A BOUNDED CONVERGENCE THEOREM FOR THE OPERATOR-VALUED FEYNMAN INTEGRAL

BYUNG MOO AHN

1. Introduction

Fix t>0. Denote by C^t the space of \mathbb{R} -valued continuous functions x on [0,t]. Let C_0^t be the Wiener space - $C_0^t=\{x\in C^t:x(0)=0\}$ -equipped with Wiener measure m. Let F be a function from C^t to \mathbb{C} . Given $\lambda>0,\psi\in L^2(\mathbb{R})$ and $\xi\in\mathbb{R}$, let

$$(1.1) (K_{\lambda}(F)\psi)(\xi) = \int_{C_0^t} F(\lambda^{-\frac{1}{2}}x + \xi)\psi(\lambda^{-\frac{1}{2}}x(t) + \xi) dm(x).$$

DEFINITION. The operator- valued function space integral $K_{\lambda}(F)$ exists for $\lambda>0$ if (1.1) defines $K_{\lambda}(F)$ as a bounded linear operator on $L^2(\mathbb{R})$. If, in addition, the operator-valued function $K_{\lambda}(F)$, as a function of λ , has an extension to an analytic function in $\mathbb{C}_+=\{\lambda\in\mathbb{C}:Re\lambda>0\}$ and a strongly continuous function in $\tilde{\mathbb{C}}_+=\{\lambda\in\mathbb{C}:Re\lambda\geq0,\lambda\neq0\}$, we say that $K_{\lambda}(F)$ exists for $\lambda\in\tilde{\mathbb{C}}_+$. When λ is purely imaginary, $K_{\lambda}(F)$ is called the operator-valued Feynman integral of F.

For $s > 0, \lambda \in \tilde{\mathbb{C}}_+$ and $\psi \in L^2(\mathbb{R})$, let

$$(1.2) \qquad (exp[-s(H_0/\lambda)]\psi(\xi) = (\frac{\lambda}{2\pi s})^{\frac{1}{2}} \int_{\mathbb{R}} \psi(u) exp(-\frac{\lambda(u-\xi)^2}{2s}) \, du.$$

The integral in (1.2) exists as an ordinary Lebesgue integral for $\lambda \in \mathbb{C}_+$, but, when λ is purely imaginary and ψ is not integrable, the integral

Received January 23, 1996. Revised May 12, 1996.

¹⁹⁹¹ AMS Subject Classification: 28C20.

Key words and phrases: operator-valued function space integral, operator-valued Feynman integral.

should be interpreted in the mean as in the theory of the Fourier-Plancherel transform.

In this paper, θ is a bounded Borel measurable and everywhere defined real valued function on $(0,t)\times\mathbb{R}$ and we will let $M:=||\theta||_{\infty}$.

Let η be a finite signed Borel measure on (0,t). Then η has a unique decomposition $\eta = \mu + \eta_d$ into a continuous part μ and a discrete part $\eta_d[8]$. The case where η_d has a finite support is most likely to be of interest. So, let

(1.3)
$$\eta_d = \sum_{j=1}^N \omega_j \delta_{\tau_j}$$

where δ_{τ_j} is as usual the Dirac measure at $\tau_j \in (0, t)$, $0 < \tau_1 < \cdots < \tau_N < t$ and $\omega_j \in \mathbb{R}$ for $j = 1, 2, \cdots, N$.

Let $\mathcal{M}(\mathbb{R})$ be the space of complex Borel measures on \mathbb{R} . The Fourier transform of $\nu \in \mathcal{M}(\mathbb{R})$ is the function $\hat{\nu}$ defined by

(1.4)
$$\hat{\nu}(u) = \int_{\mathbb{R}} e^{-iuv} d\nu(v), \qquad u \in \mathbb{R}.$$

Consider the functional

(1.5)
$$F(x) = \hat{\nu}\left(\int_{(0,t)} \theta(s, x(s)) \, d\eta(s)\right), \qquad x \in C^t.$$

Then, by [1], $K_{\lambda}(F)$ exists for $\lambda > 0$. Also $K_{\lambda}(F)$ exists for $\lambda \in \tilde{\mathbb{C}}_{+}$ and is given by the generalized Dyson series, provided that

