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Abstract. In 2018, Andrews introduced the partition functions E O(n) and E O(n). The
first of these denotes the number of partitions of n in which every even part is less than
each odd part, and the second counts the number of partitions enumerated by the first
in which only the largest even part appears an odd number of times. In 2021, Pore and
Fathima introduced a new partition function E Oe(n) which counts the number of parti-
tions of n which are enumerated by E O(n) together with the partitions enumerated by
E O(n) where all parts are odd and the number of parts is even. They also proved some
particular congruences for E O(n) and E Oe(n). In this paper, we establish infinitely many
families of congruences modulo 2, 4, 5 and 8 for E O(n) and modulo 4 for E Oe(n). For

example, if p ≥ 5 is a prime with Legendre symbol
(

−3
p

)

= −1, then for all integers n ≥ 0

and α ≥ 0, we have

E O

(

8 · p2α+1(pn+ j) +
19 · p2α+2 − 1

3

)

≡ 0 (mod 8); 1 ≤ j ≤ (p− 1).

1. Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers
whose sum equals n. The number of partitions of a non-negative integer n is usually
denoted by p(n) (with p(0) = 1). For example, p(4) = 5 with the relevant partitions 4,
3+1, 2+2, 2+1+1 and 1+1+1+1. The generating function of p(n) is given by

(1.1)
∞
∑

n=0

p(n)qn =
1

(q; q)∞
,

where, for any complex number a,

(1.2) (a; q)∞ =
∞
∏

n=0

(1− aq
n), |q| < 1.
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We will use the notation, for any positive integer k,

(1.3) fk := (qk; qk)∞.

Andrews [2] introduced the partition function E O(n) which counts the number of partitions
of n in which every even part is less than each odd part. For example, E O(4) = 4 with
the relevant partitions 4, 3+1, 2+2 and 1+1+1+1. The generating function for E O(n) [2]
is given by

(1.4)

∞
∑

n=0

E O(n)qn =
1

(1− q)(q2; q2)∞
.

Andrews [2] also introduced another partition function E O(n) which counts the number of
partitions enumerated by E O(n) in which only the largest even part appears an odd number
of times. For example E O(4) = 3, with the relevant partitions 4, 3+1 and 1+1+1+1. The
generating function of E O(n) [2] is given by

(1.5)
∞
∑

n=0

E O(n)qn =
f3
4

f2
2

.

Andrews [2, p. 434, (1.6)] established that

E O(10n+ 8) ≡ 0 (mod 5).

Recently, Pore and Fathima [8] proved some particular congruences for E O(n) modulo
2,4,10 and 20. For example, they proved that

E O(4n+2) ≡ 0 (mod 4), E O(20n+18) ≡ 0 (mod 10), E O(40n+38) ≡ 0 (mod 20).

Pore and Fathima [8] also defined a new partition function E Oe(n) which counts the
number of partitions of n which are enumerated by E O(n) together with the partitions
enumerated by E O(n) where all parts are odd and the number of parts is even, i.e. E Oe(n)
denotes the number of partitions enumerated by E O(n) in which only the largest even
part appears an odd number of times except when parts are odd and number of parts is
even. For example, E Oe(4) = 3 with the relevant partitions 4, 3+1 and 1+1+1+1. The
generating function of E Oe(n) [8] is given by

(1.6)

∞
∑

n=0

E Oe(n)q
n =

f2
4

f2
2

.

Pore and Fathima [8, Corollary 5.2] proved that

E Oe(2n+ 1) = 0 and E Oe(4n+ 2) ≡ 0 (mod 2).

Motivated by the above work, in Section 3 of this paper, we prove infinite families of
congruences modulo 2, 4, 5 and 8 for E O(n). In Section 4, we prove infinite families of
congruences modulo 2 and 4 for E Oe(n). To prove our results, we employ some known
q-series identities which are listed in Section 2.
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2. Some q-series Identities

Lemma 2.1. ([3, p. 39, Entry 24(ii)]) We have

(2.1) f
3
1 =

∞
∑

n=0

(−1)n(2n+ 1)qn(n+1)/2
.

Lemma 2.2. We have

(2.2)
1

f2
1

=
f5
8

f5
2 f

2
16

+ 2q
f2
4 f

2
16

f5
2 f8

,

(2.3) f
2
1 =

f2f
5
8

f2
4 f

2
16

− 2q
f2f

2
16

f8
.

The identity (2.2) is the 2-dissection of φ(q) [6, (1.9.4)]. The equation (2.3) can be ob-
tained from the equation (2.2) by replacing q by −q.

Lemma 2.3. ([1, Lemma 2.3]) For any prime p ≥ 3, we have

f
3
1 =

(p−1)
∑

k=0
k 6=(p−1)/2

(−1)kqk(k+1)/2
∞
∑

n=0

(−1)n(2pn+ 2k + 1)qpn·(pn+2k+1)/2

(2.4) +p(−1)(p−1)/2
q
(p2−1)/8

f
3
p2 .

