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REGULAR ACTION IN Zn

Jinsun Jeong and Sangwon Park

Abstract. Let n be any positive integer and Zn = {0, 1, . . . , n−1} be the
ring of integers modulo n. Let Xn be the set of all nonzero, nonunits of Zn,

and Gn be the group of all units of Zn. In this paper, by investigating the
regular action on Xn by Gn, the following are proved : (1) The number of

orbits under the regular action (resp. the number of annihilators in Xn)

is equal to the number of all divisors ( 6= 1, n) of n; (2) For any positive
integer n,

∑
g∈Gn g ≡ 0 (mod n); (3) For any orbit o(x) (x ∈ Xn) with

|o(x)| ≥ 2,
∑

y∈o(x) y ≡ 0 (mod n).

1. Introduction and basic definitions

Let n be any positive integer and Zn = {0, 1, . . . , n−1} be the ring of integers
modulo n. Let Xn be the set of all nonzero, nonunits of Zn and Gn be the group
of all units of Zn. In this paper, we will consider a group action on Xn by Gn
given by ((g, x) −→ gx) from Gn ×Xn to Xn, called the regular action on Xn

by Gn. Under the regular action on Xn by Gn, we define the orbit of x by
o(x) = {gx : ∀g ∈ Gn} and the stabilizer of x by stab(x) = {g ∈ Gn : gx = x}
(refer [1], [2], [3]).

Recall that the annihilator of x ∈ Xn (denoted by ann(x)) is defined by
{a ∈ Zn : ax = 0}. Throughout this paper, we will denote the greatest common
divisor of any two positive integers s and t by gcd(s, t) (or simply (s, t)) and s|t
means that s is a divisor of t. In section 2, we will show that all orbits under
the regular action on Xn by Gn consists of o(x) for all divisors x(6= 1, n) of n
by investigating that for all x, y ∈ Xn, o(x) = o(y) if and only if (x, n) = (y,
n). We can also show that for all x, y ∈ Xn, ann(x) = ann(y) if and only if (x,
n) = (y, n).

In section 3, we will show that for any positive integer n, (1)
∑
g∈Gn g ≡ 0

(mod n); (2) for any orbit o(x) (x ∈ Xn) with |o(x)| ≥ 2,
∑
y∈o(x) y ≡ 0 (mod

n). As a corollary of the result (2), we obtain
∑
d|n φ(d) = n where φ(d) is the

Euler-phi number of d.
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2. Orbits and annihilators under the regular action

We begin this section with some lemmas.

Lemma 2.1. Let n be any positive integer and x, y ∈ Xn be divisors of n such
that x < y and x 6= y. Then o(x) 6= o(y) under the regular action on Xn by Gn.

Proof. Assume that o(x) = o(y). Then y = gx for some g ∈ Gn. Since x, y are
divisors of n such that x < y and x 6= y, we can choose an element a ∈ Xn so
that ax 6= 0, ay = 0. On the other hand, since 0 = ay = a(gx) and g ∈ Gn, we
have ax = 0, which is a contradiction. Hence o(x) 6= o(y). �

Lemma 2.2. Let n be any positive integer and y ∈ Xn be arbitrary. Then there
exists x ∈ X such that x|n and (x, n) = (y, n).

Proof. Let x = (y, n). Then clearly, x|n and (x, n) = ((y, n), n) = (y, n). �

Lemma 2.3. Let k and n be any positive integers such that k|n. If ḡ ∈ Gk,
then there exists g ∈ Gn such that g ≡ ḡ (mod k).

Proof. Note that since k|n, Zn/ < k > is isomorphic to Zk where < k > is an
ideal of Zn generated by k. Let n = pα1

1 pα2
2 · · · p

αt
t be the prime factorization

of n where p1, p2, · · · , pt are distinct primes for some positive integer t. Then

k = pβ1

1 p
β2

2 · · · p
βt
t with αi ≥ βi ≥ 0 for all i = 1, · · · , t. Without loss of

generality, we can assume that Zn = Zpα1
1
×Zpα2

2
· · · ×Zpαtt (resp. Zk = Z

p
β1
1
×

Z
p
β2
2
· · ·×Z

p
βt
t

). Then we can consider a ring epimorphism π : Zpα1
1
×Zpα2

2
· · ·×

Zpαtt → Z
p
β1
1
× Z

p
β2
2
· · · × Z

p
βt
t

given by π(a1, · · · , at) = (ā1, · · · , āt) for all

(a1, · · · , at) ∈ Zpα1
1
× Zpα2

2
· · · × Zpαtt where āi is the remainder obtained from

dividing ai by pβii for all i.

