UNIVALENCE PROPERTIES FOR A GENERAL INTEGRAL OPERATOR

Daniel Breaz

ABSTRACT. We consider the univalence function classes \mathcal{T} , \mathcal{T}_2 , $\mathcal{T}_{2,\mu}$, and $\mathcal{S}(p)$. For these classes we shall study some univalence properties for a general integral operator. Furthermore we shall extend some known univalence criteria, i.e., Becker-type criteria.

1. Introduction

Let $\mathcal{U}=\{z\in\mathbb{C},|z|<1\}$ be the unit disk and \mathcal{A} denotes the class of the functions f of the form

$$f(z) = z + a_2 z^2 + a_3 z^3 + \cdots, z \in \mathcal{U},$$

which are analytic in the open disk, \mathcal{U} and satisfy the condition f(0) = f'(0) - 1 = 0. Consider $\mathcal{S} = \{ f \in \mathcal{A} : f \text{ is univalent functions in } \mathcal{U} \}$.

Let A_2 be the subclass of A consisting of functions is of the form

(1.1)
$$f(z) = z + \sum_{k=3}^{\infty} a_k z^k.$$

Let \mathcal{T} be the univalent subclass of \mathcal{A} which satisfies

$$\left|\frac{z^2 f'(z)}{(f(z))^2} - 1\right| < 1 \quad (z \in \mathcal{U}).$$

Let \mathcal{T}_2 be the subclass of \mathcal{T} for which f''(0) = 0. Let $\mathcal{T}_{2,\mu}$ be the subclass of \mathcal{T}_2 consisting of functions is of the form (1.1) which satisfy

(1.3)
$$\left| \frac{z^2 f'(z)}{(f(z))^2} - 1 \right| \le \mu \quad (z \in \mathcal{U})$$

for some μ (0 < μ ≤ 1), and let us denote $\mathcal{T}_{2,1} \equiv \mathcal{T}_2$. Furthermore, for some real p with 0 < p ≤ 2 we define a subclass $\mathcal{S}(p)$ of \mathcal{A} consisting of all function

Received April 21, 2008.

 $^{2000\} Mathematics\ Subject\ Classification.\ 30C45.$

 $Key\ words\ and\ phrases.$ analytic functions, integral operator, univalent function. Supported by the GAR 19/2008.

f(z) which satisfy

$$\left| \left(\frac{z}{f(z)} \right)'' \right| \le p \quad (z \in \mathcal{U}).$$

In [9], Singh has shown that if $f(z) \in \mathcal{S}(p)$, then f(z) satisfies

(1.4)
$$\left| \frac{z^2 f'(z)}{(f(z))^2} - 1 \right| \le p|z|^2, \quad (z \in \mathcal{U}).$$

L. V. Alfors in [1] and J. Becker in [2] has obtained the next univalence criterion:

Theorem 1.1. Let c be a complex number, $|c| \le 1$, $c \ne -1$. If $f(z) = z + a_2 z^2 + \cdots$ is a regular function in \mathcal{U} and

$$\left| c \left| z \right|^2 + \left(1 - \left| z \right|^2 \right) \frac{z f''(z)}{f'(z)} \right| \le 1$$

for all $z \in \mathcal{U}$, then the function f is regular and univalent in \mathcal{U} .

In the paper [7], Pescar need the following theorem:

Theorem 1.2 ([7]). Let β be a complex number, $\operatorname{Re} \beta > 0$, and c a complex number, $|c| \leq 1, c \neq -1$ and $h(z) = z + a_2 z^2 + \cdots$, a regular function in \mathcal{U} . If

$$\left|c\left|z\right|^{2\beta} + \left(1 - \left|z\right|^{2\beta}\right) \frac{zh''(z)}{\beta h'(z)}\right| \le 1$$

for all the $z \in \mathcal{U}$, then the function

$$F_{\beta}(z) = \left[\beta \int_{0}^{z} t^{\beta-1} h'(t) dt\right]^{\frac{1}{\beta}} = z + \cdots$$

is regular and univalent in \mathcal{U} .