(1.6)
$$\int_{\mathbb{R}} e^{M||\eta|||u|} d|\nu|(u) < \infty,$$

i.e. for all $\lambda \in \tilde{\mathbb{C}}_+$, the following expansion of $K_{\lambda}(F)$ hold:

$$K_{\lambda}(F) = \sum_{n=0}^{\infty} n! a_n \sum_{q_0 + \dots + q_N = n} \frac{\omega_1^{q_1} \dots \omega_N^{q_N}}{q_1! \dots q_N!}$$

$$\sum_{k_1 + \dots + k_{N+1} = q_0} \int_{\Delta_{q_0; k_1, \dots, k_{N+1}}} L_0 L_1 \dots L_N d\mu(s_1) \dots d\mu(s_{q_0})$$

where $q_0, \dots, q_N, k_1, \dots, k_{N+1}$ are nonnegative integers,

$$(1.8)$$

$$\Delta_{q_0;k_1,\dots,k_{N+1}} = \{ (s_1,\dots,s_{q_0}) \in (0,t)^{q_0} : 0 < s_1 < \dots < s_{k_1}$$

$$< \tau_1 < s_{k_1+1} < \dots < s_{k_1+k_2} < \tau_2 < s_{k_1+k_2+1} < \dots$$

$$< s_{k_1+\dots+k_N} < \tau_N < s_{k_1+\dots+k_N+1} < \dots < s_{q_0} < t \}$$

and, for $(s_1, \dots, s_{q_0}) \in \Delta_{q_0; k_1, \dots, k_{N+1}}$ and $r \in \{0, 1, \dots, N\}$

(1.9)
$$L_{r} = [\theta(\tau_{r})]^{q_{r}} e^{-(s_{k_{1}} + \dots + k_{r} + 1 - \tau_{r})(H_{0}/\lambda)} \theta(s_{k_{1}} + \dots + k_{r} + 1)$$

$$e^{-(s_{k_{1}} + \dots + k_{r} + 2 - s_{k_{1}} + \dots + k_{r} + 1)(H_{0}/\lambda)} \theta(s_{k_{1}} + \dots + k_{r} + 2) \cdots$$

$$\theta(s_{k_{1}} + \dots + k_{r+1}) e^{-(\tau_{r+1} - s_{k_{1}} + \dots + k_{r} + 1)(H_{0}/\lambda)}$$

and

(1.10)
$$a_n = \frac{1}{n!} \int_{\mathbb{R}} (-i)^n u^n \, d\nu(u).$$

We use the conventions $\tau_0 = 0, \tau_{N+1} = t$ and $[\theta(\tau_0)]^{q_0} = 1$.

2. A stability theorem

We begin with a lemma which will be useful in the main theorems.

LEMMA. Let $\{F_n(x)\}$ be a sequence of Borel measurable functionals such that $|F_n(x)| \leq B$ for some constant B > 0 and for all $n = 1, 2, 3, \cdots$. Further suppose that for every $\lambda > 0$

(2.1)
$$F_n(\lambda^{-\frac{1}{2}}x+\xi) \to F(\lambda^{-\frac{1}{2}}x+\xi) \quad as \quad n \to \infty$$

for $m \times Leb. - a.e.(x, \xi)$. Then for every $\lambda > 0$

$$K_{\lambda}(F_n) \to K_{\lambda}(F)$$
 strongly as $n \to \infty$.

Proof. Let $\lambda > 0$, $\psi \in L^2(\mathbb{R})$ and $\xi \in \mathbb{R}$ be given. By (2.1), for $m \times Leb. - a.e.(x, \xi)$,

$$(2.2) \quad F_n(\lambda^{-\frac{1}{2}}x+\xi)\psi(\lambda^{-\frac{1}{2}}x(t)+\xi) \to F(\lambda^{-\frac{1}{2}}x+\xi)\psi(\lambda^{-\frac{1}{2}}x(t)+\xi).$$

Note that for every $x \in C_0^t$, for a.e. $\xi \in \mathbb{R}$ and for all $n = 1, 2, 3, \cdots$.

$$|F_n(\lambda^{-\frac{1}{2}}x+\xi)\psi(\lambda^{-\frac{1}{2}}x(t)+\xi)| \le B|\psi(\lambda^{-\frac{1}{2}}x(t)+\xi)|.$$

In view of (2.2), (2.3), and the Dominated Convergence Theorem for Wiener integrals,

$$(2.4) (K_{\lambda}(F_n)\psi)(\xi) \to (K_{\lambda}(F)\psi)(\xi) \text{ for } Leb. - a.e. \, \xi.$$

Moreover, by (2.3) and Wiener's integration formula

(2.5)

$$\begin{aligned} |(K_{\lambda}(F_n)\psi)(\xi)| &\leq \int_{C_0^t} |F_n(\lambda^{-\frac{1}{2}}x + \xi)\psi(\lambda^{-\frac{1}{2}}x(t) + \xi)| \, dm(x) \\ &\leq B \int_{C_0^t} |\psi(\lambda^{-\frac{1}{2}}x + \xi)| \, dm(x) \\ &= B(e^{-t(H_0/\lambda)}|\psi|)(\xi) \end{aligned}$$

for every $n = 1, 2, \cdots$ and a.e. $\xi \in \mathbb{R}$.

