• Title/Summary/Keyword: integral operator.

Search Result 273, Processing Time 0.021 seconds

WEAK FACTORIZATIONS OF H1 (ℝn) IN TERMS OF MULTILINEAR FRACTIONAL INTEGRAL OPERATOR ON VARIABLE LEBESGUE SPACES

  • Zongguang Liu;Huan Zhao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1439-1451
    • /
    • 2023
  • This paper provides a constructive proof of the weak factorizations of the classical Hardy space H1(ℝn) in terms of multilinear fractional integral operator on the variable Lebesgue spaces, which the result is new even in the linear case. As a direct application, we obtain a new proof of the characterization of BMO(ℝn) via the boundedness of commutators of the multilinear fractional integral operator on the variable Lebesgue spaces.

INTEGRAL KERNEL OPERATORS ON REGULAR GENERALIZED WHITE NOISE FUNCTIONS

  • Ji, Un-Cig
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.601-618
    • /
    • 2000
  • Let (and $g^*$) be the space of regular test (and generalized, resp.) white noise functions. The integral kernel operators acting on and transformation groups of operators on are studied, and then every integral kernel operator acting on can be extended to continuous linear operator on $g^*$. The existence and uniqueness of solutions of Cauchy problems associated with certain integral kernel operators with intial data in $g^*$ are investigated.

  • PDF

UNIFIED INTEGRAL OPERATOR INEQUALITIES VIA CONVEX COMPOSITION OF TWO FUNCTIONS

  • Mishra, Lakshmi Narayan;Farid, Ghulam;Mahreen, Kahkashan
    • Korean Journal of Mathematics
    • /
    • v.29 no.1
    • /
    • pp.91-103
    • /
    • 2021
  • In this paper we have established inequalities for a unified integral operator by using convexity of composition of two functions. The obtained results are directly connected to bounds of various fractional and conformable integral operators which are already known in literature. A generalized Hadamard integral inequality is obtained which further leads to its various versions for associated fractional integrals. Further, some implicated results are discussed.

A bounded convergence theorem for the operator-valued feynman integral

  • Ahn, Byung-Moo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.465-475
    • /
    • 1996
  • Fix t > 0. Denote by $C^t$ the space of $R$-valued continuous functions x on [0,t]. Let $C_0^t$ be the Wiener space - $C_0^t = {x \in C^t : x(0) = 0}$ - equipped with Wiener measure m. Let F be a function from $C^t to C$.

  • PDF

Integral Operator of Analytic Functions with Positive Real Part

  • Frasin, Basem Aref
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.1
    • /
    • pp.77-85
    • /
    • 2011
  • In this paper, we introduce the integral operator $I_{\beta}$($p_1$, ${\ldots}$, $p_n$; ${\alpha}_1$, ${\ldots}$, ${\alpha}_n$)(z) analytic functions with positive real part. The radius of convexity of this integral operator when ${\beta}$ = 1 is determined. In particular, we get the radius of starlikeness and convexity of the analytic functions with Re {f(z)/z} > 0 and Re {f'(z)} > 0. Furthermore, we derive sufficient condition for the integral operator $I_{\beta}$($p_1$, ${\ldots}$, $p_n$; ${\alpha}_1$, ${\ldots}$, ${\alpha}_n$)(z) to be analytic and univalent in the open unit disc, which leads to univalency of the operators $\int\limits_0^z(f(t)/t)^{\alpha}$dt and $\int\limits_0^z(f'(t))^{\alpha}dt$.

CERTAIN FRACTIONAL INTEGRAL INEQUALITIES ASSOCIATED WITH PATHWAY FRACTIONAL INTEGRAL OPERATORS

  • Agarwal, Praveen;Choi, Junesang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.181-193
    • /
    • 2016
  • During the past two decades or so, fractional integral inequalities have proved to be one of the most powerful and far-reaching tools for the development of many branches of pure and applied mathematics. Very recently, many authors have presented some generalized inequalities involving the fractional integral operators. Here, using the pathway fractional integral operator, we give some presumably new and potentially useful fractional integral inequalities whose special cases are shown to yield corresponding inequalities associated with Riemann-Liouville type fractional integral operators. Relevant connections of the results presented here with those earlier ones are also pointed out.

ANALYTIC FUNCTIONS WITH CONIC DOMAINS ASSOCIATED WITH CERTAIN GENERALIZED q-INTEGRAL OPERATOR

  • Om P. Ahuja;Asena Cetinkaya;Naveen Kumar Jain
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.1111-1126
    • /
    • 2023
  • In this paper, we define a new subclass of k-uniformly starlike functions of order γ (0 ≤ γ < 1) by using certain generalized q-integral operator. We explore geometric interpretation of the functions in this class by connecting it with conic domains. We also investigate q-sufficient coefficient condition, q-Fekete-Szegö inequalities, q-Bieberbach-De Branges type coefficient estimates and radius problem for functions in this class. We conclude this paper by introducing an analogous subclass of k-uniformly convex functions of order γ by using the generalized q-integral operator. We omit the results for this new class because they can be directly translated from the corresponding results of our main class.