The General Schwarz Lemma. Let the function f(z) be regular in the disk $\mathcal{U}_R = \{z \in \mathbb{C}; |z| < R\}$, with |f(z)| < M for fixed M. If f(z) has one zero with multiply $\geq m$ for z = 0, then

$$(1.5) |f(z)| \le \frac{M}{R^m} |z|^m, \ z \in \mathcal{U}_R.$$

The equality (in the inequality (1.5) for $z \neq 0$) can hold only if $f(z) = e^{i\theta} \frac{M}{R^m} z^m$, where θ is constant.

In the paper [8], Seenivasagan and Breaz consider for $f_i \in \mathcal{A}_2$ (i = 1, 2, ..., n) and $\alpha_1, \alpha_2, ..., \alpha_n, \beta \in \mathbb{C}$, the integral operator

$$(1.6) F_{\alpha_1,\alpha_2,\dots,\alpha_n,\beta}(z) = \left\{\beta \int_0^z t^{\beta-1} \prod_{i=1}^n \left(\frac{f_i(t)}{t}\right)^{\frac{1}{\alpha_i}} dt\right\}^{\frac{1}{\beta}}.$$

When $\alpha_i = \alpha$ for all i = 1, 2, ..., n, $F_{\alpha_1, \alpha_2, ..., \alpha_n, \beta}(z)$ becomes the integral operator $F_{\alpha, \beta}$ considered in [3].

2. Main results

Theorem 2.1. Let $M_i \geq 1$ for all $i \in \{1, ..., n\}$, c be a complex number and the functions $f_i \in \mathcal{S}(p_i)$ for $i \in \{1, ..., n\}$ satisfying the condition (1.4). Consider α_i, β be a complex number with the property $\operatorname{Re} \beta \geq \sum_{i=1}^n \frac{(1+p_i)M_i+1}{|\alpha_i|}$. If

(2.1)
$$|c| \le 1 - \frac{1}{\mathbf{Re}\,\beta} \sum_{i=1}^{n} \frac{(1+p_i)M_i + 1}{|\alpha_i|}$$

and

$$|f_i(z)| < M_i$$

for all $z \in \mathcal{U}$ and $i \in \{1, ..., n\}$, then the function $F_{\alpha_1, \alpha_2, ..., \alpha_n, \beta}$ defined in (1.6) is univalent.

Proof. Define a function

$$h(z) = \int_0^z \prod_{i=1}^n \left(\frac{f_i(t)}{t}\right)^{\frac{1}{\alpha_i}} dt,$$

then we have h(0) = h'(0) - 1 = 0. Also a simple computation yields

(2.2)
$$\frac{zh''(z)}{h'(z)} = \sum_{i=1}^{n} \frac{1}{\alpha_i} \left(\frac{zf_i'(z)}{f_i(z)} - 1 \right).$$

From equality (2.2), we have

(2.3)

$$\left|\frac{zh''(z)}{h'(z)}\right| \le \sum_{i=1}^n \frac{1}{|\alpha_i|} \left(\left|\frac{zf_i'(z)}{f_i(z)}\right| + 1 \right) = \sum_{i=1}^n \frac{1}{|\alpha_i|} \left(\left|\frac{z^2f_i'(z)}{f_i^2(z)}\right| \left|\frac{f_i(z)}{z}\right| + 1 \right).$$

From the hypothesis, we have $|f_i(z)| \leq M_i, z \in \mathcal{U}$ and $i \in \{1, ..., n\}$, then by General Schwarz Lemma, we obtain that

$$|f_i(z)| \leq M_i |z|$$

for all $z \in \mathcal{U}$ and $i \in \{1, ..., n\}$.

We apply this result in inequality (2.3), we obtain

$$\left| \frac{zh''(z)}{h'(z)} \right| \leq \sum_{i=1}^{n} \frac{1}{|\alpha_{i}|} \left(\left| \frac{z^{2} f_{i}'(z)}{(f_{i}(z))^{2}} \right| M_{i} + 1 \right)
\leq \sum_{i=1}^{n} \frac{1}{|\alpha_{i}|} \left(\left| \frac{z^{2} f_{i}'(z)}{(f_{i}(z))^{2}} - 1 \right| M_{i} + M_{i} + 1 \right)
= \sum_{i=1}^{n} \frac{1}{|\alpha_{i}|} \left(p_{i} M_{i} |z|^{2} + M_{i} + 1 \right) < \sum_{i=1}^{n} \frac{(1 + p_{i}) M_{i} + 1}{|\alpha_{i}|}.$$

