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RAY CLASS INVARIANTS IN TERMS OF EXTENDED FORM

CLASS GROUPS

Dong Sung Yoon

Abstract. Let K be an imaginary quadratic field with OK its ring of

integers. For a positive integer N , let K(N) be the ray class field of K

modulo NOK , and let FN be the field of meromorphic modular functions
of level N whose Fourier coefficients lie in the Nth cyclotomic field. For

each h ∈ FN , we construct a ray class invariant as its special value in terms

of the extended form class group, and show that the invariant satisfies the
natural transformation formula via the Artin map in the sense of Siegel

and Stark. Finally, we establish an isomorphism between the extended

form class group and Gal(K(N)/K) without any restriction on K.

1. Introduction

Let K be an imaginary quadratic field of discriminant dK and OK be its ring
of integers. For a positive integer N , let QN (dK) be the set of primitive positive
definite binary quadratic forms of discriminant dK whose leading coefficients are
prime to N , that is,

QN (dK) = {ax2+bxy+cy2 ∈ Z[x, y] | gcd(a, b, c) = 1, a > 0, b2−4ac = dK , gcd(a, N) = 1}.

We define the equivalence relation ∼Γ1(N) on QN (dK) as

Q ∼Γ1(N) Q
′ ⇐⇒ Q′

([
x
y

])
= Q

(
γ

[
x
y

])
for some γ ∈ Γ1(N),

where Γ1(N) is the congruence subgroup of SL2(Z) given by

Γ1(N) =

{
γ ∈ SL2(Z) | γ ≡

[
1 ∗
0 1

]
(mod N)

}
.

When N = 1, it is called the Gauss proper equivalence ([1, §2]).
Let Cl(NOK) be the ray class group of K modulo NOK , and let K(N) be the

corresponding ray class field so that Cl(NOK) is isomorphic to Gal(K(N)/K)
via the Artin map for modulus NOK . It is well known by class field theory that
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every finite abelian extension of K is contained in the ray class field K(N) for
some N ([1, §8]). Recently, Eum et al. showed that the map

QN (dK)/ ∼Γ1(N) → Cl(NOK)
[Q] 7→ [[ωQ, 1]] = [ZωQ + Z]

(1)

is bijective, where ωQ is the zero of Q(x, 1) in the complex upper-half plane H.
Hence the set of equivalence classses

CN (dK) = QN (dK)/ ∼Γ1(N)

can be regarded as a group isomorphic to Cl(NOK) ([2, Theorem 2.9]). See also
[4]. We call this group CN (dK) the extended form class group of discriminant
dK and level N . Let FN be the field of meromorphic modular functions of level
N whose Fourier coefficients lie in the Nth cyclotomic field. Moreover, let τK
be the zero associated with the principal form x2 + bKxy + cKy

2 in QN (dK).
They further presented the isomorphism

CN (dK) → Gal(K(N)/K)

[Q] = [ax2 + bxy + cy2] 7→
(
h(τK) 7→ h

[
a (b−bK)/2
0 1

]
(ωQ) |h ∈ FN is finite at τK

)
when K is different from Q(

√
−1) and Q(

√
−3) ([2, Theorem 3.10]).

In this paper, we shall modify and improve the results of [2]. Without the
restriction K 6= Q(

√
−1), Q(

√
−3), we shall construct a ray class invariant

h(C) in K(N) for each h ∈ FN and C ∈ Cl(NOK) which satisfies the natural
transformation formula

h(C)σN (D) = h(CD) for all D ∈ Cl(NOK), (2)

where σN : Cl(NOK) → Gal(K(N)/K) is the Artin map for modulus NOK
(Theorem 3.2). By using (2), we shall also establish an isomorphism between
CN (dK) and Gal(K(N)/K) (Theorem 3.5).

We notice that [2] was definitely inspired by C. L. Siegel’s work [8]. When
N ≥ 2, Siegel defined ray class invariants as the special values of one-variable
Siegel functions having a transformation formula similar to (2). See also [5,
Chapter 19]. Besides, H. M. Stark conjectured that there exists a family of
units in some class field of a totally real field which satisfies a transformation
formula such as (2) ([9, Conjecture 1]). We hope that this paper together with
[4] may provide some clues to Stark’s conjecture.

2. Shimura’s reciprocity law

In this section, we shall describe the action of an idele group on the field of
meromorphic modular functions and Shimura’s reciprocity law for later use.

The group GL+
2 (R) = {γ ∈ GL2(R) | det(γ) > 0} acts on the complex upper

half plane H = {τ ∈ C | Im(τ) > 0} by fractional linear transformations. For
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a positive integer N , let FN be the field of meromorphic modular functions for
the principal congruence subgroup

Γ(N) = {γ ∈ SL2(Z) | γ ≡ I2 (mod N ·M2(Z))}
whose Fourier coefficients lie in Q(ζN ) with ζN = e2πi/N .

