corresponding to g(l).

Let S(n) be the permutation group of n letters. For any o,, € S(n),
and for any n = (n(1),--- ,n(n)) € Q™ let 0,0 = ({04 (1)), N(on(2)) - -
n(on(n))).

LEMMA 1.2. For any n € Q™ 0, € S(n), let v, be the invariant
measure corresponding to g. Then v[*(n) = v*(onn).

PROOF. v*(o,n) is just the change of order in multiplication of
™ (n). (|
'\

2. The main theorems and proofs

In this section, we will prove three main theorems and several prelim-
inary Lemmas. To simplify, we will drop m,n in the notation, if there
is no confusion. For example, v = v* and p = pl'.

For any n = (771’772" t 777'n) € Q;;,n) let lz(n) = ﬁ{l ‘= Z}a i'e'9 the
number of i-clusters in the configuration. Let

A7

n
= {C_l = (a1,a2, -+ ,a,) : a; is a nonnegative integer and E 1q; = m}

=1
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For @ = (a1,as,--- ,an) € AM, let Az = {n € Q" :l;(n) =a;,1 <i<
n}. Note that Aj; is the set of all configurations such that the number of
1-clusters is a;, the number of 2-clusters is az, etc. Then for any n € Ag,
by Lemma 1.2,

(2.1) v(n) =

and, therefore,

|4z 1
22) 14 Aa = 3
( ) =L@ g g e g
n—1
n n—a — ;
(2.3) }A@|:< )( 1) n Z“z
al a2 =1
Gp,
DEFINITION 2.1. Fora,b € AT such that @ = (ay, a2, ,a;,0,0,-- -,

O) andB:(bl,b2, 7bl70703'.' )0)7

(1) we say b is an immediate descendent of a, if a; > 0 and

(b1, b2, ,by—1,b,0,0,--- ,0)
= (a1 — 1,02, -+ ,a;1 — 1,00 +1,0,0,--- ,0),

or, if a; = 0,a;_1 > 0, and
(b17b27"' ,bl,0,0,"‘ 70):(a1—13a27'” 7al—-1_1517070"" 70)

If b is an immediate descendent of a, then we write @ > b, and
we call the operation obtaining b from @ a descending operation.

(2) If there is a sequence @y, as,--- ,a; suchthat @ > a; > ag > --- >
@ > b, then we write @ >> b and we say that b is a descendent
of a.

(3) We denote the largest nonzero coordinate, i.e. the maximum size
of the clusters, of @ = (a1, a2, ,a,) by max(a). For example,
if @ = (a1,a2,--+,a;,0,---,0), a; > 0 then max(a) = I.
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REMARK. There are two different types of descending operations.
The first operation raises the number of maximum clusters and the sec-
ond raises the size of the maximum cluster. Note that the operation
can change only the size of the maximum cluster and the number of sin-
gle particles (1-cluster) or possibly the number of clusters of the second
largest size.

The following Lemma shows how the weight is changed by the de-
scending operations.

LEMMA 2.2.
1) P(Afar 1,80, a1_1~1,a141,00,.,0))
N(A(al,a2,~~ ,01,0,0,-- ,0))
9()g(l — Dara;—1
9@ +1)(n - i ai+1)
(’2) (A -1,85,,81-1,1,0,0,,0)  g(1)gll — Darai

[ >2,

1(Aar,az, - a1-1,0,0,- ,0)) g - a+1)
3) 1( A, -2,1,0,0,--,0)) _ g(1)2ai(a; —1)(n—1)
1(A(a,,0,0,- ,0)) g2 (n—a1 +1)(n—-a1+2)’
1(Aay —2041),041,00,-,0) _ 9(1)%(a1 — 20)(ax — 21 = 1)

O e aio o) @+ D —a +15 D)

