East Asian Math. J.
Vol. 33 (2017), No. 3, pp. 257-263
http://dx.doi.org/10.7858/eamj.2017.018

REGULAR ACTION IN \mathbb{Z}_{n}

Jinsun Jeong and Sangwon Park

Abstract

Let n be any positive integer and $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$ be the ring of integers modulo n. Let X_{n} be the set of all nonzero, nonunits of \mathbb{Z}_{n}, and G_{n} be the group of all units of \mathbb{Z}_{n}. In this paper, by investigating the regular action on X_{n} by G_{n}, the following are proved: (1) The number of orbits under the regular action (resp. the number of annihilators in X_{n}) is equal to the number of all divisors $(\neq 1, n)$ of n; (2) For any positive integer $n, \sum_{g \in G_{n}} g \equiv 0(\bmod n)$; (3) For any orbit $o(x)\left(x \in X_{n}\right)$ with $|o(x)| \geq 2, \sum_{y \in o(x)} y \equiv 0(\bmod n)$.

1. Introduction and basic definitions

Let n be any positive integer and $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$ be the ring of integers modulo n. Let X_{n} be the set of all nonzero, nonunits of \mathbb{Z}_{n} and G_{n} be the group of all units of \mathbb{Z}_{n}. In this paper, we will consider a group action on X_{n} by G_{n} given by $((g, x) \longrightarrow g x)$ from $G_{n} \times X_{n}$ to X_{n}, called the regular action on X_{n} by G_{n}. Under the regular action on X_{n} by G_{n}, we define the orbit of x by $o(x)=\left\{g x: \forall g \in G_{n}\right\}$ and the stabilizer of x by $\operatorname{stab}(x)=\left\{g \in G_{n}: g x=x\right\}$ (refer [1], [2], [3]).

Recall that the annihilator of $x \in X_{n}$ (denoted by $\operatorname{ann}(x)$) is defined by $\left\{a \in \mathbb{Z}_{n}: a x=0\right\}$. Throughout this paper, we will denote the greatest common divisor of any two positive integers s and t by $g c d(s, t)$ (or simply (s, t)) and $s \mid t$ means that s is a divisor of t. In section 2, we will show that all orbits under the regular action on X_{n} by G_{n} consists of $o(x)$ for all divisors $x(\neq 1, n)$ of n by investigating that for all $x, y \in X_{n}, o(x)=o(y)$ if and only if $(x, n)=(y$, n). We can also show that for all $x, y \in X_{n}, \operatorname{ann}(x)=\operatorname{ann}(y)$ if and only if $(x$, $n)=(y, n)$.

In section 3, we will show that for any positive integer n, (1) $\sum_{g \in G_{n}} g \equiv 0$ $(\bmod n) ;(2)$ for any orbit $o(x)\left(x \in X_{n}\right)$ with $|o(x)| \geq 2, \sum_{y \in o(x)} y \equiv 0(\bmod$ $n)$. As a corollary of the result (2), we obtain $\sum_{d \mid n} \phi(d)=n$ where $\phi(d)$ is the Euler-phi number of d.

