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MODIFIED CYCLOTOMIC POLYNOMIALS

Ae-Kyoung Cha, Miyeon Kwon, Ki-Suk Lee, and Seong-Mo Yang

Abstract. Let H be a subgroup of Z∗n (the multiplicative group of in-

tegers modulo n) and h1, h2, . . . , hl distinct representatives of the cosets
of H in Z∗n. We now define a polynomial Jn,H(x) to be

Jn,H(x) =
l∏

j=1

(
x−

∑
h∈H

ζ
hjh
n

)
,

where ζn = e
2πi
n is the nth primitive root of unity. Polynomials of such

form generalize the nth cyclotomic polynomial Φn(x) =
∏

k∈Z∗n
(x − ζkn)

as Jn,{1}(x) = Φn(x). While the nth cyclotomic polynomial Φn(x) is

irreducible over Q, Jn,H(x) is not necessarily irreducible. In this paper,
we determine the subgroups H for which Jn,H(x) is irreducible over Q.

1. Introduction

Let n be a positive integer and ζn = e
2πi
n be the nth primitive root of unity.

The polynomial

Φn(x) =
∏
k∈Z∗n

(x− ζkn),

where Z∗n is the multiplicative group of integers modulo n, is called the nth
cyclotomic polynomial over Q. It is well known (e.g. see [8]) that Φn(x) ∈ Z[x]
with Φn(ζn) = 0 and is irreducible over Q.

To generalize the notion of cyclotomic polynomials, let H be a subgroup of
Z∗n and h1, h2, . . . , hl distinct representatives of the cosets of H in Z∗n. We now
define a polynomial Jn,H(x) to be

Jn,H(x) =

l∏
j=1

(
x−

∑
h∈H

ζhjhn

)
.
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The polynomial Jn,H(x) is a monic polynomial with integer coefficients.
Particularly, if we take H = {1}, then Jn,H(x) = Φn(x). While the nth
cyclotomic polynomial Φn(x) is irreducible over Q, Jn,H(x) is not necessarily
irreducible over Q.

This paper aims to determine the subgroups of Z∗n for which Jn,H(x) is
irreducible over Q. Some special cases have already been studied. For n =
p1p2 · · · pr, where p1, . . . , pr are distinct primes, Kwon et al. [7] showed that
any polynomial of the form Jn,H(x) is irreducible over Q. Shin et al. [9] have
established some criteria on H for the irreducibility of Jn,H(x) in the case
of n = pα1

1 pα2
2 · · · pαrr , where αj > 1, adopting Evan’s work in [3]. Diamond

et al. [2] have generalized Evan’s result. In their paper, they determined the

subgroups H of Z∗q for which the |H|×|H| matrix defined by {q− 1
2 ζ−nmq }n,m∈H

is invertible.
In this paper, we relate the results in Diamond et al.’s paper to the irre-

ducibility of Jn,H(x) for an arbitrary positive integer n. We show that the
conditions on H in [2] are equivalent to Jn,H being irreducible over Q.

To state the main result, we define v := v(n) to be the divisor of n determined
by

v(n) =


∏
p|n

p if 8 - n,

2
∏
p|n

p if 8 | n,
(1)

where the products run over distinct primes p which divide n. For examples,
v(22 · 53 · 7) = 2 · 5 · 7 and v(25 · 3 · 52) = 2(2 · 3 · 5). It follows from a
simple calculation that v(m · n) = v(m) · v(n) whenever m and n are coprime.
Subsequently, we let

U(n) = {m ∈ Z∗n : m ≡ 1 (mod v(n))}.(2)

Hasse [5] has established the important roles of U(n) in describing the structure
of the multiplicative group of integers modulo n. In fact, the relation of H to
U(n), particularly H ∩ U(n), determines the irreduciblity of Jn,H as stated in
the following.

Main Result. Let H be a proper subgroup of Z∗n. Then the following condi-
tions are equivalent.

(i)
∑
h∈H ζ

h
n 6= 0.

(ii) H ∩ U(n) = {1}.
(iii) {ζhn : h ∈ H} are linearly independent over Q.
(iv)

∑
h∈H ζ

h
n 6=

∑
h∈H ζ

kh
n whenever k /∈ H.

(v) Jn,H(x) is irreducible over Q.