PROOF. It is a straightforward application of (2.1), (2.2), and (2.3).
For (1), since [ > 2,

l>2,

M(A(th—l,az,'" ,a1-1—1,a;+1,0,0,--- 70))
N(A(al»az,“' ,01,0,0,--- ,0))

V(A(ai-1,a2,+ a1-1-1,a141,0,0, ,0))
V(A(ay,az, ,a1,0,0,---,0))
A —1,2, 01— La 1,00, ,0)|g! (1)1 g1(2)%2 - - - gl(l — 1)@ 2 g} ()™
T A a0,0,- )91 (1)er"1gl(2)82 - gl — D)m—1-1gl()ar+l

-2 -2 -1

n— a; n— a; +1 n— a~+2\
; ’ ; ’ ; T get - 1)
a1-1 al_l—l al+1

L
H

-2 -2 -1 \
n—Zai n—Zai n—Zai
2 i=1 i=1 g(l)

i=

a1 ap—1 al/
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which becomes, after simple calculation,
9(L)g(l = Dayar—
gD+ (n - ai+1)

Other equations are similar. O

LEMMA 2.3. For @,b € A™ such that @ => b, there exists a unique
sequence @1, asg, -+ ,a; satisfying @ > @y > ag > --- > a; > b.

ProoOF. Suppose there are two sequences {al}ﬁ 1, {b;}™ ; such that
GG >dg > - >a >band @ > by > by > - > by > b. Let I
be the first number satisfying a;, = blo and Gy,+1 7& bi,11. Let @, =
blo = (a1,a2, -+ ,a,,0,0,---,0) with a, > 0. Note that descending
operation yields only two possible states, ¢ = (a1 — 1,42, ,a,—1 —
l,ar +1,0,---,0) and é& = (a1 — L,ag,- - ,ar_1,a, — 1,1,0,---,0).
Singe App+1 7 Blo+1, if » > 2, without loss of generality, assume a@;,4+1 =
€1, by 41 = Ca. B

Since any descending operation from b, cannot change the (r —1)-
th coordinate a,_; and any descending operation from a;,4 cannot raise
the (r — 1)-th coordinate a,_; — 1, the (r — 1)-th coordinate’s of any
descendent of @;,,1 and any descendent of b;,;; cannot be the same.

Thus, a contradiction follows since b is a descendent of @41 and
Bl(,+1- For the case r = 2, the number of clusters of any descendant of ¢s
is ag, while that of ¢; is bigger than or equal to as + 1. The case r =1

is impossible. O
LEMMA 2.4. Foranya = (ay,as, - ,a;,0,0,---,0), letap = Eézl ia;
and ag = (ao,0,0,---,0), then ag > a.

ProOOF. We can construct a sequence of descending operations as
following.

l

a’OZ (0,0,0,0,"' 70) = (Ziaia0)07“' ,O)

> zai—2,1,0,0,~~,0>~-

(2
- (Zzaz—ZZa“Zal,OO )
>—(Zzaz—22a@-1 Zal 1,1,0,0,- )
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l

Zzaz—22a,—2 Zaz—2 2,0,0, - 0)

i=

S

ey

l

thz—2ZaZ Za,,ag,Za,,OO >

i=

(
(
»(gw,_@a, Zaz_laz,za, L1,0,0,,0) -
(2
(

Y

[y

l
- Zzaz—22:a,z Za, Zal,ag,ag,,Za“OO )
1 l l

- Ziai—22ai—2ai—---

=1 =2 =3
l
- E ai+al,(12,013,"‘,G;l,O,O,"',O)
i=l-1
:(al,ag,"',(1,[,0,0,"',0)- O

Note that, since in each operation step there are at most two different
choices, |[A™| < 2m+1,

DEFINITION 2.5. For @,b € A’?, such that @ »> b, we define s(a, b)
by the number of descending operations applied for @ to get b, i.e. if
G> @y >0y > --- > G > b, then s(a,b) =1+ 1.