Case 1. Suppose that βi ≥ 1 for all i = 1, · · · , t.
Let ḡ = (ḡ1, · · · , ḡt) ∈ Z

p
β1
1
×Z

p
β2
2
· · ·×Z

p
βt
t

be an arbitrary unit. Then there

exists an element g = (g1, · · · , gt) ∈ Zpα1
1
× · · · × Zpαtt such that π(g) = ḡ i.e.,

gi ≡ ḡi (mod pβii ) for all i. Since ḡ is a unit in Z
p
β1
1
× Z

p
β2
2
· · · × Z

p
βt
t

, we have

(ḡi, p
βi
i ) = 1 and so (gi, p

αi
i ) = 1 for all i = 1, · · · , t, which implies that g ∈ Zn

is a unit.

Case 2. Suppose that βi = 0 for some i.
Let I1 = {i ∈ {1, · · · , t} : βi ≥ 1} and I2 = {i ∈ {1, · · · , t} : βi = 0}.

Consider R = R1 × R2 where R1 =
∏
i∈I1 Zpβii and R2 =

∏
i∈I2{1i} where 1i

is the unity of Z
p
βi
i

. By changing the order of the Z
p
βi
i

if necessary we can

assume that R = Zk = Z
p
β1
1
× Z

p
β2
2
· · · × Z

p
βt
t

. Let G(R) be the group of all

units in R. Let ḡ = (ḡ1, · · · , ḡ|I1|, 11, · · · , 1|I2|) ∈ G(R) be arbitrary. Then by
the similar argument given in Case 1, there exists a unit gi ∈ Zpα1

1
such that

gi ≡ ḡi (mod pβii ) for all i = 1, · · · , |I1|. Let g = (g1, · · · , g|I1|, 11, · · · , 1|I2|) ∈
Zpα1

1
× · · · ×Zpαtt . Then g is a unit in Zpα1

1
× · · · ×Zpαtt such that π(g) = ḡ. �
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Theorem 2.4. Let n be any positive integer. Then for all x, y ∈ Xn, o(x) =
o(y) if and only if (x, n) = (y, n).

Proof. (⇒) Suppose that for all x, y ∈ Xn, o(x) = o(y). Then y = gx for some
g ∈ Gn. Since (g, n) = 1, we have (y, n) = (gx, n) = (x, n).

(⇐) Suppose that for all x, y ∈ Xn, (x, n) = (y, n). It is enough to consider
x|n, i.e., x = (x, n) by Lemma 2.2. Since x|y, y = ax for some integer a. Since
x = (y, n), x = by + cn for some integers b and c. Hence x ≡ by ≡ bax (mod
n), and then 1 ≡ ba (mod n

x ). Let ā be an element of Zn
x

so that a ≡ ā (mod
n
x ). Then 1 ≡ bā (mod n

x ), which implies that ā ∈ Gn
x

. By Lemma 2.3, there
exists a0 ∈ Gn such that a0 ≡ ā (mod n

x ). Since a0 = ā+ k(nx ) for some integer
k, we have a0x ≡ (ā + k(nx ))x ≡ āx ≡ ax ≡ y (mod n), which implies that
o(x) = o(y). �

Remark 1. (1) Let n be any positive integer. Then the number of orbits
under the regular action on Xn by Gn is equal to the number of divisors (6= 1, n)
of n by Lemma 2.1 and Theorem 2.4.
(2) The regular action on Xn by Gn is transitive, i.e., Xn = o(x) for some
x ∈ Xn if and only if n = p2 for some prime p.

Corollary 2.5. Let n be a positive integer and x(6= 1, n) be a divisor of n.
Then o(x) = {gx : ∀g ∈ Gn

x
}, and so |o(x)| = |Gn

x
|.