Next, we evaluate the expression:

$$\left| c |z|^{2\beta} + \left(1 - |z|^{2\beta} \right) \frac{zh''(z)}{\beta h'(z)} \right| \\
\leq |c| + \frac{1}{|\beta|} \left| \frac{zh''(z)}{h'(z)} \right| \leq |c| + \frac{1}{|\beta|} \sum_{i=1}^{n} \frac{(1+p_i)M_i + 1}{|\alpha_i|} \\
< |c| + \frac{1}{\mathbf{Re} \beta} \sum_{i=1}^{n} \frac{(1+p_i)M_i + 1}{|\alpha_i|}.$$

So, from (2.1) we have:

$$\left|c\left|z\right|^{2\beta} + \left(1 - \left|z\right|^{2\beta}\right) \frac{zh''(z)}{\beta h'(z)}\right| \le 1.$$

Applying Theorem 1.2, we obtain that $F_{\alpha_1,\alpha_2,...,\alpha_n,\beta}$ is univalent.

Corollary 2.2. Let $M \ge 1$, c be a complex number and the functions $f_i \in \mathcal{S}(p)$ for $i \in \{1, ..., n\}$ satisfying the condition (1.4). Consider α_i, β be a complex numbers with the property $\operatorname{\mathbf{Re}} \beta \ge \sum_{i=1}^n \frac{(1+p)M+1}{|\alpha_i|}$. If

$$|c| \le 1 - \frac{1}{\mathbf{Re}\,\beta} \sum_{i=1}^{n} \frac{(1+p)M + 1}{|\alpha_i|}$$

and

$$|f_i(z)| \leq M$$

for all $z \in \mathcal{U}$, then the function $F_{\alpha_1,\alpha_2,...,\alpha_n,\beta}$ defined in (1.6) is univalent.

Proof. We consider in Theorem 2.1
$$M_1 = M_2 = \cdots = M_n = M$$
.

Corollary 2.3. Let $M_i \geq 1$ for $i \in \{1, ..., n\}$, c be a complex number and the functions $f_i \in \mathcal{S}(p_i)$, for $i \in \{1, ..., n\}$ satisfying the condition (1.4). Consider α, β be a complex numbers, $\operatorname{Re} \beta \geq \sum_{i=1}^n \frac{((1+p_i)M_i+1)}{|\alpha|}$. If

$$|c| \le 1 - \frac{1}{\operatorname{Re} \beta} \sum_{i=1}^{n} \frac{((p_i + 1)M_i + 1)}{|\alpha|}$$

and

$$|f_i(z)| \leq M_i$$

for all $z \in \mathcal{U}$ and $i \in \{1, ..., n\}$, then the function

$$F_{\alpha,\beta}(z) = \left\{ \beta \int_0^z t^{\beta - 1} \prod_{i=1}^n \left(\frac{f_i(t)}{t} \right)^{\frac{1}{\alpha}} dt \right\}^{\frac{1}{\beta}}$$

is univalent.

Proof. In Theorem 2.1 we consider
$$\alpha_1 = \alpha_2 = \cdots = \alpha_n = \alpha$$
.

Corollary 2.4. Let $M \geq 1$, c be a complex number and the function $f \in \mathcal{S}(p)$, satisfy the condition (1.4). Consider α, β be a complex numbers with the property $\operatorname{\mathbf{Re}} \beta \geq \frac{(1+p)M+1}{|\alpha|}$. If

$$|c| \le 1 - \frac{(1+p)M + 1}{\beta |\alpha|}$$

and

$$|f(z)| \leq M$$

for all $z \in \mathcal{U}$, then the function

$$G_{\alpha,\beta}(z) = \left\{ \beta \int_0^z t^{\beta-1} \left(\frac{f(t)}{t} \right)^{\frac{1}{\alpha}} dt \right\}^{\frac{1}{\beta}}$$

is univalent.

Proof. In Theorem 2.1 we consider n = 1.