Furthermore, if k 6=
(p− 1)

2
, 0 ≤ k ≤ p− 1, then

(k2 + k)

2
6≡

(p2 − 1)

8
(mod p).

Lemma 2.4. ([4, Theorem 2.2]) For any prime p ≥ 5, we have

f1 =

(p−1)/2
∑

k=−(p−1)/2
k 6=(±p−1)/6

(−1)kq(3k
2+k)/2

f
(

−q
(3p2+(6k+1)p)/2

,−q
(3p2−(6k+1)p)/2

)

(2.5) +(−1)(±p−1)/6
q
(p2−1)/24

fp2 ,

where

±p− 1

6
=











(p− 1)

6
, if p ≡ 1 (mod 6),

(−p− 1)

6
, if p ≡ −1 (mod 6).

Furthermore, if
−(p− 1)

2
≤ k ≤

(p− 1)

2
and k 6=

(±p− 1)

6
,
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then
(3k2 + k)

2
6≡

(p2 − 1)

24
(mod p).

Lemma 2.5. ([7]) We have

(2.6) f1 = f25

(

R
(

q
5)− q −

q2

R (q5)

)

,

where R(q) is the Roger-Ramanujan continued fraction defined by

R(q) :=
q1/5

1 +
q

1 +
q2

1 +
q3

1 + · · ·

=
(q2; q5)∞(q3; q5)∞
(q; q5)∞(q4; q5)∞

, |q| < 1.

Hirschhorn and Hunt [5, Lemma 2.2] proved that, if R is a series in powers of q5, then

(2.7) η = q
−1

R − 1− qR
−1

,

where

(2.8) η =
f1

qf25
.

Hirschhorn and Hunt [5] showed that

(2.9) H5(η
3) = 5,

where H5 is an operator which acts on a series of positive and negative powers of a single
variable and simply picks out the term in which the power is congruent to 0 modulo 5.

In addition to above q-series identities, we will be using following congruence properties
which follow from binomial theorem and (1.2): For positive integers k and m,

(2.10) f
2m
k ≡ f

m
2k (mod 2),

(2.11) f
4m
k ≡ f

2m
2k (mod 4),

(2.12) f
5
1 ≡ f5 (mod 5),

3. Congruences for E O(n)

Theorem 3.1. Let p ≥ 5 be a prime with

(

−3

p

)

= −1 and 1 ≤ j ≤ (p− 1). Then for all

integers n ≥ 0 and α ≥ 0, we have

∞
∑

n=0

E O

(

8 · p2αn+
19 · p2α − 1

3

)

q
n ≡ 4f16f

3
1 (mod 8),(3.1)

E O

(

8 · p2α+1(pn+ j) +
19 · p2α+2 − 1

3

)

≡ 0 (mod 8),(3.2)
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where, here and throughout the paper ( ·
·
) denotes the Legendre symbol.

Proof. From (1.5), we note that

(3.3)
∞
∑

n=0

E O(n)qn =
f3
4

f2
2

.

Extracting the terms involving q2n and using (2.2), we obtain

(3.4)
∞
∑

n=0

E O(2n)qn =
f5
8

f2
2 f

2
16

+ 2q
f2
4 f

2
16

f2
2 f8

.

Extracting the terms involving q2n+1, we obtain

(3.5)
∞
∑

n=0

E O(4n+ 2)qn = 2
f2
2 f

2
8

f2
1 f4

.

Using (2.2) in (3.5), we obtain

(3.6)
∞
∑

n=0

E O(4n+ 2)qn = 2
f7
8

f3
2 f4f

2
16

+ 4q
f4f8f

2
16

f3
2

.

Extracting the terms involving q2n+1 from (3.6), we obtain

(3.7)

∞
∑

n=0

E O(8n+ 6)qn = 4
f2f4f

2
8

f3
1

.

Using (2.10) in (3.7), we obtain

(3.8)

∞
∑

n=0

E O(8n+ 6)qn ≡ 4f16f
3
1 (mod 8).

Congruence (3.8) is the α = 0 case of (3.1). Suppose that congruence (3.1) is true for all
α ≥ 0. Utilizing (2.4) and (2.5) in (3.1), we obtain

∞
∑

n=0

E O

(

8 · p2αn+
19 · p2α − 1

3

)

q
n ≡

4
{

(p−1)/2
∑

k=−(p−1)/2
k 6=(±p−1)/6

(−1)kq16(3k
2+k)/2

f
(

−q
16(3p2+(6k+1)p)/2

,−q
16(3p2−(6k+1)p)/2

)

+(−1)(±p−1)/6
q
16(p2−1)/24

f16p2
}

×
{

(p−1)
∑

m=0
m6=(p−1)/2

(−1)mq
m(m+1)/2

∞
∑

n=0

(−1)n(2pn+ 2m+ 1)qpn·(pn+2m+1)/2

(3.9) +p(−1)(p−1)/2
q
(p2−1)/8

f
3
p2

}

(mod 8).
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Consider the congruence

16(3k2 + k)

2
+

(m2 +m)

2
≡

19(p2 − 1)

24
(mod p),

which is equal to

(24k + 4)2 + 3(2m + 1)2 ≡ 0 (mod p).

