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A BOUNDED CONVERGENCE THEOREM FOR THE
OPERATOR~-VALUED FEYNMAN INTEGRAL

Byung Moo AHN

1. Introduction

Fix t > 0. Denote by C! the space of R-valued continuous functions
z on [0,t]. Let C¢ be the Wiener space - Cf = {z € C': (0) = 0} -
equipped with Wiener measure m . Let F' be a function from ! to C.

Given A > 0,¢ € L*(R) and £ € R, let

(11 (BAFWHO = [ FOHa+ 6t + € i),

1t
& 0

DEFINITION. The operator- valued function space integral A (F)
exists for A > 0 if (1.1) defines Kx(F) as a bounded linear operator
on L?(R). If, in addition, the operator-valued function K(F), as a
function of A, has an extension to an analytic function in C; = {\ €
C : Re) > 0} and a strongly continuous function in C4 = {A € C :
ReX > 0,A # 0}, we say that K,(F) exists for A\ € C+. When A 1s
purely imaginary, K »(F) is called the operator-valued Feynman integral

of F.
For s >0,A € Cy and v € L*(R), let

. /\ 1 /\ u — )2
(12) (erpls(Ho/Ae) = (550} [ wtment -0

The integral in (1.2) exists as an ordinary Lebesgue integral for A € C.,
but, when X is purely imaginary and 1 is not inregrable, the integral
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should be interpreted in the mean as in the theory of the Fourier-
Plancherel transform.

In this paper, 8 is a bounded Borel measurable and everywhere de-
fined real valued function on (0,%) x R and we will let M := ||6]|o.

Let 7 be a finite signed Borel measure on (0,%). Then n has a unique
decomposition n = u + 74 into a continuous part y and a discrete part
n4[8]. The case where 5, has a finite support is most likely to be of
interest. So, let

N
(1.3) na= Y wiby,
=1
where 5Tj is as usual the Dirac measure at 5 €(0,t), O0<m <<

v <tandw; € Rforj=1,2,--- N,
Let M(R) be the space of complex Borel measures on R. The Fourier
transform of v € M(R) is the function # defined by

(1.4) vu) = / e T dy(v), u € K.
R
Consider the functional

(1.5) fw»zm[ s aodnls).  xeCt
0.t

Then, by [1], Ki(F) exists for A > 0. Also K\(F) exists for A € Cy

and is given by the generalized Dyson series, provided that
(1.6) /e‘wllr’l””ldlul(u) < oo,
i

ie. for all A € C, the following expansion of K\(F) hold:
(1.7)

© 71 qn
- Wi WAy
Ex(F)=3) nla, Y LN
n=0 got-t+gn=n - N
Z LoLy - Lndpu(sy)- - dpu(sg,)
kit-+kny1=go A‘lo;klr""‘“N+l
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where gg, -+ ,qn, k1, -+ ,kn41 are nonnegative integers,

(1.8)
Agoiky o kngn = {081, 584,) €(0,1)7 10 < 5y <o < sy
LT < Skl Koo < Sk tks <72 < Sk ko1 < -0
L Skytthy TN < Skj+kn+1 <o <y < f}

and, for (s1, - ,84) € Agoiky oo hny, and 7€ {0.1,--- N}

(1.9)
L, = [6(7,)) 7 e~ Crt o brrtr=m)Ho/Nge )
e Skt dhrt2 =%k 4otk )(110//\)9(5k1 +“.+k,+2) T
O(Sky 4t kr )6_(""“ =Skt Ahpg ) (HoIA)
and
1 NTL T
(1.10) a, = — [ (—1)"u" dv(u).
n' R

We use the conventions 79 = 0, 7y4; =t and [6(79)]%° = 1.

2. A stability theorem

We begin with a lemma which will be useful in the main theorems.

LEMMA. Let {Fyn(z)} be a sequence of Borel measurable function-
als such that |F,(z)| < B for some constant B > 0 and for all n =
1,2,3, .- . Further suppose that for every A > 0

(2.1) Fn()\_%x+§)—>F(/\_%r+§) as n — oo
for m x Leb. — a.e.(z,£). Then for every A > 0
Ky\(F,) — K\(F) strongly as n -— oo.
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Proof. Let A > 0, ¢ € L*(R) and £ € R be given. By (2.1), for
m x Leb. — a.e.(z,£),

(2.2) Fu(A"Tz+ (A 2a(t) + €) = F(A\3a + Eu(A~22(t) + &),

Note that for every z € Cf, for a.e. £ € Randforalln =1,2,3.--

(2.3) Fa(A 772 4+ (A7 2(t) + &) < Blop(A "2 a(t) + £)].