Theorem 2.5. Let $M_i \geq 1$ for all $i \in \{1, ..., n\}$, c a complex number and the functions $f_i \in \mathcal{T}_{2,\mu_i}$ for $i \in \{1, ..., n\}$ satisfy the condition (1.3). We consider α_i, β be a complex numbers with the property $\operatorname{\mathbf{Re}} \beta \geq \sum_{i=1}^n \frac{(1+\mu_i)M_i+1}{|\alpha_i|}$. If

(2.4)
$$|c| \le 1 - \frac{1}{\operatorname{Re} \beta} \sum_{i=1}^{n} \frac{(1+\mu_i)M_i + 1}{|\alpha_i|}$$

and

$$|f_i(z)| < M_i$$

for all $z \in \mathcal{U}$ and $i \in \{1, ..., n\}$, then the function $F_{\alpha_1, \alpha_2, ..., \alpha_n, \beta}$ defined in (1.6) is univalent.

Proof. Define a function

$$h(z) = \int_0^z \prod_{i=1}^n \left(\frac{f_i(t)}{t}\right)^{\frac{1}{\alpha_i}} dt,$$

then we have h(0) = h'(0) - 1 = 0. After the same steps with the Theorem 2.1 we have:

$$\left| \frac{zh''(z)}{h'(z)} \right| \leq \sum_{i=1}^{n} \frac{1}{|\alpha_{i}|} \left(\left| \frac{z^{2}f'_{i}(z)}{(f_{i}(z))^{2}} \right| M_{i} + 1 \right)
\leq \sum_{i=1}^{n} \frac{1}{|\alpha_{i}|} \left(\left| \frac{z^{2}f'_{i}(z)}{(f_{i}(z))^{2}} - 1 \right| M_{i} + M_{i} + 1 \right)
= \sum_{i=1}^{n} \frac{1}{|\alpha_{i}|} \left(\mu_{i}M_{i} + M_{i} + 1 \right) < \sum_{i=1}^{n} \frac{(1 + \mu_{i})M_{i} + 1}{|\alpha_{i}|}.$$

We evaluate the next expression:

$$\begin{vmatrix} c |z|^{2\beta} + \left(1 - |z|^{2\beta}\right) \frac{zh''(z)}{\beta h'(z)} \\ \leq |c| + \frac{1}{|\beta|} \left| \frac{zh''(z)}{h'(z)} \right| \leq |c| + \frac{1}{|\beta|} \sum_{i=1}^{n} \frac{(1 + \mu_i)M_i + 1}{|\alpha_i|} \\ < |c| + \frac{1}{\mathbf{Re} \beta} \sum_{i=1}^{n} \frac{(1 + \mu_i)M_i + 1}{|\alpha_i|}.$$

So, from (2.4) we have:

$$\left|c\left|z\right|^{2\beta} + \left(1 - \left|z\right|^{2\beta}\right) \frac{zh''(z)}{\beta h'(z)}\right| \le 1.$$

Applying Theorem 1.2, we obtain that $F_{\alpha_1,\alpha_2,...,\alpha_n,\beta}$ is univalent. \Box

Corollary 2.6. Let $M \geq 1$, c be a complex number and the functions $f_i \in \mathcal{T}_{2,\mu_i}$ for $i \in \{1,\ldots,n\}$ satisfy the condition (1.3). We consider α_i,β be a complex numbers with the property $\operatorname{\mathbf{Re}} \beta \geq \sum_{i=1}^n \frac{(1+\mu_i)M+1}{|\alpha_i|}$. If

$$|c| \le 1 - \frac{1}{\operatorname{Re} \beta} \sum_{i=1}^{n} \frac{(1+\mu_i)M + 1}{|\alpha_i|}$$

and

$$|f_i(z)| \leq M$$

for all $z \in \mathcal{U}$ and $i \in \{1, ..., n\}$, then the function $F_{\alpha_1, \alpha_2, ..., \alpha_n, \beta}$ defined in (1.6) is univalent.

Proof. We consider in Theorem 2.5
$$M_1 = M_2 = \cdots = M_n = M$$
.

Corollary 2.7. Let $M_i \geq 1$ for $i \in \{1, ..., n\}$, c be a complex number and the functions $f_i \in \mathcal{T}_{2,\mu_i}$ for $i \in \{1, ..., n\}$ satisfy the condition (1.3). We consider α, β be a complex numbers with the property $\operatorname{Re} \beta \geq \sum_{i=1}^{n} \frac{((1+\mu_i)M_i+1)}{|\alpha|}$. If

$$|c| \le 1 - \frac{1}{\operatorname{Re} \beta} \sum_{i=1}^{n} \frac{((1+\mu_i)M_i + 1)}{|\alpha|}$$

and

$$|f_i(z)| \leq M_i$$

for all $z \in \mathcal{U}$ and $i \in \{1, ..., n\}$, then the function

$$F_{\alpha,\beta}(z) = \left\{ \beta \int_0^z t^{\beta - 1} \prod_{i=1}^n \left(\frac{f_i(t)}{t} \right)^{\frac{1}{\alpha}} dt \right\}^{\frac{1}{\beta}}$$

is univalent.