[^0]
2. Orbits and annihilators under the regular action

We begin this section with some lemmas.
Lemma 2.1. Let n be any positive integer and $x, y \in X_{n}$ be divisors of n such that $x<y$ and $x \neq y$. Then $o(x) \neq o(y)$ under the regular action on X_{n} by G_{n}.
Proof. Assume that $o(x)=o(y)$. Then $y=g x$ for some $g \in G_{n}$. Since x, y are divisors of n such that $x<y$ and $x \neq y$, we can choose an element $a \in X_{n}$ so that $a x \neq 0, a y=0$. On the other hand, since $0=a y=a(g x)$ and $g \in G_{n}$, we have $a x=0$, which is a contradiction. Hence $o(x) \neq o(y)$.
Lemma 2.2. Let n be any positive integer and $y \in X_{n}$ be arbitrary. Then there exists $x \in X$ such that $x \mid n$ and $(x, n)=(y, n)$.
Proof. Let $x=(y, n)$. Then clearly, $x \mid n$ and $(x, n)=((y, n), n)=(y, n)$.
Lemma 2.3. Let k and n be any positive integers such that $k \mid n$. If $\bar{g} \in G_{k}$, then there exists $g \in G_{n}$ such that $g \equiv \bar{g}(\bmod k)$.
Proof. Note that since $k \mid n, \mathbb{Z}_{n} /<k>$ is isomorphic to \mathbb{Z}_{k} where $<k>$ is an ideal of \mathbb{Z}_{n} generated by k. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}$ be the prime factorization of n where $p_{1}, p_{2}, \cdots, p_{t}$ are distinct primes for some positive integer t. Then $k=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{t}^{\beta_{t}}$ with $\alpha_{i} \geq \beta_{i} \geq 0$ for all $i=1, \cdots, t$. Without loss of generality, we can assume that $\mathbb{Z}_{n}=\mathbb{Z}_{p_{1}^{\alpha_{1}}} \times \mathbb{Z}_{p_{2}^{\alpha_{2}}} \cdots \times \mathbb{Z}_{p_{t}^{\alpha_{t}}}$ (resp. $\mathbb{Z}_{k}=\mathbb{Z}_{p_{1}^{\beta_{1}}} \times$ $\left.\mathbb{Z}_{p_{2}^{\beta_{2}}} \cdots \times \mathbb{Z}_{p_{t}^{\beta_{t}}}\right)$. Then we can consider a ring epimorphism $\pi: \mathbb{Z}_{p_{1}^{\alpha_{1}}} \times \mathbb{Z}_{p_{2}^{\alpha_{2}}} \cdots \times$ $\mathbb{Z}_{p_{t}^{\alpha_{t}}} \rightarrow \mathbb{Z}_{p_{1}^{\beta_{1}}} \times \mathbb{Z}_{p_{2}^{\beta_{2}}} \cdots \times \mathbb{Z}_{p_{t}^{\beta_{t}}}$ given by $\pi\left(a_{1}, \cdots, a_{t}\right)=\left(\bar{a}_{1}, \cdots, \bar{a}_{t}\right)$ for all $\left(a_{1}, \cdots, a_{t}\right) \in \mathbb{Z}_{p_{1}^{\alpha_{1}}} \times \mathbb{Z}_{p_{2}^{\alpha_{2}}} \cdots \times \mathbb{Z}_{p_{t}^{\alpha_{t}}}$ where \bar{a}_{i} is the remainder obtained from dividing a_{i} by $p_{i}^{\beta_{i}}$ for all i.

Case 1. Suppose that $\beta_{i} \geq 1$ for all $i=1, \cdots, t$.
Let $\bar{g}=\left(\bar{g}_{1}, \cdots, \bar{g}_{t}\right) \in \mathbb{Z}_{p_{1}^{\beta_{1}}} \times \mathbb{Z}_{p_{2}^{\beta_{2}}} \cdots \times \mathbb{Z}_{p_{t}^{\beta_{t}}}$ be an arbitrary unit. Then there exists an element $g=\left(g_{1}, \cdots, g_{t}\right) \in \mathbb{Z}_{p_{1}^{\alpha_{1}}} \times \cdots \times \mathbb{Z}_{p_{t}^{\alpha_{t}}}$ such that $\pi(g)=\bar{g}$ i.e., $g_{i} \equiv \bar{g}_{i}\left(\bmod p_{i}^{\beta_{i}}\right)$ for all i. Since \bar{g} is a unit in $\mathbb{Z}_{p_{1}^{\beta_{1}}} \times \mathbb{Z}_{p_{2}^{\beta_{2}}} \cdots \times \mathbb{Z}_{p_{t}^{\beta_{t}}}$, we have $\left(\bar{g}_{i}, p_{i}^{\beta_{i}}\right)=1$ and so $\left(g_{i}, p_{i}^{\alpha_{i}}\right)=1$ for all $i=1, \cdots, t$, which implies that $g \in \mathbb{Z}_{n}$ is a unit.