Proposition 2.1. The field FN is a Galois extension of F1 and

Gal(FN/F1) ' GL2(Z/NZ)/{±I2} = GN · SL2(Z/NZ)/{±I2},
where

GN =

{[[
1 0
0 d

]]
| d ∈ (Z/NZ)×

}
.

Let h(τ) be an element of FN whose Fourier expansion is

h(τ) =
∑

n�−∞
cnq

n/N (cn ∈ Q(ζN ))

with q = e2πiτ .

(i) If α =

[[
1 0
0 d

]]
with d ∈ (Z/NZ)×, then

h(τ)α =
∑

n�−∞
cσdn q

n/N ,

where σd is the automorphism of Q(ζN ) given by ζσdN = ζdN .
(ii) If β ∈ SL2(Z/NZ)/{±I2}, then

h(τ)β = h(β′(τ)),

where β′ is any element of SL2(Z) which maps to β through the reduction
SL2(Z)→ SL2(Z/NZ)/{±I2}.

Proof. See [6, Proposition 6.21]. �

Let

F =

∞⋃
N=1

FN ,

GA+ =
∏′

p : primes

GL2(Qp)×GL+
2 (R),

where ′ denotes the restricted product, that is,∏′

p

GL2(Qp) =

{
α = (αp)p ∈

∏
p

GL2(Qp) |αp ∈ GL2(Zp) for almost all primes p

}
.

Proposition 2.2. Let U =
∏
p GL2(Zp) and G+ = GL+

2 (Q) which are sub-
groups of GA+. Then we have

GA+ = UG+ = G+U.

Proof. See [6, Lemma 6.19]. �
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Proposition 2.3. There exists a surjective homomorphism

σF : GA+ → Aut(F)

satisfying the following properties: Let h ∈ FN with a positive integer N .

(i) hσF (γ) = h ◦ γ for all γ ∈ G+.
(ii) For u = (up)p ∈ U , let ũ ∈ GL2(Z/NZ) such that ũ ≡ up (mod N) for

all p |N . Then

hσF (u) = hũ,

where the action of ũ on h is understood as in Proposition 2.1.

Proof. See [6, §6.6]. �

For a number field F , let F×A be the idele group of F and Fab be the maximal

abelian extension of F . By class field theory, every element x of F×A acts on Fab

as an automorphism (cf. [3]). We denote this automorphism by [x, F ].
LetK be an imaginary quadratic field. For ω ∈ K∩H, we have the embedding

qω : K →M2(Q)

defined by

qω(a)

[
ω
1

]
= a

[
ω
1

]
(a ∈ K).

One can continuously extend qω to an embedding KA → M2(QA), and also
denote it by qω.

Proposition 2.4 (Shimura’s Reciprocity Law). Let h ∈ F and ω ∈ K ∩H. If
h is finite at ω, then h(ω) belongs to Kab. Moreover, if s ∈ K×A , then we get
qω(s) ∈ GA+ and

h(ω)[s,K] = hσF (qω(s−1)(ω).

Proof. See [7, Lemma 9.5 and Theorem 9.6]. �

3. Ray class invariants in terms of form class group

Let K be an imaginary quadratic field of discriminant dK , and let C ∈
Cl(NOK) with a positive integer N . For the principal form x2 + bKxy + cKy

2

of discriminant dK , let τK be its associated zero in H. Take an integral ideal
c in C and choose a Z-basis {ξ1, ξ2} of c−1 such that ξ := ξ1/ξ2 ∈ H. Since
OK = [τK , 1] ⊆ c−1, we have [

τK
1

]
= A

[
ξ1
ξ2

]
(3)

for some unique A ∈M2(Z). Note that

det(A) > 0 and gcd(det(A), N) = 1 (4)

([4, Lemma 6.2 (ii)]). For convenience, we shall denote the reduction of A onto

the group GL2(Z/NZ)/{±I2} by Ã.



RAY CLASS INVARIANTS IN TERMS OF EXTENDED FORM CLASS GROUPS 91

Definition 1. Let h ∈ FN and C ∈ Cl(NOK). Following the above notations,
we define

h(C) = hÃ(ξ).

Proposition 3.1. The value h(C) depends only on C, not on the choice of c,
ξ1, ξ2.

