• Title/Summary/Keyword: integers modulo n

Search Result 22, Processing Time 0.022 seconds

ARTIN SYMBOLS OVER IMAGINARY QUADRATIC FIELDS

  • Dong Sung Yoon
    • East Asian mathematical journal
    • /
    • v.40 no.1
    • /
    • pp.95-107
    • /
    • 2024
  • Let K be an imaginary quadratic field with ring of integers 𝓞K and N be a positive integer. By K(N) we mean the ray class field of K modulo N𝓞K. In this paper, for each prime p of K relatively prime to N𝓞K we explicitly describe the action of the Artin symbol (${\frac{K_{(N)}/K}{p}}$) on special values of modular functions of level N. Furthermore, we extend the Kronecker congruence relation for the elliptic modular function j to some modular functions of higher level.

GENERATION OF RAY CLASS FIELDS MODULO 2, 3, 4 OR 6 BY USING THE WEBER FUNCTION

  • Jung, Ho Yun;Koo, Ja Kyung;Shin, Dong Hwa
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.343-372
    • /
    • 2018
  • Let K be an imaginary quadratic field with ring of integers ${\mathcal{O}}_K$. Let E be an elliptic curve with complex multiplication by ${\mathcal{O}}_K$, and let $h_E$ be the Weber function on E. Let $N{\in}\{2,3,4,6\}$. We show that $h_E$ alone when evaluated at a certain N-torsion point on E generates the ray class field of K modulo $N{\mathcal{O}}_K$. This would be a partial answer to the question raised by Hasse and Ramachandra.

GENERATION OF RAY CLASS FIELDS OF IMAGINARY QUADRATIC FIELDS

  • Jung, Ho Yun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.317-326
    • /
    • 2021
  • Let K be an imaginary quadratic field other than ℚ(${\sqrt{-1}}$) and ℚ(${\sqrt{-3}}$), and let 𝒪K be its ring of integers. Let N be a positive integer such that N = 5 or N ≥ 7. In this paper, we generate the ray class field modulo N𝒪K over K by using a single x-coordinate of an elliptic curve with complex multiplication by 𝒪K.

Infinite Families of Congruences for Partition Functions ${\bar{\mathfrak{EO}}}$(n) and ${\mathfrak{EO}}_e$(n)

  • Riyajur Rahman;Nipen Saikia
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.2
    • /
    • pp.155-166
    • /
    • 2023
  • In 2018, Andrews introduced the partition functions ${\mathfrak{EO}}$(n) and ${\bar{\mathfrak{EO}}}$(n). The first of these denotes the number of partitions of n in which every even part is less than each odd part, and the second counts the number of partitions enumerated by the first in which only the largest even part appears an odd number of times. In 2021, Pore and Fathima introduced a new partition function ${\mathfrak{EO}}_e$(n) which counts the number of partitions of n which are enumerated by ${\bar{\mathfrak{EO}}}$(n) together with the partitions enumerated by ${\bar{\mathfrak{EO}}}$(n) where all parts are odd and the number of parts is even. They also proved some particular congruences for ${\bar{\mathfrak{EO}}}$(n) and ${\mathfrak{EO}}_e$(n). In this paper, we establish infinitely many families of congruences modulo 2, 4, 5 and 8 for ${\bar{\mathfrak{EO}}}$(n) and modulo 4 for ${\mathfrak{EO}}_e$(n). For example, if p ≥ 5 is a prime with Legendre symbol $({\frac{-3}{p}})=-1$, then for all integers n ≥ 0 and α ≥ 0, we have ${\bar{\mathfrak{EO}}}(8{\cdot}p^{2{\alpha}+1}(pn+j)+{\frac{19{\cdot}p^{2{\alpha}+2}-1}{3}}){\equiv}0$ (mod 8); 1 ≤ j ≤ (p - 1).

Prime Elements and Irreducible Polynomials over Some Imaginary Quadratic Fields

  • Singthongla, Patiwat;Kanasri, Narakorn Rompurk;Laohakosol, Vichian
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.4
    • /
    • pp.581-600
    • /
    • 2017
  • A classical result of A. Cohn states that, if we express a prime p in base 10 as $$p=a_n10^n+a_{n-1}10^{n-1}+{\cdots}+a_110+a_0$$, then the polynomial $f(x)=a_nx^n+a_{n-1}x^{n-1}+{\cdots}+a_1x+a_0$ is irreducible in ${\mathbb{Z}}[x]$. This problem was subsequently generalized to any base b by Brillhart, Filaseta, and Odlyzko. We establish this result of A. Cohn in $O_K[x]$, K an imaginary quadratic field such that its ring of integers, $O_K$, is a Euclidean domain. For a Gaussian integer ${\beta}$ with ${\mid}{\beta}{\mid}$ > $1+{\sqrt{2}}/2$, we give another representation for any Gaussian integer using a complete residue system modulo ${\beta}$, and then establish an irreducibility criterion in ${\mathbb{Z}}[i][x]$ by applying this result.