Since $e^{-t(H_0/\lambda)}|\psi| \in L^2(\mathbb{R})$, using (2.4), (2.5) and the Lebesgue Dominated Convergence Theorem, we have

$$(2.6) K_{\lambda}(F_n) \to K_{\lambda}(F)$$

in $L^2(\mathbb{R})$.

The first theorem treats the case $\lambda > 0$.

THEOREM 1. Let η be a finite signed Borel measure on (0,t) and let $\nu \in \mathcal{M}(\mathbb{R})$. Suppose that θ and θ_m , $m=1,2,\cdots$ are all bounded by M on $(0,t)\times\mathbb{R}$. Let F be defined as (1.5) and F_m be defined as (1.5) except with θ replaced by θ_m . Assume that

$$(2.7) \theta_m \to \theta$$

at each point of $(0,t) \times \mathbb{R}$ as $m \to \infty$. Then for all $\lambda > 0$,

$$(2.8) K_{\lambda}(F_m) \to K_{\lambda}(F) strongly as m \to \infty.$$

Proof. Let $\lambda > 0, x \in C_0^t$ and $\xi \in \mathbb{R}$ be given. Since θ_m is bounded by M for all $m = 1, 2, \dots$, by (2.7),

(2.9)
$$\int_{(0,t)} \theta_m(s,\lambda^{-\frac{1}{2}}x(s)+\xi) \, d\eta(s) \to \int_{(0,t)} \theta(s,\lambda^{-\frac{1}{2}}x(s)+\xi) \, d\eta(s)$$

Since $\hat{\nu}$ is continuous,

$$(2.10) \hat{\nu}(\int_{(0,t)} \theta_m(s, \lambda^{-\frac{1}{2}}x(s) + \xi) \, d\eta(s)) \to \hat{\nu}(\int_{(0,t)} \theta(s, \lambda^{-\frac{1}{2}}x(s) + \xi) \, d\eta(s))$$

i.e. $F_m(\lambda^{-\frac{1}{2}}x+\xi) \to F(\lambda^{-\frac{1}{2}}x+\xi)$. Note that

(2.11)
$$|F_{m}(x)| = |\hat{\nu}(\int_{(0,t)} \theta_{m}(s, x(s)) d\eta(s))|$$

$$\leq ||\hat{\nu}||$$

for all $x \in C^t$ and for all $m = 1, 2, \cdots$. Hence (2.11) and Lemma give the result for $\lambda > 0$.

We now obtain a stability result for $\lambda \in \mathbb{C}_+$ under the assumption that the measure $|\nu|$ dies off rapidly at ∞ .

THEOREM 2. Let θ and $\theta^{(m)}$, $m=1,2,\cdots$ be everywhere defined \mathbb{R} -valued and Borel measurable functions bounded by M on all of $(0,t)\times\mathbb{R}$. Let $\eta=\mu+\eta_d$ be a finite signed Borel measure on (0,t) where η_d is given by (1.3), and let $\nu\in\mathcal{M}(\mathbb{R})$ be such that

(2.12)
$$\int_{\mathbb{R}} e^{M||\eta|||u|} d|\nu|(u) < \infty.$$

Assume that

$$(2.13) \theta^{(m)} \to \theta as m \to \infty \eta \times Leb. - a.\epsilon. on (0,t) \times \mathbb{R}.$$

Let F and $F^{(m)}$ be defined as in Theorem 1. Then for all $\lambda \in \tilde{\mathbb{C}}_+$

(2.14)
$$K_{\lambda}(F^{(m)}) \to K_{\lambda}(F)$$
 strongly as $m \to \infty$.