In view of (2.2), (2.3), and the Dominated Convergence Theorem for
Wiener integrals,

(2.4) (KA(Fo)9)(€) = (Kx(F))(€) for Leb. - a.c. .
Moreover, by (2.3) and Wiener’s integration formula
(2.5)

[( FA(F, §)|</ |Fu( A5 + E)p(A"T2(1) + )] dm(a)

0

SB[ (A Ex + )] dm(x)
= BN ))(¢)

for every n = 1,2,--- and a.e. £ € R.
Since e !(He /N1y € L2(R), using (2.4), (2.5) and the Lebesgue Dom-
inated Convergence Theorem, we have

(2.6) KA\(Fy) — KA(F)
in L%(R).
The first theorem treats the case XA > 0.

THEOREM 1. Let n be a finite signed Borel measure on (0,t) and let
v € M(R). Suppose that 6 and 6,,, m = 1,2,--- are all bounded by
M on (0,t) x R. Let F' be defined as (1.5) and F,, be defined as (1.5)

except with 6 replaced by 8,,. Assume that

(2.7) 0, — 6
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at each point of (0,t) x R as m — oo. Then for all A > 0,

(2.8) Ky\(Frn) — KA(F) strongly as m — oo.

Proof. Let A > 0,z € Cf and £ € R be given. Since 8,, is bounded
by M for all m = 1,2,--- , by (2.7),

(2.9) / 91,1(8,/\_%17(J:’)+€)d1’](5) — f(s /\‘%a‘(s)%»f)dn(s)
(0,t) (0,t)

Since 7 is continuous,

(2.10)
o[ bmts A el 4 (s = o[ B AR a0 + € )
(0,8) (0,1)

ie. Fr( A2z + £) — F(A~ 2z + €). Note that

(2.11) Fo(o)] = ;a(/ 0, (5. 2(s)) dn(s))
(0,1)
< [|7]|

for all z € C* and for all m = 1,2,--- . Hence (2.11) and Lemma give
the result for A > 0.

We now obtain a stability result for A € C; under the assumption
that the measure |v| dies off rapidly at oo.

THEOREM 2. Let 6 and 6", m = 1,2.--- be everywhere defined
R- valued and Borel measurable functions bounded by M on all of
(0,t) x R. Let n = pu + ng be a finite signed Borel measure on (0,t)
where 14 is given by (1.3), and let v € M(R) be such that

(2.12) /6M”"“|"[d|vl(u) < oc.
iy

Assume that
(213) 6™ =8 as m —ooo nxLeb.—ac. on (0,t) xR
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Let F and F(™) be defined as in Theorem 1. Then for all A\ € Cy4
(2.14) KA(F'™)) o Ky(F) strongly as m — occ.

Further, the operator INs(F) preserves the form of the operator
K(F™)) : to be more specific,

(2.15)
oo g1 aN
; Wil
KAF™) =S nla, 30 LN
n=0 go+ t+an=n a1 gN:

> LML L dusy) - (s,
kit +kny1=q0" Bgoikr kg
—

Wil o uiIN

Ky(F Z nlan Z

g0+ t+an=n

> LoLy -+ Ldp(s:) - dplsgy)

kydoky gy =g0 Y Dokl kg

PRI

strongly as m — 00;

where qo, - ,qn, k1, - ,--+ , kny1 are nonnegative integers and
Agoiky, - k4115 given by (1.8) and, for (s1,...,84,) € Dggiky o kny and
re {0,1,---,N}, L, is given by (1.9), and L™ s given as in (1.9)
except with 8 replaced by 8™ and a, is given by (1.10).

Proof. Let ¢ € L*R) be given. Let #(™)(s) denote the operator of
multiplication by 6¢™)(s,-) so that (8™ (s))(€) = 8™ (s, E)¢(£) for
all £ € R. So, by (2.13)

(2.16) (8 (s)u)(€) = (B(s)¥)(E) as m —» oo

Leb. — a.e. for n — a.e.s € (0,t). But

(2.17) (8 (5)¥) (&) — (8(s)p ) &)
< (160 5)1»w(£)t+te(s,:)rlwmz
<AM?H(E)]2.
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Since v € L*(R), next using (2.16) and the Lebesgue Dominated Con-
vergence Theorem, we have

(2.18) 116 (s)yp — ()

32— 0 as m — oo

i.e. 8™ (s) — 6(s) strongly as m — oo for n — a.c. s.