Proof. Let c′ be an integral ideal in C and choose a Z-basis {ξ′1, ξ′2} of c′−1 such
that ξ′ := ξ′1/ξ

′
2 ∈ H. Since OK ⊆ c′−1, we have[

τK
1

]
= A′

[
ξ′1
ξ′2

]
(5)

for some A′ ∈ M2(Z). By (4), we get det(A′) > 0 and gcd(det(A′), N) = 1.
Since C = [c] = [c′], we have

c′ = νc for some ν ∈ K× such that ν ≡∗ 1 (mod NOK).

Here, x ≡∗ y (mod NOK) for x, y ∈ K× means that ordp(xy −1) ≥ ordp(NOK)

for all prime ideals p of OK dividing NOK . Hence we obtain

[ξ′1, ξ
′
2] = c′−1 = ν−1c−1 = ν−1[ξ1, ξ2] = [ν−1ξ1, ν

−1ξ2]

and so [
ξ′1
ξ′2

]
= B

[
ν−1ξ1
ν−1ξ2

]
for some B =

[
b1 b2
b3 b4

]
∈ GL2(Z). (6)

One can also show that det(B) > 0 and so B ∈ SL2(Z) using the fact ξ1/ξ2,
ξ′1/ξ

′
2 ∈ H. We then see that

ξ′ =
b1(ν−1ξ1) + b2(ν−1ξ2)

b3(ν−1ξ1) + b4(ν−1ξ2)
=
b1(ξ1/ξ2) + b2
b3(ξ1/ξ2) + b4

= B(ξ). (7)

On the other hand, since c and c′ = νc are integral ideals of K, so is (ν−1)c.
Furthermore, (ν − 1)c ⊆ NOK due to the facts that ν ≡∗ 1 (mod NOK) and c
is relatively prime to NOK . Thus

[(ν − 1)τK , ν − 1] = (ν − 1)OK ⊆ Nc−1 = [Nξ1, Nξ2],

from which we have[
(ν − 1)τK
ν − 1

]
= A′′

[
Nξ1
Nξ2

]
for some A′′ ∈M2(Z).

Hence we derive that

NA′′
[
ξ1
ξ2

]
= ν

[
τK
1

]
−
[
τK
1

]
= νA′

[
ξ′1
ξ′2

]
−A

[
ξ1
ξ2

]
by (3) and (5)

= A′B

[
ξ1
ξ2

]
−A

[
ξ1
ξ2

]
by (6)

= (A′B −A)

[
ξ1
ξ2

]
,
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which implies NA′′ = A′B − A. Since B ∈ SL2(Z), we have A′ = NA′′B−1 +
AB−1 and so

A′ ≡ AB−1 (mod N ·M2(Z)). (8)

Therefore we achieve by (7) and (8) that

hÃ
′
(ξ′) = hÃB

−1
(B(ξ)) = hÃ(B−1B(ξ)) = hÃ(ξ).

This completes the proof. �

For a positive integer N , we denote by

σN : Cl(NOK)→ Gal(K(N)/K)

the Artin map for modulus NOK (cf. [1]).

Theorem 3.2. Let K be an imaginary quadratic field, h ∈ FN and C ∈
Cl(NOK) with a positive integer N . If h(C) is finite, then it belongs to K(N)

and satisfies

h(C)σN (D) = h(CD) for all D ∈ Cl(NOK).

Proof. Since h(C) ∈ Kab by Proposition 2.4, there is a positive integer M such
that N |M and h(C) ∈ K(M). By using the surjectivity of the natural map
Cl(MOK)→ Cl(NOK), we can take integral ideals c ∈ C and d ∈ D which are
relatively prime to MOK . Take ξ1, ξ2, ν1, ν2 ∈ K× such that

c−1 = [ξ1, ξ2], ξ := ξ1/ξ2 ∈ H,
(cd)−1 = [ν1, ν2], ν := ν1/ν2 ∈ H.

Since OK ⊆ c−1 ⊆ (cd)−1, we have[
τK
1

]
= A

[
ξ1
ξ2

]
and

[
ξ1
ξ2

]
= B

[
ν1

ν2

]
(9)

for some A, B ∈M2(Z) such that det(A), det(B) > 0. Let s = (sp)p be an idele
of K such that for every prime p{

sp = 1 if p |M,
sp(OK)p = dp if p -M.