REGULAR ACTION IN ℤn

  • Jeong, Jinsun;Park, Sangwon
    • East Asian mathematical journal
    • /
    • v.33 no.3
    • /
    • pp.257-263
    • /
    • 2017
  • Let n be any positive integer and ${\mathbb{Z}}_n=\{0,1,{\cdots},n-1\}$ be the ring of integers modulo n. Let $X_n$ be the set of all nonzero, nonunits of ${\mathbb{Z}}_n$, and $G_n$ be the group of all units of ${\mathbb{Z}}_n$. In this paper, by investigating the regular action on $X_n$ by $G_n$, the following are proved : (1) The number of orbits under the regular action (resp. the number of annihilators in $X_n$) is equal to the number of all divisors (${\neq}1$, n) of n; (2) For any positive integer n, ${\sum}_{g{\in}G_n}\;g{\equiv}0$ (mod n); (3) For any orbit o(x) ($x{\in}X_n$) with ${\mid}o(x){\mid}{\geq}2$, ${\sum}_{y{\in}o(x)}\;y{\equiv}0$ (mod n).

The Zero-divisor Graph of ℤn[X]]

  • Park, Min Ji;Kim, Eun Sup;Lim, Jung Wook
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.4
    • /
    • pp.723-729
    • /
    • 2020
  • Let ℤn be the ring of integers modulo n and let ℤn[X]] be either ℤn[X] or ℤn[[X]]. Let 𝚪(Zn[X]]) be the zero-divisor graph of ℤn[X]]. In this paper, we study some properties of 𝚪(ℤn[X]]). More precisely, we completely characterize the diameter and the girth of 𝚪(ℤn[X]]). We also calculate the chromatic number of 𝚪(ℤn[X]]).

RAY CLASS INVARIANTS IN TERMS OF EXTENDED FORM CLASS GROUPS

  • Yoon, Dong Sung
    • East Asian mathematical journal
    • /
    • v.37 no.1
    • /
    • pp.87-95
    • /
    • 2021
  • Let K be an imaginary quadratic field with ��K its ring of integers. For a positive integer N, let K(N) be the ray class field of K modulo N��K, and let ��N be the field of meromorphic modular functions of level N whose Fourier coefficients lie in the Nth cyclotomic field. For each h ∈ ��N, we construct a ray class invariant as its special value in terms of the extended form class group, and show that the invariant satisfies the natural transformation formula via the Artin map in the sense of Siegel and Stark. Finally, we establish an isomorphism between the extended form class group and Gal(K(N)/K) without any restriction on K.

ON THE SCALED INVERSE OF (xi - xj) MODULO CYCLOTOMIC POLYNOMIAL OF THE FORM Φps (x) OR Φpsqt (x)

  • Cheon, Jung Hee;Kim, Dongwoo;Kim, Duhyeong;Lee, Keewoo
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.621-634
    • /
    • 2022
  • The scaled inverse of a nonzero element a(x) ∈ ℤ[x]/f(x), where f(x) is an irreducible polynomial over ℤ, is the element b(x) ∈ ℤ[x]/f(x) such that a(x)b(x) = c (mod f(x)) for the smallest possible positive integer scale c. In this paper, we investigate the scaled inverse of (xi - xj) modulo cyclotomic polynomial of the form Φps (x) or Φpsqt (x), where p, q are primes with p < q and s, t are positive integers. Our main results are that the coefficient size of the scaled inverse of (xi - xj) is bounded by p - 1 with the scale p modulo Φps (x), and is bounded by q - 1 with the scale not greater than q modulo Φpsqt (x). Previously, the analogous result on cyclotomic polynomials of the form Φ2n (x) gave rise to many lattice-based cryptosystems, especially, zero-knowledge proofs. Our result provides more flexible choice of cyclotomic polynomials in such cryptosystems. Along the way of proving the theorems, we also prove several properties of {xk}k∈ℤ in ℤ[x]/Φpq(x) which might be of independent interest.

MODIFIED CYCLOTOMIC POLYNOMIALS

  • Ae-Kyoung, Cha;Miyeon, Kwon;Ki-Suk, Lee;Seong-Mo, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1511-1522
    • /
    • 2022
  • Let H be a subgroup of $\mathbb{Z}^*_n$ (the multiplicative group of integers modulo n) and h1, h2, …, hl distinct representatives of the cosets of H in $\mathbb{Z}^*_n$. We now define a polynomial Jn,H(x) to be $$J_{n,H}(x)=\prod^l_{j=1} \left( x-\sum_{h{\in}H} {\zeta}^{h_jh}_n\right)$$, where ${\zeta}_n=e^{\frac{2{\pi}i}{n}}$ is the nth primitive root of unity. Polynomials of such form generalize the nth cyclotomic polynomial $\Phi_n(x)={\prod}_{k{\in}\mathbb{Z}^*_n}(x-{\zeta}^k_n)$ as Jn,{1}(x) = Φn(x). While the nth cyclotomic polynomial Φn(x) is irreducible over ℚ, Jn,H(x) is not necessarily irreducible. In this paper, we determine the subgroups H for which Jn,H(x) is irreducible over ℚ.