Further, the operator $K_{\lambda}(F)$ preserves the form of the operator $K_{\lambda}(F^{(m)})$; to be more specific, (2.15)

$$\begin{split} K_{\lambda}(F^{(m)}) &= \sum_{n=0}^{\infty} n! a_n \sum_{q_0 + \dots + q_N = n} \frac{\omega_1^{q_1} \cdots \omega_N^{q_N}}{q_1! \cdots q_N!} \\ &= \sum_{k_1 + \dots + k_N + 1 = q_0} \int_{\Delta_{q_0; k_1, \dots, k_N + 1}} L_0^{(m)} L_1^{(m)} \cdots L_N^{(n)} d\mu(s_1) \cdots d\mu(s_{q_0}) \end{split}$$

$$K_{\lambda}(F) = \sum_{n=0}^{\infty} n! a_n \sum_{q_0 + \dots + q_N = n} \frac{\omega^{q_1} \dots \omega^{q_N}}{q_1! \dots q_N!}$$
$$\sum_{k_1 + \dots + k_N + 1} \int_{\Delta_{q_0, k_1, \dots, k_N + 1}} L_0 L_1 \dots L_N d\mu(s_1) \dots d\mu(s_{q_0})$$

strongly as $m \to \infty$;

where $q_0, \dots, q_N, k_1, \dots, k_{N+1}$ are nonnegative integers and $\Delta_{q_0;k_1,\dots,k_{N+1}}$ is given by (1.8) and, for $(s_1,\dots,s_{q_0}) \in \Delta_{q_0;k_1,\dots,k_{N+1}}$ and $r \in \{0,1,\dots,N\}$, L_r is given by (1.9), and $L_r^{(m)}$ is given as in (1.9) except with θ replaced by $\theta^{(m)}$ and a_n is given by (1.10).

Proof. Let $\psi \in L^2(\mathbb{R})$ be given. Let $\theta^{(m)}(s)$ denote the operator of multiplication by $\theta^{(m)}(s,\cdot)$ so that $(\theta^{(m)}(s)\psi)(\xi) = \theta^{(m)}(s,\xi)\psi(\xi)$ for all $\xi \in \mathbb{R}$. So, by (2.13)

$$(2.16) (\theta^{(m)}(s)\psi)(\xi) \to (\theta(s)\psi)(\xi) as m \to \infty$$

Leb. - a.e. for $\eta - a.e.$ $s \in (0, t)$. But

(2.17)
$$|(\theta^{(m)}(s)\psi)(\xi) - (\theta(s)\psi)(\xi)|^{2}$$

$$\leq (|\theta^{(m)}(s,\xi)||\psi(\xi)| + |\theta(s,\xi)||\psi(\xi)|)^{2}$$

$$\leq 4M^{2}|\psi(\xi)|^{2}.$$

Since $\psi \in L^2(\mathbb{R})$, next using (2.16) and the Lebesgue Dominated Convergence Theorem, we have

$$(2.18) ||\theta^{(m)}(s)\psi - \theta(s)\psi||_2 \to 0 as m \to \infty;$$

 $i.e. \theta^{(m)}(s) \to \theta(s)$ strongly as $m \to \infty$ for $\eta = a.\epsilon.s$.

Using (2.18) and the fact that the composition of operator is jointly continuous in the strong operator topology when the operators involved are uniformly bounded we see that

(2.19)
$$L_0^{(m)} L_1^{(m)} \cdots L_N^{(m)} \to L_0 L_1 \cdots L_N$$

strongly $\mu \times \cdots \times \mu - a.e.$ in $\Delta_{q_0; k_1, \cdots, k_{N+1}}$.

Note that $L_0^{(m)}L_1^{(m)}\cdots L_N^{(m)}(\lambda;s_1,\cdots,s_{q_0})$ is strongly measurable [7].

Since $\theta^{(m)}$ is bounded by M and $||e^{-s(H_0/\lambda)}|| \leq 1$

$$(2.20) ||L_0^{(m)}L_1^{(m)}\cdots L_N^{(m)}\psi|| \leq M^n||\psi||_2.$$

Further,

$$(2.21) \sum_{k_{1}+\cdots+k_{N+1}=q_{0}} \int_{\Delta_{q_{0};k_{1},\cdots,k_{N+1}}} ||L_{0}^{(m)}L_{1}^{(m)}\cdots L_{N}^{(m)}\psi|| d|\mu|(s_{1})\cdots d|\mu|(s_{q_{0}})$$

$$\leq M^{n}||\psi||_{2} \int_{\Delta_{q_{0}}} d|\mu|(s_{1})\cdots d|\mu|(s_{q_{0}})$$

$$\leq M^{n}||\psi||_{2} \frac{||\mu||^{q_{0}}}{q_{0}!} < \infty.$$

So, $L_0^{(m)}L_1^{(m)}\cdots L_N^{(m)}$ is Bochner integrable over $\Delta_{q_0;k_1,\cdots,k_{N+1}}$. Note that since μ is a finite signed Borel measure on (0,t)

$$(2.22) M^n ||\mu|| \in L_1(\Delta_{q_0; k_1, \dots, k_{N+1}}, \mu \times \dots \times \mu).$$