In Section 2, we gather some properties of Jn,H(x) and characterize the
irreducibility of Jn,H(x) over Q in view of Galois group of Q(ζn) over Q. In
Section 3, we connect H ∩ U(n) to

∑
h∈H ζ

h
n , which is known as a Gauss sum
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associated with H. In Section 4, we discuss the relation between H ∩ U(n)
and the linear independence of {ζhn : h ∈ H} over Q. Lastly, we put together
the results from Sections 2-4 to give a complete proof of the main theorem in
Section 5.

Throughout the paper, n denotes a positive integer and ζn = e
2πi
n is the nth

primitive root of unity. Following the conventional notations, Q, Q[x], Q(ζn),
and Gal(Q(ζn)/Q) denote the field of rational numbers, the polynomial ring
over Q, and the simple extension field of Q containing ζn, and the Galois group
of Q(ζn) over Q, respectively.

2. Polynomials Jn,H(x)

In this section, we show that Jn,H(x) belongs to Z[x]. We also characterize
the irreducible polynomials Jn,H(x) in view of the Galois group of Q(ζn) over
Q, which is the set of all isomorphisms of Q(ζn) that fix Q pointwise.

It is well known (e.g. see [1]) that Z∗n ∼= Gal(Q(ζn)/Q) via the mapping
k ∈ Z∗n 7→ σk ∈ Gal(Q(ζn)/Q) satisfying σk(ζn) = ζkn. Thus Gal(Q(ζn)/Q) =
{σk : k ∈ Z∗n} equipped with group operation σk ◦ σl = σkl. For the remaining
paper, σk denotes the isomorphism on Q(ζn) defined as such.

Theorem 2.1. Let H be a subgroup of Z∗n and h1, h2, . . . , hl be distinct repre-

sentatives of the cosets of H in Z∗n. Then Jn,H(x) =
∏l
j=1

(
x−

∑
h∈H ζ

hjh
n

)
∈

Q[x]. Furthermore, Jn,H(x) ∈ Z[x].

Proof. We first note that
∑
h∈H ζ

hjh
n =

∑
t∈hjH ζ

t
n. This means that Jn,H(x) is

determined by cosets ofH and not by the coset representatives h1, h2, . . . , hl. In

regard to the cosets, Jn,H(x) can be written as Jn,H(x) =
∏l
j=1

(
x−
∑
t∈Hj ζ

t
n

)
,

where Hj , j = 1, . . . , l are the cosets of H in Z∗n.
For each k ∈ Z∗n, {kHj : j = 1, . . . , l} = {Hj : j = 1, . . . , l}. Consequently,

we have

l∏
j=1

(
x− σk

( ∑
t∈Hj

ζtn

))
=

l∏
j=1

(
x−

∑
t∈Hj

ζktn

)

=

l∏
j=1

(
x−

∑
t∈kHj

ζtn
)

=

l∏
j=1

(
x−

∑
t∈Hj

ζtn
)
.

We have just showed that the coefficients of Jn,H(x) are invariant over all
σk ∈ Gal(Q(ζn)/Q). Therefore, Jn,H(x) ∈ Q[x].

To see Jn,H(x) ∈ Z[x], note that each coefficient of Jn,H(x) is of the form
c0 + c1ζn + · · · + cmζ

m
n with cj ∈ Z. We shall show that any rational number

of such form must be an integer.
Suppose c0 + c1ζn + · · ·+ cmζ

m
n = q ∈ Q, where cj ∈ Z. Define a polynomial

P (x) as P (x) = c0 +c1x+ · · ·+cmx
m. Clearly, P (x) ∈ Z[x] by its construction.
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Dividing P (x) by the nth cyclotomic polynomial Φn(x) =
∏
k∈Z∗n

(x − ζkn) ∈
Z[x], we get

(3) P (x) = Q(x)Φn(x) +R(x),

where R(x) ∈ Z[x] of degree less than ϕ(n). Here ϕ(n) is the Euler’s totient
function. By substituting x with ζn in the equation (3), we have q = R(ζn)
equivalently R(ζn)− q = 0. This implies that R(x)− q is a polynomial in Q[x]
with ζn as its zero. Since Φn(x) is the minimal polynomial of ζn over Q (i.e.,
the monic irreducible polynomial over Q with ζn as its zero), we can conclude
that R(x) − q is the zero polynomial, implying q = R(0). Since R(x) ∈ Z[x],
q ∈ Z. This completes the proof. �

Let h1, . . . , hl be the distinct representatives of the cosets of H in Z∗n and

η =
∑
h∈H ζ

h
n . Then we can express Jn,H(x) as Jn,H(x) =

∏l
j=1

(
x− σhj (η)

)
,

where σhj denotes the isomorphism in Gal(Q(ζn)/Q) satisfying σhj (ζn) = ζ
hj
n .