Proof. Let y ∈ o(x) be arbitrary. By Theorem 2.4, (x, n) = (y, n). Since x
is a divisor of n, x = (x, n) = (y, n), and so 1 = ( yx ,

n
x ). Thus y

x ∈ Gn
x

,
and then y = gx for some g ∈ Gn

x
. Assume that there exist g1, g2 ∈ Gn

x

(g1 6= g2) such that g1x = g2x. Then (g1 − g2)x ≡ 0 (mod n), which implies
that g1 − g2 ≡ 0 (mod n

x ). Since g1 − g2 ∈ Zn
x

, g1 − g2 = 0, a contradiction.
Hence o(x) = {gx : g ∈ Gn

x
}, and so |o(x)| = |Gn

x
|. �

Example 1. Consider Z36. ThenG36 = {1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35},
X36 = {2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34}.
Thus all the distinct orbits under the regular action on X36 by G36 are ob-
tained as follows:
o(2) = {y ∈ X36 : (2, 36) = (y, 36)} = {2, 10, 14, 22, 26, 34},

o(3) = {y ∈ X36 : (3, 36) = (y, 36)} = {3, 15, 21, 33},

o(4) = {y ∈ X36 : (4, 36) = (y, 36)} = {4, 8, 16, 20, 28, 32},

o(6) = {y ∈ X36 : (6, 36) = (y, 36)} = {6, 30},

o(9) = {y ∈ X36 : (9, 36) = (y, 36)} = {9, 27},

o(12) = {y ∈ X36 : (12, 36) = (y, 36)} = {12, 24},

o(18) = {y ∈ X36 : (18, 36) = (y, 36)} = {18}.

Also we can have
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|o(2)| = |G18| = 6, |o(3)| = |G12| = 4, |o(4)| = |G9| = 6, |o(6)| = |G6| = 2,

|o(9)| = |G4| = 2, |o(12)| = |G3| = 2, |o(18)| = |G2| = 1.

Corollary 2.6. Let n be a positive integer. Then n =
∑
x|n φ(x)(∀x, x|n) where

φ(x) is the Euler-phi number of x, i.e., φ(x) = |Gx|.

Proof. By Remark 1 and Corollary 2.5, |Xn| =
∑
x|n |o(x)| =

∑
x|n φ(nx ) =∑

x|n φ(x)(x 6= 1, n) - (1). On the other hand, since Zn \ {0} = Xn ∪ Gn,

|Xn| = n− 1− |Gn| = n− φ(1)− φ(n) - (2). By equalities (1) and (2), we have
n = φ(1) + φ(n) +

∑
x|n φ(x)(x 6= 1, n) =

∑
x|n φ(x)(∀x, x|n) . �

Remark 2. (1) Let n be any positive integer. Then for all divisors x(6= 1, n)

of n, we have that |stab(x)| = |Gn|
|o(x)| = φ(n)

φ(nx )
- (*) by Corollary 2.5.

(2) Let p be any prime and t be any positive integer. Then by the equality (*)

we have that |stab(pt−1)| = φ(pt)
φ(p) = pt−1, and so stab(pt−1) = {1 + kp : k =

0, 1, · · · , pt−1 − 1} is the Sylow p-subgroup of Gpt .
(3) Let n be any even integer. Then by the equality (*) we also have that
φ(n) = φ(2)|stab(n2 )| = |stab(n2 )|, and so Gn = stab(n2 ).

We will denote ann(x) \ {0} by ann(x)∗.

Lemma 2.7. Let n be any positive integer and x, y ∈ Xn be divisors of n such
that x < y. Then ann(x)∗ 6= ann(y)∗.

Proof. Assume that ann(x)∗ = ann(y)∗. Since x, y are divisors of n such that
x < y and x 6= y, we can choose an element a ∈ Xn so that ax 6= 0, ay = 0,
and so a /∈ ann(x)∗, a ∈ ann(y)∗, which is a contradiction. Hence ann(x)∗ 6=
ann(y)∗. �

Theorem 2.8. Let n be any positive integer. Then for all x, y ∈ Xn, (x, n) =
(y, n) if and only if ann(x)∗ = ann(y)∗.

Proof. (⇒) Suppose that for all x, y ∈ Xn, (x, n) = (y, n). Then o(x) = o(y) by
Theorem 2.4. Let a ∈ ann(x)∗ be arbitrary. Then ax = 0. Since o(x) = o(y),
y = gx for some g ∈ Gn. Thus ay = a(gx) = g(ax) = 0, and so ay = 0, which
implies that a ∈ ann(y)∗, and so ann(x)∗ ⊆ ann(y)∗. Similarly, we can also
show that ann(y)∗ ⊆ ann(x)∗.