Therefore, using (2.19) and the Dominated Convergence Theorem for the Bochner integral [3], we have that $L_0L_1\cdots L_N$ is Bochner integrable and

(2.23)
$$\int_{\Delta_{q_0(k_1,\cdots,k_{N+1})}} L_0^{(m)} L_1^{(m)} \cdots L_N^{(m)} d\mu(s_1) \cdots d\mu(s_{q_0})$$

$$\int_{\Delta_{q_0;k_1,\cdots,k_{N+1}}} L_0 L_1 \cdots L_N d\mu(s_1) \cdots d\mu(s_{q_0})$$

in $L^2(\mathbb{R})$. Set

$$(2.24)$$

$$\mathcal{L}_{n}^{(m)} := \sum_{q_{0}+\dots+q_{N}=n} \frac{\omega_{1}^{q_{1}} \cdots \omega_{N}^{q_{N}}}{q_{1}! \cdots q_{N}!} \sum_{k_{1}+\dots+k_{N+1}=q_{0}} \int_{\Delta_{q_{0},k_{1},\dots,k_{N+1}}} L_{0}^{(m)} L_{1}^{(m)} \cdots L_{N}^{(m)} d\mu(s_{1}) \cdots d\mu(s_{q_{0}})$$

and

(2.25)
$$\mathcal{L}_{n} := \sum_{q_{0} + \dots + q_{N} = n} \frac{\omega_{1}^{q_{1}} \dots \omega_{N}^{q_{N}}}{q_{1}! \dots q_{N}!} \sum_{k_{1} + \dots + k_{N+1} = q_{0}} \int_{\Delta_{q_{0};k_{1},\dots,k_{N+1}}} L_{0}L_{1} \dots L_{N} d\mu(s_{1}) \dots d\mu(s_{q_{0}}).$$

Then

$$(2.26) \mathcal{L}_n^{(m)} \to \mathcal{L}_n strongly as m \to \infty.$$

Furthermore,

(2.27)

$$\begin{split} ||\mathcal{L}_{n}^{(m)}\psi|| &\leq \sum_{q_{0}+\dots+q_{N}=n} \frac{|\omega_{1}|^{q_{1}}\dots|\omega_{N}|^{q_{N}}}{q_{1}!\dots q_{N}!} \sum_{k_{1}+\dots+k_{N+1}=q_{0}} \\ &\int_{\Delta_{q_{0};k_{1},\dots,k_{N+1}}} ||L_{0}^{(m)}L_{1}^{(m)}\dots L_{N}^{(m)}\psi|| \, d|\mu|(s_{1})\dots d|\mu|(s_{q_{0}}) \\ &\leq \sum_{q_{0}+\dots+q_{N}=n} \frac{|\omega_{1}|^{q_{1}}\dots|\omega_{N}|^{q_{N}}}{q_{1}!\dots q_{N}!} M^{n}||\psi|| \int_{\Delta_{q_{0}}} d|\mu|(s_{1})\dots d|\mu|(s_{q_{0}}) \\ &= \sum_{q_{0}+\dots+q_{N}=n} \frac{|\omega_{1}|^{q_{1}}\dots|\omega_{N}|^{q_{N}}}{q_{1}!\dots q_{N}!} M^{n}||\psi|| \frac{||\mu||^{q_{0}}}{q_{0}!} \\ &= M^{n}||\psi|| \frac{1}{n!} \sum_{q_{0}+\dots+q_{N}=n} \frac{n!}{q_{0}!\dots q_{N}!} ||\mu||^{q_{0}}|\omega_{1}|^{q_{1}}\dots|\omega_{N}|^{q_{N}} \\ &= M^{n}||\psi|| \frac{(||\mu||+|\omega_{1}|+\dots|\omega_{N}|)^{n}}{n!} \\ &= M^{n} \frac{||\eta||^{n}}{n!} ||\psi||. \end{split}$$

