Browse > Article
http://dx.doi.org/10.4134/BKMS.2009.46.3.439

UNIVALENCE PROPERTIES FOR A GENERAL INTEGRAL OPERATOR  

Breaz, Daniel (DEPARTMENTO OF MATHEMATICS "1 DECEMBRIE 1918" UNIVERSITY)
Publication Information
Bulletin of the Korean Mathematical Society / v.46, no.3, 2009 , pp. 439-446 More about this Journal
Abstract
We consider the univalence function classes T, $T_2,\;T_{2,{\mu}}$, and S(p). For these classes we shall study some univalence properties for a general integral operator. Furthermore we shall extend some known univalence criteria, i.e., Becker-type criteria.
Keywords
analytic functions; integral operator; univalent function; Supported by the GAR 19/2008;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Z. Nehari, Conformal Mapping, McGraw-Hill Book Co., Inc., New York, Toronto, London, 1952
2 S. Ozaki and M. Nunokawa, The Schwarzian derivative and univalent functions, Proc. Amer. Math. Soc. 33 (1972), 392–394
3 V. Pescar, A new generalization of Ahlfors's and Becker's criterion of univalence, Bull. Malaysian Math. Soc. (2) 19 (1996), no. 2, 53–54
4 L. V. Ahlfors, Sufficient conditions for quasiconformal extension, Discontinuous groups and Riemann surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973), pp. 23–29. Ann. of Math. Studies, No. 79, Princeton Univ. Press, Princeton, N.J., 1974
5 J. Becker, Lownersche Differentialgleichung und Schlichtheitskriterien, Math. Ann. 202 (1973), 321–335   DOI
6 D. Breaz and N. Breaz, The univalent condition for an integral operator on the classes S($\alpha) and T_2$, Acta Univ. Apulensis Math. Inform. No. 9 (2005), 63–69
7 D. Breaz and H. O. Guney, On the univalence criterion of a general integral operator, J. Inequal. Appl. 2008 (2008), Art. ID 702715, 8 pp   DOI   ScienceOn