Case 2. Suppose that $\beta_{i}=0$ for some i.
Let $I_{1}=\left\{i \in\{1, \cdots, t\}: \beta_{i} \geq 1\right\}$ and $I_{2}=\left\{i \in\{1, \cdots, t\}: \beta_{i}=0\right\}$. Consider $R=R_{1} \times R_{2}$ where $R_{1}=\prod_{i \in I_{1}} \mathbb{Z}_{p_{i}^{\beta_{i}}}$ and $R_{2}=\prod_{i \in I_{2}}\left\{1_{i}\right\}$ where 1_{i} is the unity of $\mathbb{Z}_{p_{i}^{\beta_{i}}}$. By changing the order of the $\mathbb{Z}_{p_{i}^{\beta_{i}}}$ if necessary we can assume that $R=\mathbb{Z}_{k}=\mathbb{Z}_{p_{1}^{\beta_{1}}} \times \mathbb{Z}_{p_{2}^{\beta_{2}}} \cdots \times \mathbb{Z}_{p_{t}^{\beta_{t}}}$. Let $G(R)$ be the group of all units in R. Let $\bar{g}=\left(\bar{g}_{1}, \cdots, \bar{g}_{\left|I_{1}\right|}, 1_{1}, \cdots, 1_{\left|I_{2}\right|}\right) \in G(R)$ be arbitrary. Then by the similar argument given in Case 1, there exists a unit $g_{i} \in \mathbb{Z}_{p_{1}^{\alpha_{1}}}$ such that $g_{i} \equiv \bar{g}_{i}\left(\bmod p_{i}^{\beta_{i}}\right)$ for all $i=1, \cdots,\left|I_{1}\right|$. Let $g=\left(g_{1}, \cdots, g_{\left|I_{1}\right|}, 1_{1}, \cdots, 1_{\left|I_{2}\right|}\right) \in$ $\mathbb{Z}_{p_{1}^{\alpha_{1}}} \times \cdots \times \mathbb{Z}_{p_{t}^{\alpha_{t}}}$. Then g is a unit in $\mathbb{Z}_{p_{1}^{\alpha_{1}}} \times \cdots \times \mathbb{Z}_{p_{t}^{\alpha_{t}}}$ such that $\pi(g)=\bar{g}$.

Theorem 2.4. Let n be any positive integer. Then for all $x, y \in X_{n}, o(x)=$ $o(y)$ if and only if $(x, n)=(y, n)$.

Proof. (\Rightarrow) Suppose that for all $x, y \in X_{n}, o(x)=o(y)$. Then $y=g x$ for some $g \in G_{n}$. Since $(g, n)=1$, we have $(y, n)=(g x, n)=(x, n)$.
(\Leftarrow) Suppose that for all $x, y \in X_{n},(x, n)=(y, n)$. It is enough to consider $x \mid n$, i.e., $x=(x, n)$ by Lemma 2.2. Since $x \mid y, y=a x$ for some integer a. Since $x=(y, n), x=b y+c n$ for some integers b and c. Hence $x \equiv b y \equiv b a x(\bmod$ $n)$, and then $1 \equiv b a\left(\bmod \frac{n}{x}\right)$. Let \bar{a} be an element of $\mathbb{Z}_{\frac{n}{x}}$ so that $a \equiv \bar{a}(\bmod$ $\left.\frac{n}{x}\right)$. Then $1 \equiv b \bar{a}\left(\bmod \frac{n}{x}\right)$, which implies that $\bar{a} \in G \frac{n}{x}$. By Lemma 2.3, there exists $a_{0} \in G_{n}$ such that $a_{0} \equiv \bar{a}\left(\bmod \frac{n}{x}\right)$. Since $a_{0}=\bar{a}+k\left(\frac{n}{x}\right)$ for some integer k, we have $a_{0} x \equiv\left(\bar{a}+k\left(\frac{n}{x}\right)\right) x \equiv \bar{a} x \equiv a x \equiv y(\bmod n)$, which implies that $o(x)=o(y)$.

Remark 1. (1) Let n be any positive integer. Then the number of orbits under the regular action on X_{n} by G_{n} is equal to the number of divisors $(\neq 1, n)$ of n by Lemma 2.1 and Theorem 2.4.
(2) The regular action on X_{n} by G_{n} is transitive, i.e., $X_{n}=o(x)$ for some $x \in X_{n}$ if and only if $n=p^{2}$ for some prime p.

Corollary 2.5. Let n be a positive integer and $x(\neq 1, n)$ be a divisor of n. Then $o(x)=\left\{g x: \forall g \in G_{\frac{n}{x}}\right\}$, and so $|o(x)|=\left|G_{\frac{n}{x}}\right|$.