In what follows, we characterize the irreducible polynomials of the form
Jn,H(x) with respect to σk(η) for σk ∈ Gal(Q(ζn)/Q).

Theorem 2.2. Let H be a proper subgroup of Z∗n and h1(= 1), h2, . . . , hl be
distinct representatives of the cosets of H in Z∗n. Suppose η :=

∑
h∈H ζ

h
n . Then

the following conditions are equivalent.

(i) Jn,H(x) =
∏l
j=1

(
x− σhj (η)

)
is irreducible over Q.

(ii) σhj (η), j = 1, . . . , l, are distinct.
(iii) η 6= σk(η) whenever k /∈ H.

Proof. It is known (see [4, 6]) that Q(ζn) is a finite normal extension of Q.
It means that for any α ∈ Q(ζn), the minimal polynomial of α over Q (i.e.,
the monic irreducible polynomial in Q[x] that has α as its zero) splits into
non-repeated linear factors in Q(ζn).

Suppose P (x) is the minimal polynomial of η over Q. Then P (σ(η)) = 0 for
any σ ∈ Gal(Q(ζn)/Q) (see [4]) and P (x) has no repeated zeros. As a result,
each

(
x − σhj (η)

)
divides P (x). Moreover, σhj (η), j = 1, . . . , l, are distinct if

and only if Jn,H(x) =
∏l
j=1

(
x − σhj (η)

)
divides P (x), which is equivalent to

Jn,H(x) = P (x) since Jn,H(x) ∈ Q[x] with η as its zero. We just have showed
(i) ⇔ (ii).

To show (ii) ⇔ (iii), we first suppose that σhj (η), j = 1, . . . , l, are distinct.
If k /∈ H, then k ∈ hjH for some hj 6= 1 and so kH = hjH. This implies that
σk(η) = σhj (η) 6= η. Conversely, we assume that η 6= σk(η) whenever k /∈ H.
Contrary to the statement (ii), suppose that σhj (η) = σhk(η) but hj 6= hk.
Then, by applying the inverse of σhj to the equation, we get η = σh̃j (σhk(η)) =

σh̃jhk(η), where h̃j is the multiplicative inverse of hj modulo n. Since hj and

hk are representatives of distinct cosets of H, h̃jhk /∈ H. This contradicts to
(iii). �
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3. U(n) and the Gauss sum

In this section, we review some important properties of U(n) which are
defined in (2). The results in this section are not new and can be found in
several literatures (e.g. [2] and [5]). While we do not wish to recap already
established results, there are important components of which we shall make
considerable use. For that reason, we present the proofs that are relevant to
the later arguments.

If n = pα is a prime power with p 6= 2, the order of Z∗n, ϕ(n) = pα−1(p− 1),
is decomposed into two coprime factors p − 1 and pα−1. Therefore, Z∗n is the
direct product of the two cyclic subgroups L(n) and U(n) of orders p− 1 and
pα−1, respectively. Since Z∗n is cyclic, such decomposition is unique and they
consist of all elements whose orders divide p − 1 and pα−1, respectively. In

other words, U(n) = {u ∈ Z∗n : up
α−1 ≡ 1 (mod n)} and

L(n) = {l ∈ Z∗n : lp−1 ≡ 1 (mod n)}.(4)

Hasse [5] obtained the explicit representations for L(n) and U(n) from the
homomorphisms of Z∗n.

Theorem 3.1 (Hasse [5]). Let n = pα be a prime power with p 6= 2. Then
Z∗n ∼= L(n) × U(n) is the direct product of the two cyclic subgroups L(n) and
U(n) of orders p− 1 and pα−1, respectively. Those subgroups can be expressed

explicitly as L(n) = {l ∈ Z∗n : l ≡ apα−1

(mod n) for a ∈ Z∗n} and U(n) = {u ∈
Z∗n : u ≡ 1 (mod p)}, as defined in (2).