Proof. In Theorem 2.5 we consider $\alpha_1 = \alpha_2 = \cdots = \alpha_n = \alpha$.

Corollary 2.8. Let $M \geq 1$, c be a complex number and the function $f \in \mathcal{T}_{2,\mu}$ satisfy the condition (1.3). We consider α, β be a complex numbers with the property $\operatorname{\mathbf{Re}} \beta \geq \frac{(1+\mu)M+1}{|\alpha|}$. If

$$|c| \le 1 - \frac{1}{\operatorname{Re} \beta|} \frac{(1+\mu)M + 1}{|\alpha|}$$

and

$$|f(z)| \le M$$

for all $z \in \mathcal{U}$, then the function

$$G_{\alpha,\beta}(z) = \left\{ \beta \int_0^z t^{\beta-1} \left(\frac{f(t)}{t} \right)^{\frac{1}{\alpha}} dt \right\}^{\frac{1}{\beta}}$$

is univalent.

Proof. In Theorem 2.5 we consider n = 1.

Corollary 2.9. Let $M_i \geq 1$ for all $i \in \{1, ..., n\}$, c a complex number and the functions $f_i \in \mathcal{T}$ for $i \in \{1, ..., n\}$ satisfy the condition (1.2). We consider α_i, β be a complex numbers with the property $\operatorname{Re} \beta \geq \sum_{i=1}^n \frac{2M_i+1}{|\alpha_i|}$. If

$$|c| \le 1 - \frac{1}{\operatorname{Re}\beta} \sum_{i=1}^{n} \frac{2M_i + 1}{|\alpha_i|}$$

and

$$|f_i(z)| \leq M_i$$

for all $z \in \mathcal{U}$ and $i \in \{1, ..., n\}$, then the function $F_{\alpha_1, \alpha_2, ..., \alpha_n, \beta}$ defined in (1.6) is univalent.

Proof. After the same steps with the Theorem 2.5 we obtain the conclusion of this corollary. $\hfill\Box$

References

- L. V. Ahlfors, Sufficient conditions for quasiconformal extension, Discontinuous groups and Riemann surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973), pp. 23-29.
 Ann. of Math. Studies, No. 79, Princeton Univ. Press, Princeton, N.J., 1974.
- [2] J. Becker, Löwnersche Differentialgleichung und Schlichtheitskriterien, Math. Ann. 202 (1973), 321–335.
- [3] D. Breaz and N. Breaz, The univalent condition for an integral operator on the classes $S(\alpha)$ and T_2 , Acta Univ. Apulensis Math. Inform. No. 9 (2005), 63–69.
- [4] D. Breaz and H. O. Guney, On the univalence criterion of a general integral operator, J. Inequal. Appl. 2008 (2008), Art. ID 702715, 8 pp.
- [5] Z. Nehari, Conformal Mapping, McGraw-Hill Book Co., Inc., New York, Toronto, London, 1952
- [6] S. Ozaki and M. Nunokawa, The Schwarzian derivative and univalent functions, Proc. Amer. Math. Soc. 33 (1972), 392–394.
- [7] V. Pescar, A new generalization of Ahlfors's and Becker's criterion of univalence, Bull. Malaysian Math. Soc. (2) 19 (1996), no. 2, 53–54.

- [8] N. Seenivasagan and D. Breaz, Certain sufficient conditions for univalence, Gen. Math. ${\bf 15}$ (2007), no. 4, 7–15.
- [9] V. Singh, On a class of univalent functions, Int. J. Math. Math. Sci. 23 (2000), no. 12, 855–857.

DEPARTMENT OF MATHEMATICS
"1 DECEMBRIE 1918" UNIVERSITY
ALBA IULIA, ROMANIA
E-mail address: dbreaz@uab.ro