REMARK. The inverse of descending operation is unique in the sense
that, if by > @, bo > @ and s(by,a) = s(be,a), then by = ba.

Now recall Z = (Z1,Zs,- - , Zy), the equilibrium zero range process
with rate function g, and Z; = maxi<;<, Z;. From now on, we will

assume there exists M such that %_——Q < M for all [.

THEOREM 2.6. Suppose m ~ nP,0 < 3 < 1. Then Prob(Z} > 2) —
0 asn — oco.

ProoF. Let ag = (m,0,0,---,0) and let

Gy = {b:ag ~~ b,s(a,b) = k},
A’(—io = {AI_) : E S Gk},
Af = Useq, As
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for k=0,1,2,---. Then, for any € > 0,

P(Z: > 2)
= v(Uk»145,)
(U1 A% )
()
p(Uk>14)
1(A3)
< Zk21 fl(;llgo)
1(A3,)
u(A})

Al A2 Al
<) L) W) W

TR, WALyt A RAL) WA

—
=
~~
b
I~
<
—
=
—
L
QIN| 21w
o
~—

Note that, for k =0,1,2,- -, |Gx4+1] < 2|Ggl, since in each operation
step_there are at most two different choices. Moreover, for any a €
Gr,b € Giy1,a > b, any case in Lemma 2.2 can be bounded by

p(Ap) m?
(A, =

_ €
n 4’

for large n. Therefore,

M(A/g;rl) - ZEEGk+1 'U(AE)

€ €
= = e — -,
wAG)  Yseq, (M) 4 2
and .
P(Z;22) < S+ (5) + <«
That is, Prob(Z} > 2) — 0 as n — oo. O

Let Y™ = f{¢: Z* = 2}, i.e., the number of 2-clusters.

THEOREM 2.7. If m ~ nz, then Prob(Z* > 3) — 0 as n — oo and

Y™ — Pois(4).

The proof can be completed after proving several Lemmas concerning
the tightness of the sequence.
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LEMMA 2.8. Ifm ~ n%, then for any € > 0, small, there exists r such
that Prob(Z} > r) < € for sufficiently large n.

ProOF. For given e small, choose r > 2 such that %_Ml < 5. Let

B ={A;:a € A},,max(a) = r},

G* = {b: @ >> b, s(a,b) = k for some @ such that max(a) = r},
BF = {Ag be Gk},
Bk = UEEGkAB’

for k = 0,1,2,---. Note that G* is uniquely defined by Lemma 2.3
and the Remark after Definition 2.5. Then |G**+!| < 2|G*| and for any
a € Gk b € GF*1 @ » b, since a;_, in equations (1) and (2) of Lemma

2.2 satisfies a;—; < -7,

w(Az) n2pt2)(r-1) _ 2M ¢
—2c < 2M < -
,u(Ac—L)—2 n St w
for large n. Therefore, similarly to Theorem 2.6,
. p(Ug>1B%)
P(Z )< —="
1) = o)
< ZkZI f‘(Bk)
04 wB)
24) L u(BY (B (B
T u(B%) (B u(B)
€ €
< 5 + (5)2 +---
<e
for the choice of r. a

LEMMA 2.9. If m ~ n3, then Prob(Z: > 3) — 0 as n — co.
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PROOF. For given € small, choose the same r in the proof of Lemma
28. Let a; = (m —2i —2,i+1,0,0,---,0) and b; = (m — 2i —
3aia1a0a07"' 50)7i :0;1a27"'-

Let - B
Gy ={a:b, »> a,s(b,a) >0},
G¥ = {a: b, »> a,s(bi,a) = k},
B, ={A;:a€G;}
and let

BF={A,:aeGF},k=0,1,2,---.