Proof. As we discussed previously, the implicit representations for the sub-
groups in question are L(n) = {l ∈ Z∗n : lp−1 ≡ 1 (mod n)} and U(n) = {u ∈
Z∗n : up

α−1 ≡ 1 (mod n)}. To express the subgroups explicitly, we consider the

mapping τ : Z∗n → Z∗n defined by τ(a) ≡ apα−1

(mod n). Then τ is a homomor-
phism of Z∗n with the kernel of τ , ker(τ) = U(n), and hence Z∗n/U(n) ∼= τ(Z∗n).
Since Z∗n is cyclic, the subgroup of order p−1 is unique and thus L(n) = τ(Z∗n).
On the other hand, the mapping µ : Z∗n → Z∗p defined by µ(a) ≡ a (mod p) pro-
vides a homomorphism of Z∗n onto Z∗p with ker(µ) = {a ∈ Z∗n : a ≡ 1 (mod p)}.
Since the order of Z∗p, denoted by |Z∗p|, is p− 1, we find that | ker(µ)| = pα−1.
Since Z∗n is cyclic, by virtue of uniqueness we obtain U(n) = {a ∈ Z∗n : a ≡ 1
(mod p)}. �

For n > 1, let v(n) and U(n) be defined as in (1) and (2), respectively. Then,
the assertion regarding U(n) in Theorem 3.1 still holds for the general case:
U(n) is a cyclic subgroup of Z∗n of order n/v(n).

If n = 2 or 22, then v(n) = 2 and thus U(n) = Z∗n. If n = 2α, α ≥ 3, then
v(n) = 4 and so U(n) = {1 + 4k : k = 0, . . . , 2α−2 − 1} has order 2α−2. Hasse
showed in [5] that U(n) is a cyclic group generated by 1 + 22. Therefore, the
claim is true when n = pα is any prime power, including p = 2.
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For the case n = pα1
1 pα2

2 · · · pαrr , where p1 < p2 < · · · < pr are distinct
primes, we have Z∗n ∼= Z∗

p
α1
1
× · · ·Z∗

pαrr
via the mapping

m 7→ (m (mod pα1
1 ), . . . , m (mod pαrr )).

Since u ≡ 1 (mod v(n)) if and only if u ≡ 1 (mod v(p
αj
j )), j = 1, . . . , r, the

mapping restricted to U(n) induces an isomorphism from U(n) onto U(pα1
1 )×

· · ·×U(pαrr ). Recall that each U(p
αj
j ) is a cyclic group of order p

αj
j /v(p

αj
j ) and

pj ’s are distinct primes. Hence, U(n) is cyclic of order
∏

(p
αj
j /v(p

αj
j )) = n

v(n)

as v(q1q2) = v(q1)v(q2) when (q1, q2) = 1.
The group U(n) has been considered as a multiplicative subgroup of Z∗n. It

also has an additive structure that we can take advantage of. The set U(n) is a
coset of the additive subgroup {m ∈ Zn : m ≡ 0 (mod v(n))} of Zn, where Zn
denotes the ring of integers modulo n. Due to this additive property in U(n),
any subgroup H of Z∗n containing a nontrivial element of U(n) has the Gauss
sum nullified.

Theorem 3.2 (Diamond et al. [2]). Let H be a subgroup of Z∗n. If H ∩U(n) 6=
{1}, then

∑
h∈H

ζhn = 0.

Proof. Let d = |H ∩ U(n)| with d > 1, where | · | denotes the number of
elements in the given set. Since H ∩U(n) is a subgroup of U(n), d is a divisor

of |U(n)| = n
v(n) , and then n

d is a multiple of v(n) since n
d = (n/v(n))

d v(n). We

now let K = {m ∈ Z∗n : m ≡ 1 (mod n
d )}; then

K =
{

1, 1 +
(n
d

)
, 1 + 2

(n
d

)
, . . . , 1 + (d− 1)

(n
d

)}
.

Since n
d is a multiple of v(n), it is clear that K is a subgroup of U(n) with

|K| = d. Since U(n) is cyclic and thus contains exactly one subgroup of order
d, we get K = H ∩ U(n). Let h1, h2, . . . , h |H|

d
denote distinct representatives

of the cosets of K in H. We then have

∑
h∈H

ζhn =

|H|
d∑
j=1

(∑
k∈K

ζhjkn

)

=

|H|
d∑
j=1

(
d−1∑
l=0

ζ
hj

(
1+l(nd )

)
n

)

=

|H|
d∑
j=1

ζhjn

(
d−1∑
l=0

(
ζ
hj

n
d

n

)l)
=

|H|
d∑
j=1

ζhjn

(
1− (ζ

hj
n
d

n )d

1− ζ
n
d
n

)
= 0,

since (ζ
hj

n
d

n )d = ζ
hjn
n = 1 and d > 1. �
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Theorem 3.2 implies that H∩U(n) = {1} is a necessary condition for Jn,H(x)
to be irreducible over Q. In the following section, we shall see if it is sufficient
for the irreducibility of Jn,H(x).