Proof. Let $y \in o(x)$ be arbitrary. By Theorem 2.4, $(x, n)=(y, n)$. Since x is a divisor of $n, x=(x, n)=(y, n)$, and so $1=\left(\frac{y}{x}, \frac{n}{x}\right)$. Thus $\frac{y}{x} \in G_{\frac{n}{x}}$, and then $y=g x$ for some $g \in G_{\frac{n}{x}}$. Assume that there exist $g_{1}, g_{2} \in G_{\frac{n}{x}}$ $\left(g_{1} \neq g_{2}\right)$ such that $g_{1} x=g_{2} x$. Then $\left(g_{1}-g_{2}\right) x \equiv 0(\bmod n)$, which implies that $g_{1}-g_{2} \equiv 0\left(\bmod \frac{n}{x}\right)$. Since $g_{1}-g_{2} \in \mathbb{Z}_{\frac{n}{x}}, g_{1}-g_{2}=0$, a contradiction. Hence $o(x)=\left\{g x: g \in G_{\frac{n}{x}}\right\}$, and so $|o(x)|=\left|G_{\frac{n}{x}}\right|$.

Example 1. Consider \mathbb{Z}_{36}. Then $G_{36}=\{1,5,7,11,13,17,19,23,25,29,31,35\}$, $X_{36}=\{2,3,4,6,8,9,10,12,14,15,16,18,20,21,22,24,26,27,28,30,32,33,34\}$. Thus all the distinct orbits under the regular action on X_{36} by G_{36} are obtained as follows:

$$
\begin{aligned}
& o(2)=\left\{y \in X_{36}:(2,36)=(y, 36)\right\}=\{2,10,14,22,26,34\}, \\
& o(3)=\left\{y \in X_{36}:(3,36)=(y, 36)\right\}=\{3,15,21,33\}, \\
& o(4)=\left\{y \in X_{36}:(4,36)=(y, 36)\right\}=\{4,8,16,20,28,32\}, \\
& o(6)=\left\{y \in X_{36}:(6,36)=(y, 36)\right\}=\{6,30\}, \\
& o(9)=\left\{y \in X_{36}:(9,36)=(y, 36)\right\}=\{9,27\}, \\
& o(12)=\left\{y \in X_{36}:(12,36)=(y, 36)\right\}=\{12,24\}, \\
& o(18)=\left\{y \in X_{36}:(18,36)=(y, 36)\right\}=\{18\} .
\end{aligned}
$$

Also we can have

$$
\begin{aligned}
& |o(2)|=\left|G_{18}\right|=6,|o(3)|=\left|G_{12}\right|=4,|o(4)|=\left|G_{9}\right|=6,|o(6)|=\left|G_{6}\right|=2, \\
& |o(9)|=\left|G_{4}\right|=2,|o(12)|=\left|G_{3}\right|=2,|o(18)|=\left|G_{2}\right|=1
\end{aligned}
$$

Corollary 2.6. Let n be a positive integer. Then $n=\sum_{x \mid n} \phi(x)(\forall x, x \mid n)$ where $\phi(x)$ is the Euler-phi number of x, i.e., $\phi(x)=\left|G_{x}\right|$.
Proof. By Remark 1 and Corollary 2.5, $\left|X_{n}\right|=\sum_{x \mid n}|o(x)|=\sum_{x \mid n} \phi\left(\frac{n}{x}\right)=$ $\sum_{x \mid n} \phi(x)(x \neq 1, n)$ - (1). On the other hand, since $\mathbb{Z}_{n} \backslash\{0\}=X_{n} \cup G_{n}$, $\left|X_{n}\right|=n-1-\left|G_{n}\right|=n-\phi(1)-\phi(n)-(2)$. By equalities (1) and (2), we have $n=\phi(1)+\phi(n)+\sum_{x \mid n} \phi(x)(x \neq 1, n)=\sum_{x \mid n} \phi(x)(\forall x, x \mid n)$.

Remark 2. (1) Let n be any positive integer. Then for all divisors $x(\neq 1, n)$ of n, we have that $|\operatorname{stab}(x)|=\frac{\left|G_{n}\right|}{|o(x)|}=\frac{\phi(n)}{\phi\left(\frac{n}{x}\right)}-\left(^{*}\right)$ by Corollary 2.5.
(2) Let p be any prime and t be any positive integer. Then by the equality $\left(^{*}\right)$ we have that $\left|\operatorname{stab}\left(p^{t-1}\right)\right|=\frac{\phi\left(p^{t}\right)}{\phi(p)}=p^{t-1}$, and so $\operatorname{stab}\left(p^{t-1}\right)=\{1+k p: k=$ $\left.0,1, \cdots, p^{t-1}-1\right\}$ is the Sylow p-subgroup of $G_{p^{t}}$.
(3) Let n be any even integer. Then by the equality (*) we also have that $\phi(n)=\phi(2)\left|\operatorname{stab}\left(\frac{n}{2}\right)\right|=\left|\operatorname{stab}\left(\frac{n}{2}\right)\right|$, and so $G_{n}=\operatorname{stab}\left(\frac{n}{2}\right)$.