Using (2.18) and the fact that the composition of operator is jointly
continuous in the strong operator topology when the operators involved
are uniformly bounded we see that

(2.19) L™ LU s LoLy - Ly
strongly p x - X p—a.e. in Dok, kng -
Note that L(()m)Lgm) e LE\T)()\;SJ, -1+, 8g,) 1s strongly measurable

[7].
Since 8(™ is bounded by M and ||e=*(Ho/N|| <1

(2.20) L™ L™ - LGl < Ml 2.
Further,
(2.21)
3 LG L™ - L dlul(s0) - dlul(sg,)
kit ok g1 =go ¥ Daoik1 kna

SM"H¢’V|2/ dlpl(s1) - dlul(sq,)
A

Sqp

< arpup el < o
O

So, L(Om)Lgm) L(,\Tvn) is Bochner integrable over Ay ik, .. ky,,. Note
that since p is a finite signed Borel measure on (0.1)

(2.22) AI"H:U'” € L](Aqo;k]»"'vkh\}-l’}l XX ).
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Therefore, using (2.19) and the Dominated Convergence Theorem for
the Bochner integral [3], we have that LoL, --- Ly is Bochner integrable
and

(2.23) /A LeM L™ L dus )+ - du(s g, )

g0k, ky 4

/ LoLy -~ Ly du(s,)---dp(sy, )
A

q0ik1, kN4

in L*(R). Set

(2.24)
i1 qN
Wy W
L=y TLEN >
n eoian!
qo+-+gn=n 91- an: ki+--+kngt1=90
/ LWL - L8 du(sy - dp(sy, )
ADgyiky, KN 1
and
(2.25)
g1 an
w RN A
L, = Z 1 TN Z
oo agn!
got-tan=n 1V In: ky+ooFkn g1 =q0
/ L()L]"‘LNdﬂ(Sl)---ll,u(SqO).
Agyiky, LY
Then
(2.26) L™ — £, strongly as m — cc.
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Furthermore,
(2.27)

(m) lwr |90 - Jwn |ON
e ulls 3 eam o

1 gn
g0+ +gn=n agne kit-+knpi =90
(m) ( /
/A NLE™ L™ Bl dlpsl (1) - dlpf(sq)

q0ik1. kN 41

w1 ‘H...leIQN )
> i—i'——M"IIwII/ dlpl(s1) - dlul(sy)
/ AQO

qo+-tqn=n g1l gn!
w70 - [TV ML
=y Ll 2
dgo+ fan=n  TIN: 90
| .
= M"|l¢||— et 1731 KRA IV LU PRI LR
D DR vt [ AL UL S

“qo++en=n

(Ul + fort - Jon )™

= M"||y|| —

:M"”—"l-,'—||¢||.
L
Similarly
, ™
(2.28) casl) < 207 B

Let € > 0 be given. Using (2.12), take Ny so large that

[ @]

(2.29) Y lan

n=No+1

€
M™q|I™Me|| < -.
il < %

Now using (2.26), let N be so large that for m > N

Ny

(2:30) > llaalll£0 - Lavll < 5.

n=1
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Now, let m > N. Then using (2.30), (2.27), (2.28) and (2.29),
(2.31)
[ (F™)yg — K (F)yl|

_“ana E(m)l// ananL: ol

n=0

0 oo
= 13- (nanll™y - nlanlag) + Y (nlanfV¥ — nlan Lav)]
n=0 n=Np+1
No
<3 lanllE e - Lavli 4 S a0l
n=0 n=No+1
o0
+ 3 nllaalllCayll
n=Ng+1
- Ilnll = HnH
<zt Y allanl =T+ > allenl T
n=No+1 n=Ng+1
€ o0
=S+2 > JaalM il
n=Np+1
<4l desired
_ — = ¢ a .
2 2 5 esire

We can obtain a corollary immediately from a simple standard result
of functional analysis.

COROLLARY 1. Let the hypotheses of Theorem 2 be satisfied and
suppose that ||¢, — ¢|| = 0 as m — oo. Then

HEAF ™Y, — KA(F)Y|| -0 as m — oc.
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