4. U(n) and linear independence of {ζhn : h ∈ H} over Q

In this section, we gather some properties of a subgroup H ⊂ Z∗n satisfying
H ∩ U(n) = {1}. We then relate the condition H ∩ U(n) = {1} to the linear
independence of {ζhn : h ∈ H} over Q, which allows us to prove the irreducibility
of Jn,H(x) in the later section.

Lemma 4.1. Let H be a subgroup of Z∗n satisfying H ∩U(n) = {1}. Then the
following statements hold.

(i) |H| divides ϕ(v(n)).
(ii) hϕ(v(n)) ≡ 1 (mod n) for each h ∈ H.
(iii) If n = pα is a power of odd prime, then H ⊂ L(n), where L(n) is

defined in (4).

Proof. Throughout the proof, v(n) and U(n) are denoted by v and U , respec-
tively. Define a map τ : Z∗n → Z∗v by τ(k) = k (mod v). Then τ is a homomor-
phism with ker(τ) = U . Thus H ∩ U = {1} implies that the homomorphism τ
restricted to H is one-to-one, equivalently H ∼= τ(H). Since τ(H) is a subgroup
of Z∗v, |τ(H)| is a divisor of ϕ(v) and thus (τ(h))ϕ(v) ≡ τ(hϕ(v)) ≡ 1 (mod v)
for each h ∈ H. Since H and τ(H) are isomorphic, (i) and (ii) follow.

In particular, if n = pα is a power of odd prime, it follows from (ii) that
H ∩ U = {1} implies hp−1 ≡ 1 (mod pα). Thus, h ∈ L(n) for any h ∈ H. The
proof is completed. �

To describe what the condition H ∩ U(n) = {1} says about {ζhn : h ∈ H},
we begin with the case n = pα, where p is an odd prime. For the case n = pα,
it follows from Lemma 4.1(iii) that L(n) is the maximum subgroup satisfying
H ∩ U(n) = {1}. Thus, it is reasonable to start with L(n).

Theorem 4.2. Suppose that n = pα is a power of odd prime. Then {ζhn : h ∈
L(n)} are linearly independent over Q(ζm), where ζm is an mth primitive root
of unity and (m,n) = 1.

Proof. For each h ∈ L(pα), there exist integers q(h), r(h) such that h = q(h)p+
r(h) and 0 ≤ r(h) < p. Moreover, the correspondence h 7→ r(h) is bijective
from L(pα) to {1, . . . , p−1} as follows. If r(h1) = r(h2), then h1 ≡ h2 (mod p).

By multiplying both sides by the multiplicative inverse h̃1 of h1 modulo pα,
we have 1 ≡ h2h̃1 (mod p). This implies h2h̃1 ∈ U(pα) ∩ L(pα) since h̃1
and h2 are in L(pα). Since U(pα) ∩ L(pα) = {1}, h2h̃1 ≡ 1 (mod pα) and
thus h2 ≡ h1 (mod pα). We have just showed that h 7→ r(h) is one-to-one.
But |L(pα)| = p − 1 by Theorem 3.1 and r(h) 6= 0 since (h, p) = 1. Thus
{r(h) : h ∈ L(pα)} = {1, 2, . . . , p− 1}.
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We now suppose, contrary to the statement, that there are cj ∈ Q(ζm), but
not all zero, such that

∑
h∈L(n) cjζ

h
n = 0. Then

0 =
∑

h∈L(n)

cjζ
h
n =

∑
h∈L(n)

cjζ
q(h)
pα−1ζ

r(h)
n = ζn

∑
h∈L(n)

cjζ
q(h)
pα−1ζ

r(h)−1
n ,

where q(h) and r(h) are the quotient and the remainder after diving h by p as
defined at the start of the proof.