We will denote $\operatorname{ann}(x) \backslash\{0\}$ by $\operatorname{ann}(x)^{*}$.
Lemma 2.7. Let n be any positive integer and $x, y \in X_{n}$ be divisors of n such that $x<y$. Then $\operatorname{ann}(x)^{*} \neq \operatorname{ann}(y)^{*}$.
Proof. Assume that $\operatorname{ann}(x)^{*}=\operatorname{ann}(y)^{*}$. Since x, y are divisors of n such that $x<y$ and $x \neq y$, we can choose an element $a \in X_{n}$ so that $a x \neq 0, a y=0$, and so $a \notin \operatorname{ann}(x)^{*}, a \in \operatorname{ann}(y)^{*}$, which is a contradiction. Hence $\operatorname{ann}(x)^{*} \neq$ ann (y)*.

Theorem 2.8. Let n be any positive integer. Then for all $x, y \in X_{n},(x, n)=$ (y, n) if and only if $\operatorname{ann}(x)^{*}=\operatorname{ann}(y)^{*}$.
Proof. (\Rightarrow) Suppose that for all $x, y \in X_{n},(x, n)=(y, n)$. Then $o(x)=o(y)$ by Theorem 2.4. Let $a \in \operatorname{ann}(x)^{*}$ be arbitrary. Then $a x=0$. Since $o(x)=o(y)$, $y=g x$ for some $g \in G_{n}$. Thus $a y=a(g x)=g(a x)=0$, and so $a y=0$, which implies that $a \in \operatorname{ann}(y)^{*}$, and so $\operatorname{ann}(x)^{*} \subseteq \operatorname{ann}(y)^{*}$. Similarly, we can also show that $\operatorname{ann}(y)^{*} \subseteq \operatorname{ann}(x)^{*}$.
(\Leftarrow) Suppose that for all $x, y \in X_{n}, \operatorname{ann}(x)^{*}=\operatorname{ann}(y)^{*}$. We can take x_{0}, y_{0} such that divisors of $n, x_{0}, y_{0} \in X_{n}$ such that $x_{0}=\left(x_{0}, n\right)=(x, n), y_{0}=$ $\left(y_{0}, n\right)=(y, n)$ by Lemma 2.2. By the similar argument given in the proof of (\Rightarrow), we have $\operatorname{ann}\left(x_{0}\right)^{*}=\operatorname{ann}(x)^{*}, \operatorname{ann}\left(y_{0}\right)^{*}=\operatorname{ann}(y)^{*}$. Assume that $(x, n) \neq$ (y, n). Then $x_{0} \neq y_{0}$, and so $\operatorname{ann}(x)^{*} \neq \operatorname{ann}(y)^{*}$ by Lemma 2.7, a contradiction. Hence we have $(x, n)=(y, n)$.

Remark 3. Let n be any positive integer. Then the number of the $\operatorname{ann}(x)^{*}$'s in X_{n} is equal to the number of divisors $(\neq 1, n)$ of n by Lemma 2.1 and Theorem
2.8. We observe that $\operatorname{ann}(x)^{*}$ in X_{n} is the union of some orbits under the regular action on X_{n} by G_{n}.

Example 2. Consider \mathbb{Z}_{36}. Then $\{2,3,4,6,9,12,18\}$ is the set of all divisors $(\neq 1,36)$ of 36 given in Example 1. Thus we obtained all the $\operatorname{ann}(x)^{*}$'s in X_{36} as follows:

$$
\begin{aligned}
& \operatorname{ann}(2)^{*}=\{18\}=o(18), \\
& \operatorname{ann}(3)^{*}=\{12,24\}=o(12), \\
& \operatorname{ann}(4)^{*}=\{9,18,27\}=o(9) \cup o(18), \\
& \operatorname{ann}(6)^{*}=\{6,12,18,24,30\}=o(6) \cup o(12) \cup o(18), \\
& \operatorname{ann}(9)^{*}=\{4,8,12,16,20,24,28,32\}=o(4) \cup o(12), \\
& \operatorname{ann}(12)^{*}=\{3,6,9,12,15,18,21,24,27,30,33\} \\
& =o(3) \cup o(6) \cup o(9) \cup o(18), \\
& \operatorname{ann}(18)^{*}=\{2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34\} \\
& =o(2) \cup o(4) \cup o(6) \cup o(12) \cup o(18) .
\end{aligned}
$$