(10)

Here, (OK)p = OK ⊗Z Zp and dp = d ⊗Z Zp. If we let D̃ be a ray class in
Cl(MOK) containing d, we get

[s, K]|K(M)
= σM (D̃),

s−1
p (OK)p = d−1

p for all primes p.
(11)

It follows by (9) and (11) that for every prime p, the components of each of the
vectors

B−1

[
ξ1
ξ2

]
and qξ(s

−1)p

[
ξ1
ξ2

]
are bases for the Zp−module (cd)−1

p . Hence

qξ(s
−1)p = upB

−1 for some up ∈ GL2(Zp). (12)
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If we let u = (up)p ∈ U =
∏
p GL2(Zp), then we have

qξ(s
−1) = uB−1. (13)

Thus we derive that

h(C)σM (D̃) = h(C)[s,K] by (11)

= (hÂ(ξ))[s,K]

= hÃ(τ)σF (qξ(s
−1))

∣∣∣
τ=ξ

by Proposition 2.4

= hÃ(τ)σF (uB−1)
∣∣∣
τ=ξ

by (13)

= (hÃ)σF (u)(B−1(τ))
∣∣∣
τ=ξ

by Proposition 2.3

= hÃB̃(B−1(τ))
∣∣∣
τ=ξ

because up = B for every prime p |N by (10) and (12)

= hÃB(B−1(ξ))

= hÃB(ν) by (9)

= h(CD) since

[
τK
1

]
= AB

[
ν1

ν2

]
by (9).

In particular, if D is the identity class of Cl(NOK) then σM (D̃) leaves h(C)
fixed. Therefore, h(C) lies in K(N) as desired.

�

Definition 2. For h ∈ FN and [Q] ∈ CN (dK) with Q = ax2 + bxy + cy2 ∈
QN (dK), we define

h([Q]) = hB̃
−1

(−ωQ),

where B =

[
1 (b+ bK)/2
0 a

]
.

Let
φN : CN (dK) → Cl(NOK)

[Q] 7→ [[ωQ, 1]]

be the isomorphism given in (1).

Lemma 3.3. If Q = ax2 + bxy + cy2 ∈ QN (dK), then

[ωQ, 1][ωQ, 1] = a−1OK .

Proof. See [4, Lemma 3.2]. �

Lemma 3.4. Let C = φN ([Q]) with Q = ax2 +bxy+cy2 ∈ QN (dK). If h ∈ FN
such that h(C) is finite, then

h(C) = h([Q]).

Hence h([Q]) is well defined.
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Proof. Since gcd(a, N) = 1, we have

aϕ(N) ≡ 1 (mod N),

where ϕ is Euler’s phi function. Moreover, since aωQ ∈ OK , we can take an
integral ideal c in C = [[ωQ, 1]] as

c = aϕ(N)[ωQ, 1].

Now that

cc = a2ϕ(N)[ωQ, 1][ωQ, 1]

= a2ϕ(N)(a−1OK) by Lemma 3.3

= a2ϕ(N)−1OK ,

we get

c−1 =
1

a2ϕ(N)−1
c =

1

aϕ(N)−1
[−ωQ, 1].

If we take

ξ1 =
−ωQ

aϕ(N)−1
and ξ2 =

1

aϕ(N)−1
,

then we obtain c−1 = [ξ1, ξ2] and ξ := ξ1/ξ2 = −ωQ ∈ H. Thus we find that[
τK
1

]
=

[−bK+
√
dK

2
1

]
=

[
aϕ(N) −aϕ(N)−1

(
b+bK

2

)
0 aϕ(N)−1

] [
ξ1
ξ2

]
.

Let A =

[
aϕ(N) −aϕ(N)−1

(
b+bK

2

)
0 aϕ(N)−1

]
and B =

[
1 b+bK

2
0 a

]
. Then we have

AB ≡
[
1 −aϕ(N)−1

(
b+bK

2

)
0 aϕ(N)−1

] [
1 b+bK

2
0 a

]
≡
[
1 0
0 1

]
(mod N ·M2(Z)).

Hence we have

h(C) = hÃ(−ωQ) = hB̃
−1

(−ωQ) = h([Q]).

If [Q] = [Q′] with Q, Q′ ∈ QN (dK), then

h([Q]) = h(φN ([Q])) = h(φN ([Q′])) = h([Q′]).

Therefore, h([Q]) is well defined. �

Theorem 3.5. The map

CN (dK) → Gal(K(N)/K)

[Q] = [ax2 + bxy + cy2] 7→ (h(τK) 7→ h([Q]) |h ∈ FN is finite at τK)

is an isomorphism.
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Proof. Note that σN ◦ φN is an isomorphism from CN (dK) to Gal(K(N)/K).
If we let C0 be the identity class in Cl(NOK), then we have h(C0) = h(τK).
Hence it follows from Theorem 3.2 and Lemma 3.4 that for [Q] ∈ CN (dK) with
Q ∈ QN (dK),

h(τK)(σN◦φN )([Q]) = h(C0)σN (φN ([Q])) = h(φN ([Q])) = h([Q]).

Therefore, the map in this theorem coincides with the isomorphism σN ◦φN . �
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