Let P (x) =
∑
h∈L(n) cjζ

q(h)
pα−1x

r(h)−1. Then P (x) is a nonzero polynomial in

Q(ζpα−1 , ζm)[x] with degree strictly less than p − 1 and P (ζn) = 0. However,
[Q(ζpα , ζm) : Q] = ϕ(pα)ϕ(m) and [Q(ζpα−1 , ζm) : Q] = ϕ(pα−1)ϕ(m), where
[F : Q] denotes the degree of the extension field F over Q. This implies that

[Q(ζpα , ζm) : Q(ζpα−1 , ζm)] = ϕ(pα)
ϕ(pα−1) , which is p− 1 if α = 1 and p otherwise.

Thus a nonzero polynomial in Q(ζpα−1 , ζm)[x] that vanishes at ζn must have
degree at least p− 1: this leads to a contradiction. �

The following is an immediate consequence from Theorem 4.2.

Corollary 4.3. Let n = pα be a prime power. If H is a subgroup of Z∗n
satisfying H ∩ U(n) = {1}, then {ζhn : h ∈ H} are linearly independent over
Q(ζm), where ζm is an mth primitive root of unity and (m,n) = 1.

Proof. If n = pα with p > 2, then H ⊂ L(n) by Lemma 4.1. In Theorem 4.2,
we have showed {ζhn : h ∈ L(n)} are linearly independent over Q(ζm). Thus, it
is clear that {ζhn : h ∈ H} are linearly independent over Q(ζm).

To complete the proof, we only need to deal with the case n = 2α. If α = 1
or 2, then U(n) = Z∗n and hence H ∩ U(n) = {1} implies H = {1}; it is
trivial. We now suppose that n = 2α and α ≥ 3. In this case, it follows from
Lemma 4.1 that H ∩ U(n) = {1} ⇒ |H| divides ϕ(4) = 2. Hence, H = {1}
or {1, a} for some a ∈ Z∗n of order 2. If H = {1}, it is obvious as before. For
the latter case H = {1, a}, we can assume 1 < a < n. Suppose not: that
is, {ζn, ζan} are linearly dependent over Q(ζm). Then ζa−1n ∈ Q(ζm). Since
[Q(ζm, ζn) : Q(ζm)] = ϕ(n), the minimal polynomial of ζn over Q(ζm) has
degree equal to ϕ(n). Hence ζa−1n ∈ Q(ζm) implies that a − 1 is a multiple
of ϕ(n) = 2α−1 and so a = 2α−1 + 1, which is in U(n). This contradicts to
H ∩ U(n) = {1}. �

In what follows, we deal with the general case when n is an arbitrary positive
integer. The arguments presented here are credited to Diamond et al. in [2].

Lemma 4.4. Let H be a subgroup of Z∗n and ζm be an mth primitive root
of unity with (m,n) = 1. Then {ζhn : h ∈ H} are linearly independent over
Q(ζm) if and only if {ζkhn : h ∈ H} are linearly independent over Q(ζm) for
any k ∈ Z∗n.

Proof. This can be shown by sending a given set through the Galois isomor-
phism σk of Q(ζm, ζn) over Q(ζm) such that σk(ζm) = ζm and σk(ζn) = ζkn. �
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Lemma 4.5. Let n = mpα, where (m, p) = 1 and p is the largest prime factor
of n with p > 2. Let the mappings τ1 and τ2 be the canonical homomorphisms
of Z∗n to Z∗m and Z∗pα , respectively. That is, τ1(t) ≡ t (mod m) and τ2(t) ≡ t
(mod pα). If H is a subgroup of Z∗n satisfying H ∩ U(n) = {1}, then the
followings hold.

(i) τ2(H) ⊂ L(pα).
(ii) If K = {k ∈ H : k ≡ 1 (mod pα)}, then K ' τ1(K) and τ1(K) ∩

U(m) = {1}.