3. Some properties of orbits under the regular action

Consider \mathbb{Z}_{36}. Then there are 7 distinct orbits under the regular action on X_{36} by G_{36} as in the Example 1.

$$
\begin{aligned}
& o(2)=\left\{y \in X_{36}:(2,36)=(y, 36)\right\}=\{2,10,14,22,26,34\}, \\
& o(3)=\left\{y \in X_{36}:(3,36)=(y, 36)\right\}=\{3,15,21,33\}, \\
& o(4)=\left\{y \in X_{36}:(4,36)=(y, 36)\right\}=\{4,8,16,20,28,32\}, \\
& o(6)=\left\{y \in X_{36}:(6,36)=(y, 36)\right\}=\{6,30\}, \\
& o(9)=\left\{y \in X_{36}:(9,36)=(y, 36)\right\}=\{9,27\}, \\
& o(12)=\left\{y \in X_{36}:(12,36)=(y, 36)\right\}=\{12,24\}, \\
& o(18)=\left\{y \in X_{36}:(18,36)=(y, 36)\right\}=\{18\} .
\end{aligned}
$$

On the other hand, we have the following:

$$
\sum_{g \in G_{36}} y \equiv 1+5+7+11+13+17+19+23+25+29+31+35 \equiv 0(\bmod
$$ 36),

$$
\begin{aligned}
& \sum_{y \in o(2)} y \equiv 2+10+14+22+26+34 \equiv 0(\bmod 36), \\
& \sum_{y \in o(3)} y \equiv 3+15+21+33 \equiv 0(\bmod 36), \\
& \sum_{y \in o(4)} y \equiv 4+8+16+20+28+32 \equiv 0(\bmod 36), \\
& \sum_{y \in o(6)} y \equiv 6+30 \equiv 0(\bmod 36),
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{y \in o(9)} y \equiv 9+27 \equiv 0(\bmod 36) \\
& \sum_{y \in o(12)} y \equiv 12+24 \equiv 0(\bmod 36) \\
& \sum_{y \in o(18)} y \equiv 18(\bmod 36)
\end{aligned}
$$

In this section, we will show that for all positive integers $n, \sum_{g \in G_{n}} g \equiv 0$ $(\bmod n)$ and $\sum_{y \in o(x)} y \equiv 0(\bmod n)$ for any orbit $o(x)(|o(x)| \geq 2)$ under the regular action on X_{n} by G_{n}.
Lemma 3.1. Let p be any prime and $t(t \geq 2)$ be any positive integer. Then $\sum_{g \in G_{p^{t}}} g \equiv 0\left(\bmod p^{t}\right)$.
Proof. Since $X_{p^{t}}=\left\{p, 2 p, \cdots,\left(p^{t-1}-1\right) p\right\}=\mathbb{Z}_{p^{t}} \backslash\left(G_{p^{t}} \cup\{0\}\right)$, we have

$$
\begin{aligned}
& \sum_{g \in G_{p^{t}}} g=\sum_{a \in \mathbb{Z}_{p^{t}}} a-\sum_{x \in X_{p^{t}}} x \\
& =\left(1+2+\cdots+\left(p^{t}-1\right)\right)-\left(p+2 p+\cdots+\left(p^{t-1}-1\right) p\right) \\
& =\frac{p^{t}\left(p^{t}-1\right)}{2}-\frac{p^{t}\left(p^{t-1}-1\right)}{2} \\
& =p^{t}\left(\frac{p^{t-1}(p-1)}{2}\right), \text { and so } \sum_{g \in G_{p^{t}}} g \equiv 0\left(\bmod p^{t}\right) \text { because } \frac{p^{t-1}(p-1)}{2} \text { is an integer }
\end{aligned}
$$ for any prime p.