Similarly

$$(2.28) ||\mathcal{L}_n\psi|| \le M^n \frac{||\eta||^n}{n!} ||\psi||.$$

Let $\epsilon > 0$ be given. Using (2.12), take N_0 so large that

(2.29)
$$\sum_{n=N_0+1}^{\infty} |a_n| M^n ||\eta||^n ||\psi|| < \frac{\epsilon}{4}.$$

Now using (2.26), let N be so large that for $m \geq N$

(2.30)
$$\sum_{n=1}^{N_0} n! |a_n| ||\mathcal{L}_n^{(m)} \psi - \mathcal{L}_n \psi|| < \frac{\epsilon}{2}.$$

Now, let $m \ge N$. Then using (2.30), (2.27), (2.28) and (2.29), (2.31)

$$\begin{split} ||K_{\lambda}(F^{(m)})\psi - K_{\lambda}(F)\psi|| \\ &= ||\sum_{n=0}^{\infty} n! a_{n} \mathcal{L}_{n}^{(m)} \psi - \sum_{n=0}^{\infty} n! a_{n} \mathcal{L}_{n} \psi|| \\ &= ||\sum_{n=0}^{N_{0}} (n! a_{n} \mathcal{L}_{n}^{(m)} \psi - n! a_{n} \mathcal{L}_{n} \psi) + \sum_{n=N_{0}+1}^{\infty} (n! a_{n} \mathcal{L}_{n}^{(m)} \psi - n! a_{n} \mathcal{L}_{n} \psi)|| \\ &\leq \sum_{n=0}^{N_{0}} n! |a_{n}|| |\mathcal{L}_{n}^{(m)} \psi - \mathcal{L}_{n} \psi|| + \sum_{n=N_{0}+1}^{\infty} n! |a_{n}|| |\mathcal{L}_{n}^{(m)} \psi|| \\ &+ \sum_{n=N_{0}+1}^{\infty} n! |a_{n}|| |\mathcal{L}_{n} \psi|| \\ &< \frac{\epsilon}{2} + \sum_{n=N_{0}+1}^{\infty} n! |a_{n}| \frac{M^{n} ||\eta||^{n}}{n!} ||\psi|| + \sum_{n=N_{0}+1}^{\infty} n! |a_{n}| \frac{M^{n} ||\eta||^{n}}{n!} ||\psi|| \\ &= \frac{\epsilon}{2} + 2 \sum_{n=N_{0}+1}^{\infty} |a_{n}| M^{n} ||\eta||^{n} ||\psi|| \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \quad as \quad desired. \end{split}$$

We can obtain a corollary immediately from a simple standard result of functional analysis.

COROLLARY 1. Let the hypotheses of Theorem 2 be satisfied and suppose that $||\psi_m - \psi|| \to 0$ as $m \to \infty$. Then

$$||K_{\lambda}(F^{(m)})\psi_m - K_{\lambda}(F)\psi|| \to 0 \quad as \quad m \to \infty.$$

References

- B. M. Ahn, and G. W. Johnson, Path Integrals, Fourier Transforms and Feynman's Operational Calculus, Technical Report Center for Stochastic Processes Univ. of N.C. 470 (1995), 3-19.
- R. H. Cameron and D. A. Stovick, An operator valued function space integral and a related integral equations, J. Math. Mech. 18 (1963), 517-552.
- 3. E. Hille and R. S. Phillips, Functional analysis and Semi-groups, vol. XXXI rev.ed, Amer. Math. Soc. Colloq., Providence, Amer. Math. Soc., 1957.

A bounded convergence theorem

- G. W. Johnson, A bounded convergence theorem for the Feynman integral, J. Math. Phys. 25 (1984), 1323-1326.
- G. W. Johnson and M. L. Lapidus, Generalized Dyson Series, generalized Feynman diagrams, Feynman integral, and Feynman's operational calculus, Mem. Amer. Math. Soc. 62 (No. 351) (1986), 1-78.
- 6. G. W. Johnson and D. L. Skoug, Stability Theorems for the Feynman Integral, Supplemento ai Rendiconti del Circolo Matematico di Palermo Serie II-Numero 8 (1985), 361-367.
- Carmeron-Stovick function space integral: an L(L_p, L_{p'}) theory, Nagoya Math. J. 60 (1976), 93-137.
- 8. M. Reed and B. Simon, Methods of Modern Mathematical Physics Vol. 1, Rev. and enl. ed., Academic Press, New York, 1980.

DEPARTMENT OF MATHEMATICS, SOONCHUNHYANG UNIVERSITY, ASHAN 337-880, KOREA