Proof. By Lemma 4.1, H ∩ U(n) = {1} implies hϕ(v(n)) ≡ 1 (mod n) for each
h ∈ H. Consequently, τ2(hϕ(v(n))) ≡ (τ2(h))ϕ(v(n)) ≡ 1 (mod pα). On the
other hand, (τ2(h))ϕ(p

α) ≡ 1 (mod pα) by Euler’s Theorem. Thus, the order of
τ2(h) modulo pα is a common factor of ϕ(v(n)) and ϕ(pα). Since p is the largest
prime factor of n with p > 2,

(
ϕ(v(m)), p

)
= 1 and thus

(
ϕ(v(n)), ϕ(pα)

)
=

(p − 1)
(
ϕ(v(m)), pα−1

)
= p − 1. This implies that the order of τ2(h) modulo

pα divides p− 1. As a result, τ2(h) ∈ L(pα) for each h ∈ H.
For (ii), we note that K is a subgroup of H as K = H ∩ ker(τ2). The

first assertion in (ii) follows from ker(τ1) ∩K = {1}. For the second assertion,
suppose t ∈ τ1(K) ∩ U(m). Then, for some k ∈ K, t ≡ k (mod m) and
t ≡ 1 (mod v(m)). Since t ≡ k (mod m) implies t ≡ k (mod v(m)), we have
k ≡ 1 (mod v(m)). On the other hand, k ≡ 1 (mod pα) by the definition
of K. Consequently, k ≡ 1 (mod v(pα)). Since (v(m), v(pα)) = 1, k ≡ 1
(mod v(mpα)), implying k ∈ U(n). Recalling K is a subgroup of H, we can
assert that k ≡ 1 (mod n). Thus k ≡ 1 (mod m). As a result, t ≡ k ≡ 1
(mod m). �

Theorem 4.6. Let H be a subgroup of Z∗n satisfying H ∩ U(n) = {1}. Then
{ζhn : h ∈ H} are linearly independent over Q.

Proof. By Corollary 4.3, it is true if n = pα is a power of prime. For the sake
of induction on r, assume that the statement holds for n = pα1

1 · · · p
αr−1

r−1 , where
p1 < p2 < · · · < pr−1 are distinct primes. We then claim that it is also true for
n = pα1

1 · · · pαrr , where p1 < p2 < · · · < pr are distinct primes.
Let n = pα1

1 · · · pαrr , where p1 < p2 < · · · < pr are distinct primes and r > 1.
We denote q1 = pα1

1 · · · p
αr−1

r−1 and q2 = pαrr . Suppose
∑
h∈H chζ

h
n = 0, where

ch ∈ Q.
Since (q1, q2) = 1, there exist integers x and y such that xq1 ≡ 1 (mod q2)

and yq2 ≡ 1 (mod q1). Let the mappings τ1 and τ2 be canonical homomor-
phisms of Z∗n to Z∗q1 and Z∗q2 , respectively, as before. That is, τ1(t) ≡ t
(mod q1) and τ2(t) ≡ t (mod q2). Then, each t ∈ Z∗n can be expressed as
t ≡ yq2τ1(t) + xq1τ2(t) (mod n). As a result,∑

h∈H

chζ
h
n =

∑
h∈H

chζ
yτ1(h)
q1 ζxτ2(h)q2 .
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We now let K = {h ∈ H : h ≡ 1 (mod q2)}. Then K is a subgroup of
H. If we let h1, . . . , hl be the representatives of the cosets of K in H, then
h ∈ hjK ⇒ τ2(h) = τ2(hj). Therefore,∑

h∈H

chζ
h
n =

∑
h∈h1K

chζ
yτ1(h)
q1 ζxτ2(h)q2 + · · ·+

∑
h∈hlK

chζ
yτ1(h)
q1 ζxτ2(h)q2

=

( ∑
h∈h1K

chζ
yτ1(h)
q1

)
ζxτ2(h1)
q2 + · · ·+

( ∑
h∈hlK

chζ
yτ1(h)
q1

)
ζxτ2(hl)q2 .

By Lemma 4.5, {τ2(hj) : j = 1, . . . , l} ⊂ L(q2). It then follows from Theo-

rem 4.3 that {ζτ2(h1)
q2 , . . . , ζ

τ2(hl)
q2 } are linearly independent over Q(ζq1). So are

{ζxτ2(h1)
q2 , . . . , ζ

xτ2(hl)
q2 } by Lemma 4.4. We then have∑

h∈H

chζ
h
n = 0⇒

∑
h∈hjK

chζ
yτ1(h)
q1 = 0 for each j = 1, . . . , l.