Theorem 3.2. Let n be any positive integer. Then $\sum_{g \in G_{n}} g \equiv 0(\bmod n)$.
Proof. Let $p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \cdots p_{s}^{\alpha_{s}}$ be the prime factorization of n where p_{i} are all distinct primes and $\alpha_{i} \geq 1$ for all $i=1, \cdots, s$. Since \mathbb{Z}_{n} is isomorphic to $\mathbb{Z}_{p_{1}^{\alpha_{1}}} \times \mathbb{Z}_{p_{2}^{\alpha_{2}}} \times$ $\cdots \times \mathbb{Z}_{p_{s}^{\alpha_{s}}}, G_{n}$ is also isomorphic to $G_{p_{1}^{\alpha_{1}}} \times G_{p_{2}^{\alpha_{2}}} \times \cdots \times G_{p_{s}^{\alpha_{s}}}$. Without loss of generality, we can assume that $\mathbb{Z}_{n}=\mathbb{Z}_{p_{1}^{\alpha_{1}}} \times \mathbb{Z}_{p_{2}^{\alpha_{2}}} \times \cdots \times \mathbb{Z}_{p_{s}^{\alpha_{s}}}$ (resp. $G_{n}=G_{p_{1}^{\alpha_{1}}} \times$ $G_{p_{2}^{\alpha_{2}}} \times \cdots \times G_{p_{s}^{\alpha_{s}}}$. Since $\sum_{g \in G_{n}} g=\sum_{\left(g_{1}, \cdots, g_{s}\right) \in G_{p_{1}^{\alpha_{1}} \times \cdots \times G_{p_{s}^{\alpha_{s}}}}\left(g_{1}, \cdots, g_{s}\right)=}$ $\left(\sum_{g_{1} \in G_{p_{1}^{\alpha_{1}}}} g_{1}, \cdots, \sum_{g_{s} \in G_{p_{s}^{\alpha_{s}}}} g_{s}\right)$ and
$\sum_{g_{i} \in G_{p_{i}^{\alpha_{i}}}} g_{i} \equiv 0_{i}\left(\operatorname{Mod} p_{i}^{\alpha_{i}}\right)$ by Lemma 3.1 where 0_{i} is the zero identity of $G_{p_{i}^{\alpha_{i}}}$ for all $i=1, \cdots, s$, we have $\sum_{g \in G_{n}} g \equiv 0(\bmod n)$.
Corollary 3.3. Let n be any positive integer. If n is odd (resp. even), then $\sum_{x \in X_{n}} x \equiv 0(\bmod n)\left(\right.$ resp. $\left.\sum_{x \in X_{n}} x \equiv \frac{n}{2}(\bmod n)\right)$.
Proof. Note that $\sum_{x \in X_{n}} x=\sum_{a \in \mathbb{Z}_{n}} a-\sum_{g \in G_{n}} g=\frac{n(n-1)}{2}-\sum_{g \in G_{n}} g \equiv \frac{n(n-1)}{2}$ $(\bmod n)-(*)$ by Theorem 3.2. If n is odd, then $\frac{n(n-1)}{2} \equiv 0(\bmod n)$, and so $\sum_{x \in X_{n}} x \equiv 0(\bmod n)$ from the equality $\left({ }^{*}\right)$. If n is even, then $\frac{n(n-1)}{2}+\frac{n}{2}=$
 $(\bmod n)$ from the equality $\left({ }^{*}\right)$.
Lemma 3.4. Let $n=p^{t}$ for any prime p and positive integer $t(t \geq 2)$. Then $\sum_{y \in o(x)} y \equiv 0(\bmod n)$ for any orbit $o(x)(|o(x)| \geq 2)$, under the regular action on X_{n} by G_{n}.

Proof. Let $x \in X_{n}$ be an arbitrary divisor of n. Then $x=p^{k}$ for some k $(t-1 \geq k \geq 2)$. Since $o\left(p^{i}\right)=\left\{y \in X_{n}: p^{k}=(n, y)\right\}$ by Theorem 2.4, $o\left(p^{k}\right)=$ $\left.\left\{a x \in X_{n}: a \in G_{n}\right\}=\left\{p^{k}, 2 p^{k}, \cdots,\left(p^{t}-1\right) p^{k}\right\} \backslash\left\{p p^{k}, 2 p p^{k}, \cdots,\left(p^{t}-1\right) p\right) p^{k}\right\}$. Hence we have

$$
\begin{aligned}
& \sum_{y \in o\left(p^{i}\right)} y \\
& \equiv\left(1+2+\cdots+\left(p^{t}-1\right)\right) p^{k}-\left(p+2 p+\cdots+\left(p^{t}-1\right) p\right) p^{k} \\
& \equiv \frac{\left(p^{t}-1\right) p^{t}}{2} p^{k}-\frac{\left(p^{t-1}-1\right) p^{t-1}}{2} p^{k+1} \\
& \equiv\left(p^{k} \frac{\left(p^{t}-p^{t-1}\right)}{2}\right) p^{t} \equiv 0\left(\bmod p^{t}\right) .
\end{aligned}
$$