(⇐) Suppose that for all x, y ∈ Xn, ann(x)∗ = ann(y)∗. We can take x0, y0
such that divisors of n, x0, y0 ∈ Xn such that x0 = (x0, n) = (x, n), y0 =
(y0, n) = (y, n) by Lemma 2.2. By the similar argument given in the proof of
(⇒), we have ann(x0)∗ = ann(x)∗, ann(y0)∗ = ann(y)∗. Assume that (x, n) 6=
(y, n). Then x0 6= y0, and so ann(x)∗ 6= ann(y)∗ by Lemma 2.7, a contradiction.
Hence we have (x, n) = (y, n). �

Remark 3. Let n be any positive integer. Then the number of the ann(x)∗’s
inXn is equal to the number of divisors (6= 1, n) of n by Lemma 2.1 and Theorem



REGULAR ACTION 261

2.8. We observe that ann(x)∗ in Xn is the union of some orbits under the regular
action on Xn by Gn.

Example 2. Consider Z36. Then {2, 3, 4, 6, 9, 12, 18} is the set of all divisors
(6= 1, 36) of 36 given in Example 1. Thus we obtained all the ann(x)∗’s in X36

as follows:
ann(2)∗ = {18} = o(18),

ann(3)∗ = {12, 24} = o(12),

ann(4)∗ = {9, 18, 27} = o(9) ∪ o(18),

ann(6)∗ = {6, 12, 18, 24, 30} = o(6) ∪ o(12) ∪ o(18),

ann(9)∗ = {4, 8, 12, 16, 20, 24, 28, 32} = o(4) ∪ o(12),

ann(12)∗ = {3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33}

= o(3) ∪ o(6) ∪ o(9) ∪ o(18),

ann(18)∗ = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34}

= o(2) ∪ o(4) ∪ o(6) ∪ o(12) ∪ o(18).

3. Some properties of orbits under the regular action

Consider Z36. Then there are 7 distinct orbits under the regular action on
X36 by G36 as in the Example 1.

o(2) = {y ∈ X36 : (2, 36) = (y, 36)} = {2, 10, 14, 22, 26, 34},

o(3) = {y ∈ X36 : (3, 36) = (y, 36)} = {3, 15, 21, 33},

o(4) = {y ∈ X36 : (4, 36) = (y, 36)} = {4, 8, 16, 20, 28, 32},

o(6) = {y ∈ X36 : (6, 36) = (y, 36)} = {6, 30},

o(9) = {y ∈ X36 : (9, 36) = (y, 36)} = {9, 27},

o(12) = {y ∈ X36 : (12, 36) = (y, 36)} = {12, 24},

o(18) = {y ∈ X36 : (18, 36) = (y, 36)} = {18}.

On the other hand, we have the following:∑
g∈G36

y ≡ 1 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 25 + 29 + 31 + 35 ≡ 0 (mod

36),∑
y∈o(2) y ≡ 2 + 10 + 14 + 22 + 26 + 34 ≡ 0 (mod 36),∑
y∈o(3) y ≡ 3 + 15 + 21 + 33 ≡ 0 (mod 36),∑
y∈o(4) y ≡ 4 + 8 + 16 + 20 + 28 + 32 ≡ 0 (mod 36),∑
y∈o(6) y ≡ 6 + 30 ≡ 0 (mod 36),
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y∈o(9) y ≡ 9 + 27 ≡ 0 (mod 36),∑
y∈o(12) y ≡ 12 + 24 ≡ 0 (mod 36),∑
y∈o(18) y ≡ 18 (mod 36).

In this section, we will show that for all positive integers n,
∑
g∈Gn g ≡ 0

(mod n) and
∑
y∈o(x) y ≡ 0 (mod n) for any orbit o(x) (|o(x)| ≥ 2) under the

regular action on Xn by Gn.

Lemma 3.1. Let p be any prime and t (t ≥ 2) be any positive integer. Then∑
g∈Gpt

g ≡ 0 (mod pt).

Proof. Since Xpt = {p, 2p, · · · , (pt−1 − 1)p} = Zpt \ (Gpt ∪ {0}), we have∑
g∈Gpt

g =
∑
a∈Zpt

a−
∑
x∈Xpt

x

= (1 + 2 + · · ·+ (pt − 1))− (p+ 2p+ · · ·+ (pt−1 − 1)p)

= pt(pt−1)
2 − pt(pt−1−1)

2

= pt(p
t−1(p−1)

2 ), and so
∑
g∈Gpt

g ≡ 0 (mod pt) because pt−1(p−1)
2 is an integer

for any prime p. �

Theorem 3.2. Let n be any positive integer. Then
∑
g∈Gn g ≡ 0 (mod n).