Let Bm = U&EGiAFl and B’fc = UEGG’.‘A&’ k= 0, 1, 2, et
First, consider the case i < en'/2/8M = C. Then

5\ #(Ui<eBi)
v(U;<eB;) = ==
(LiseB) )
,U'(Ui<CBz)
2.5 < =
(2:5) #(VicoAa,)
_ Zzgc 1(B;)
ZiSC M(Aﬁl)
Note that for k = 0,1,2,---, |G¥™!| < 2|G¥| and for any a € G¥,b €
GF*1 G > b, since a;_1 < C' in equations (1) and (2) of Lemma 2.2,
Ax 1/2,,1/2 7 1/2.01/2 18 M
Ap) g T TIM € B g Ten /M e
#(Az) n 4 p(a;) n 4

(2:6) u(BY)
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Therefore,
( i<CB') <eE.
Now for ¢ > C, note that, from equation (4) of Lemma 2.2,
N(Aﬁi) < :U‘(Al_lr-u) :u'(Aar+2) . .u'( ) T'(2M)
P00 7S5 7 S R W e
for large n.
Let

H; = {a: max(a;) <r},
_—‘{AEEBiI(_ZGHi},

C_'i = UgeH; Az.
For any @ € C;, there exists s < m and &’s such that

b =6 > Ca--- > Cs = Q.
Note that among the ratio’s %, %)ﬁ-,k 1,2,--+,s — 1, which
are bounded by 2M for large n, at most r° terms are bigger than /4,
since only possible cases are [ < r and the maximum cluster size < r in
Lemma 2.2 (1). Hence p(a) < M(l_)i)(QM)T2, for small ¢, e.g., § < 1.

Therefore, for large n, since |AT| < 2™*! as described after Lemma

24,

p(Ui>cCi) < Yisc #(Ci)
H(Aar) - (Aar)

(2M )’

< mmax ———— (2M)T gm+1

i>
max r!(2M )z g
i>C /2migt
di(dy)™
< 1(@:)
L)
for some constants di,ds> independent of n and ig > C. Recall m ~
nl/2,C = enl/2/8M, and conclude that the final term tends to 0, as
n — oo. Now the proof is completed by Lemma 2.8. (|

(M )T2 2m+1 (by Sterling formula)

7
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LEMMA 2.10. If m ~ n%, for any ¢ > 0 there exists r such that
Prob{Y™ > r} <e.

ProoF. It suffices to prove that for the same r in the previous
Lemma,

N(Ui>rA&i)_
1(As,)
Indeed,
M(Ui>7’A(li) — M(Aﬁr+1) au(:Aa'r+1) R M(Aa’T+2) + ..
1(Az,) 1(Aaz,) p(Aa,) M(Aﬁr+1)
€ €\2
<(3)+ () +
< €. O

PrOOF OF THEOREM 2.7. Tightness is done from Lemma 2.9 and
Lemma 2.10. Now

#(Aa) _ g(1)*m(m—1)(n ~1)
#(Ag,)  9(2)(n—m+1)(n—m+2)
(2.8) m>% —2)(m—3) g(1)*(m —4)(m - 5)

29(2)(n — m+2) 3g(2)(n — m + 3)
A2 22 (ol

1g(2)(n —m +1) 9(2)
That is,
Prob{Y™ =1} . (g(1)2>ll
Prob{Y" =0} g(2)/ 1V
and the proof is done. O

THEOREM 2.11. If m ~ nP, 3 < 8 < 1, then for any I, Prob{Y™ <
I} = 0asn— .

PRrROOF. With the same notation of the proof of Lemma 2.9,

#(Aa, ;) > 9(1)*(m — 2i)(m — 2i + 1)

(2.9) 1(Az,) g2)@i+1)(n—-m+i+1)’

i>1,

and

pAa) . g(1Pm(m=1)n 1)
p(Az,) = 9@2)(n—m+ D(n—m+2)
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The both terms are made to be larger then 2/¢ for sufficiently large n.
Therefore,

/‘(Ué=0Adi) < :u'(Ué=0Aﬁi)

) T u(Aa,,)
I ko
<(§)+(5) v
<e. -
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