Theorem 3.5. Let n be a positive integer. Then $\sum_{y \in o(x)} y \equiv 0(\bmod n)$ for any orbit $o(x) \quad|o(x)| \geq 2)$ under the regular action on X_{n} by G_{n}.
Proof. Let $p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \cdots p_{s}^{\alpha_{s}}$ be the prime factorization of n where $p_{i}^{\alpha_{i}}$ are all distinct primes and $\alpha_{i} \geq 1$ for all $i=1, \cdots, s$. Since \mathbb{Z}_{n} is isomorphic to $\mathbb{Z}_{p_{1}^{\alpha_{1}}} \times$ $\mathbb{Z}_{p_{2}^{\alpha_{2}}} \times \cdots \times \mathbb{Z}_{p_{s}^{\alpha_{s}}}, G_{n}$ is also isomorphic to $G_{p_{1}^{\alpha_{1}}} \times G_{p_{2}^{\alpha_{2}}} \times \cdots \times G_{p_{s}^{\alpha_{s}}}$. Without loss of generality, we can assume that $\mathbb{Z}_{n}=\mathbb{Z}_{p_{1}^{\alpha_{1}}} \times \mathbb{Z}_{p_{2}^{\alpha_{2}}} \times \cdots \times \mathbb{Z}_{p_{s}^{\alpha_{s}}}$ (resp. $\left.G_{n}=G_{p_{1}^{\alpha_{1}}} \times G_{p_{2}^{\alpha_{2}}} \times \cdots \times G_{p_{s}^{\alpha_{s}}}\right)$. Let $x=\left(x_{1}, x_{2}, \cdots, x_{s}\right) \in X_{n}$ be arbitrary and 0_{i} be the additive identity of $\mathbb{Z}_{p_{i}^{\alpha_{i}}}$ for all $i=1, \cdots, s$. By assumption, it is enough to show that for all $x_{i} \in \mathbb{Z}_{p_{i}^{\alpha_{i}}}, \sum_{y_{i} \in o\left(x_{i}\right)} y_{i} \equiv 0_{i}\left(\bmod p_{i}^{\alpha_{i}}\right)$. Observe that if $x_{i} \in X_{p_{i}^{\alpha_{i}}}$, then $\sum_{y_{i} \in o\left(x_{i}\right)} y_{i} \equiv 0\left(\bmod p_{i}^{\alpha_{i}}\right)$ by Lemma 3.4; if $x_{i} \in G_{p_{i}^{\alpha_{i}}}$, then $\sum_{g \in G_{p_{i}^{\alpha_{i}}}} g x_{i} \equiv \sum_{g \in G_{p_{i}^{\alpha_{i}}}} g \equiv 0\left(\bmod p_{i}^{\alpha_{i}}\right)$ by Lemma 3.1; if $x_{i}=0_{i}$, then clearly, $\sum_{g \in G_{p_{i}^{\alpha_{i}}}} g 0_{i} \equiv 0_{i}\left(\bmod p_{i}^{\alpha_{i}}\right)$. Hence we have the result.

References

[1] J. A. Cohen and K. Koh, Half-transitive group actions in a compact ring, J. Pure and Appl. Algebra 60 (1989), 139-153.
[2] J. Han, Regular action in a ring with a finite number of orbits, Comm. Algebra 25 (1997), no.7, 2227-2236.
[3] J. Han, Group actions in a unit-regular ring, Comm. Algebra 27 (1999), no.7, 3353-3361.

Jinsun Jeong
Department of Mathematics
Dong-A University
Pusan, 49315, Korea
E-mail address: jsjeong@donga.ac.kr
Sangwon Park
Department of Mathematics
Dong-A University
Pusan, 49315, Korea
E-mail address: swpark@donga.ac.kr

[^0]: Received December 12, 2016; Accepted February 13, 2017.
 2010 Mathematics Subject Classification. 16W22, 11A07.
 Key words and phrases. regular group action, orbit, stabilizer.
 This study was supported by research funds from Dong-A University.