Proof. Let pα1
1 ·p

α2
2 · · · pαss be the prime factorization of n where pi are all distinct

primes and αi ≥ 1 for all i = 1, · · · , s. Since Zn is isomorphic to Zpα1
1
×Zpα2

2
×

· · · ×Zpαss , Gn is also isomorphic to Gpα1
1
×Gpα2

2
× · · · ×Gpαss . Without loss of

generality, we can assume that Zn = Zpα1
1
×Zpα2

2
×· · ·×Zpαss (resp. Gn = Gpα1

1
×

Gpα2
2
× · · · × Gpαss ). Since

∑
g∈Gn g =

∑
(g1,··· ,gs)∈Gpα1

1
×···×Gpαss

(g1, · · · , gs) =

(
∑
g1∈Gpα1

1

g1, · · · ,
∑
gs∈Gpαss

gs) and∑
gi∈Gpαi

i

gi ≡ 0i (Mod pαii ) by Lemma 3.1 where 0i is the zero identity of Gpαii
for all i = 1, · · · , s, we have

∑
g∈Gn g ≡ 0 (mod n). �

Corollary 3.3. Let n be any positive integer. If n is odd (resp. even), then∑
x∈Xn x ≡ 0 (mod n) (resp.

∑
x∈Xn x ≡

n
2 (mod n)).

Proof. Note that
∑
x∈Xn x =

∑
a∈Zn a−

∑
g∈Gn g = n(n−1)

2 −
∑
g∈Gn g ≡

n(n−1)
2

(mod n) - (*) by Theorem 3.2. If n is odd, then n(n−1)
2 ≡ 0 (mod n), and so∑

x∈Xn x ≡ 0 (mod n) from the equality (*). If n is even, then n(n−1)
2 + n

2 =

n(n2 ). Since n
2 is integer, n(n−1)

2 ≡ −n
2 ≡

n
2 (mod n), and so

∑
x∈Xn x ≡

n
2

(mod n) from the equality (*). �

Lemma 3.4. Let n = pt for any prime p and positive integer t (t ≥ 2). Then∑
y∈o(x) y ≡ 0 (mod n) for any orbit o(x) (|o(x)| ≥ 2), under the regular action

on Xn by Gn.
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Proof. Let x ∈ Xn be an arbitrary divisor of n. Then x = pk for some k
(t− 1 ≥ k ≥ 2). Since o(pi) = {y ∈ Xn : pk = (n, y)} by Theorem 2.4, o(pk) =
{ax ∈ Xn : a ∈ Gn} = {pk, 2pk, · · · , (pt − 1)pk} \ {ppk, 2ppk, · · · , (pt − 1)p)pk}.
Hence we have∑

y∈o(pi) y

≡ (1 + 2 + · · ·+ (pt − 1))pk − (p+ 2p+ · · ·+ (pt − 1)p)pk

≡ (pt−1)pt
2 pk − (pt−1−1)pt−1

2 pk+1

≡ (pk (pt−pt−1)
2 )pt ≡ 0 (mod pt). �

Theorem 3.5. Let n be a positive integer. Then
∑
y∈o(x) y ≡ 0 (mod n) for

any orbit o(x) (|o(x)| ≥ 2) under the regular action on Xn by Gn.

Proof. Let pα1
1 · p

α2
2 · · · pαss be the prime factorization of n where pαii are all

distinct primes and αi ≥ 1 for all i = 1, · · · , s. Since Zn is isomorphic to Zpα1
1
×

Zpα2
2
× · · · ×Zpαss , Gn is also isomorphic to Gpα1

1
×Gpα2

2
× · · · ×Gpαss . Without

loss of generality, we can assume that Zn = Zpα1
1
× Zpα2

2
× · · · × Zpαss (resp.

Gn = Gpα1
1
× Gpα2

2
× · · · × Gpαss ). Let x = (x1, x2, · · · , xs) ∈ Xn be arbitrary

and 0i be the additive identity of Zpαii for all i = 1, · · · , s. By assumption, it

is enough to show that for all xi ∈ Zpαii ,
∑
yi∈o(xi) yi ≡ 0i (mod pαii ). Observe

that if xi ∈ Xp
αi
i

, then
∑
yi∈o(xi) yi ≡ 0 (mod pαii ) by Lemma 3.4; if xi ∈ Gpαii ,

then
∑
g∈G

p
αi
i

gxi ≡
∑
g∈G

p
αi
i

g ≡ 0 (mod pαii ) by Lemma 3.1; if xi = 0i, then

clearly,
∑
g∈G

p
αi
i

g0i ≡ 0i (mod pαii ). Hence we have the result. �
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