Since K ∼= τ1(K) and τ1(K) ∩ U(q1) = {1} by Lemma 4.5, the assumption

that the statement holds for q1 = pα1
1 · · · p

αr−1

r−1 allows us to assert that {ζτ1(h)q1 :

h ∈ K} are linearly independent over Q. So are {ζyτ1(h)q1 : h ∈ hjK} =

{ζyτ1(hj)τ1(h)q1 : h ∈ K} by Lemma 4.4. Therefore,∑
h∈H

chζ
h
n = 0⇒

∑
h∈hjK

chζ
yτ1(h)
q1 = 0 for each j = 1, . . . , l⇒ ch = 0 ∀h ∈ H.

This completes the proof. �

5. Equivalent conditions for the irreducibility of Jn,H(x)

In this section, we give the equivalent conditions for Jn,H(x) being irre-
ducible over Q.

Lemma 5.1. For a subgroup H of Z∗n, let M = {m ∈ Z∗n :
∑
h∈H ζ

h
n =∑

h∈H ζ
mh
n }. Then M satisfies the following properties.

(i) M is a subgroup of Z∗n that includes H.

(ii)
∑
m∈M ζmn = |M |

|H|
∑
h∈H ζ

h
n .

Proof. We prove this by associating each a ∈ Z∗n to its corresponding field
isomorphism σa ∈ Gal(Q(ζn)/Q) satisfying σa(ζn) = ζan. Suppose that a, b ∈
M . Then∑

h∈H

ζabhn = σa

(∑
h∈H

ζbhn

)
= σa

(∑
h∈H

ζhn

)
=
∑
h∈H

ζahn =
∑
h∈H

ζhn ;

∑
h∈H

ζ ãhn = σã

(∑
h∈H

ζhn

)
= σã

(∑
h∈H

ζahn

)
=
∑
h∈H

ζhn ,

where ã is the multiplicative inverse of a modulo n. This proves that M is a
subgroup of Z∗n. Furthermore, if h′ ∈ H, then h′H = H and so

∑
h∈H ζ

h
n =
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h∈H ζ

h′h
n . Hence H is contained in M . We now let m1, . . . ,ml be distinct

representatives of the cosets of H in M . Then l = |M |
|H| and

∑
m∈M

ζmn =

l∑
j=1

{∑
h∈H

ζmjhn

}
= l

∑
h∈H

ζhn .
�

Theorem 5.2. Let H be a proper subgroup of Z∗n. Then the following condi-
tions are equivalent.

(i)
∑
h∈H ζ

h
n 6= 0.

(ii) H ∩ U(n) = {1}.
(iii) {ζhn : h ∈ H} are linearly independent over Q.
(iv)

∑
h∈H ζ

h
n 6=

∑
h∈H ζ

kh
n whenever k /∈ H.

(v) Jn,H(x) is irreducible over Q.

Proof. We first show that (i), (ii), and (iii) are equivalent.
(i) ⇒ (ii): Contrary to the statement, suppose that H ∩U(n) 6= {1}. Then,

by Theorem 3.2,
∑
h∈H ζ

h
n = 0, contradicting to (i).

(ii) ⇒ (iii): See Theorem 4.6.
(iii) ⇒ (i): It is obvious by the definition of linear independence.
This completes the proof of (i)⇔(ii)⇔(iii).
(iv) ⇔ (v): See Theorem 2.2.
(v) ⇒ (i): Contrary to the statement, suppose

∑
h∈H ζ

h
n = 0. Then∑

h∈H

ζahn = σa
( ∑
h∈H

ζhn
)

= 0

for each a ∈ Z∗n and so Jn,H(x) = xd, d =
|Z∗n|
|H| > 1, contradicting to (v).

(i)⇒ (v): Contrary to the statement, suppose that Jn,H(x) is not irreducible
over Q. By the equivalence (iv) ⇔ (v), there exists a ∈ Z∗n, but not in H, such
that

∑
h∈H ζ

ah
n =

∑
h∈H ζ

h
n . Then {ζkn : k ∈ H ∪ aH} are linearly dependent

over Q. Let M = {m ∈ Z∗n :
∑
h∈H ζ

mh
n =

∑
h∈H ζ

h
n}. By Lemma 5.1, M is a

subgroup of Z∗n containing H and aH with
∑
m∈M ζmn = |M |

|H|
∑
h∈H ζ

h
n . Since

M includes H ∪ aH, {ζmn : m ∈ M} are linearly dependent over Q and thus∑
m∈M ζmn = 0 by the equivalence (i)⇔(iii). It contradicts to

∑
m∈M ζmn =

|M |
|H|
∑
h∈H ζ

h
n 6= 0. �
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