For

(

−3

p

)

= −1, the above congruence has only solution m =
p− 1

2
and k =

±p− 1

6
.

Therefore, extracting the terms involving qpn+19(p2−1)/24 from both sides of (3.9), dividing

throughout by q19(p
2−1)/24 and then replacing qp by q, we obtain

(3.10)
∞
∑

n=0

E O

(

8 · p2α+1
n+

19 · p2α+2 − 1

3

)

q
n ≡ 4f16pf

3
p (mod 8).

Extracting the terms involving qpn from (3.10) and replacing qp by q, we obtain

(3.11)

∞
∑

n=0

E O

(

8 · p2(α+1)
n+

19 · p2(α+1) − 1

3

)

q
n ≡ 4f16f

3
1 (mod 8),

which is the α + 1 case of (3.1). Thus, by the principle of mathematical induction, we
arrive at (3.1). Extracting the coefficients of terms involving qpn+j for 1 ≤ j ≤ p− 1, from
both sides of (3.10), we complete the proof of (3.2). 2

Theorem 3.2. Let p ≥ 5 be a prime with

(

−3

p

)

= −1 and 1 ≤ j ≤ (p− 1). Then for all

integers n ≥ 0 and α ≥ 0, we have

∞
∑

n=0

E O

(

8 · p2αn+
7 · p2α − 1

3

)

q
n ≡ 2f4f

3
1 (mod 4),(3.12)

E O

(

8 · p2α+1(pn+ j) +
7 · p2α+2 − 1

3

)

≡ 0 (mod 4).(3.13)

Proof. From (3.5), we note that

(3.14)
∞
∑

n=0

E O(4n+ 2)qn = 2
f2
2 f

2
8

f2
1 f4

.

Employing (2.10) in (3.14), we have

(3.15)
∞
∑

n=0

E O(4n+ 2)qn ≡ 2f7
2 (mod 4).

Extracting the terms involving q2n from both side of (3.15), we obtain

(3.16)
∞
∑

n=0

E O(8n+ 2)qn ≡ 2f7
1 (mod 4).
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Employing (2.10) in (3.16), we obtain

(3.17)

∞
∑

n=0

E O(8n+ 2)qn ≡ 2f4f
3
1 (mod 4).

Congruence (3.17) is the α = 0 case of (3.12). Suppose that congruence (3.12) is true for
all α ≥ 0. Utilizing (2.4) and (2.5) in (3.12), we obtain

∞
∑

n=0

E O

(

8 · p2αn+
7 · p2α − 1

3

)

q
n ≡

2
{

(p−1)/2
∑

k=−(p−1)/2
k 6=(±p−1)/6

(−1)kq4(3k
2+k)/2

f
(

−q
4(3p2+(6k+1)p)/2

,−q
4(3p2−(6k+1)p)/2

)

+(−1)(±p−1)/6
q
4(p2−1)/24

f4p2
}

×
{

(p−1)
∑

m=0
m6=(p−1)/2

(−1)mq
m(m+1)/2

∞
∑

n=0

(−1)n(2pn+ 2m+ 1)qpn·(pn+2m+1)/2

(3.18) +p(−1)(p−1)/2
q
(p2−1)/8

f
3
p2

}

(mod 4).

Consider the congruence

4(3k2 + k)

2
+

(m2 +m)

2
≡

7(p2 − 1)

24
(mod p),

which is equal to

(12k + 2)2 + 3(2m+ 1)2 ≡ 0 (mod p).

For

(

−3

p

)

= −1, the above congruence has only solution m =
p− 1

2
and k =

±p− 1

6
.

Therefore, extracting the terms involving qpn+7(p2−1)/24 from both sides of (3.18), dividing

throughout by q7(p
2−1)/24 and then replacing qp by q, we obtain

(3.19)

∞
∑

n=0

E O

(

8 · p2α+1
n+

7 · p2α+2 − 1

3

)

q
n ≡ 2f4pf

3
p (mod 4).

Extracting the terms involving qpn from (3.19) and replacing qp by q, we obtain

(3.20)

∞
∑

n=0

E O

(

8 · p2(α+1)
n+

7 · p2(α+1) − 1

3

)

q
n ≡ 2f4f

3
1 (mod 4),

which is the α + 1 case of (3.12). Thus, by the principle of mathematical induction, we
arrive at (3.12). Extracting the coefficients of terms involving qpn+j for 1 ≤ j ≤ p − 1,
from both sides of (3.19), we complete the proof of (3.13). 2
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Theorem 3.3. Let p ≥ 5 be a prime with

(

−3

p

)

= −1 and 1 ≤ j ≤ (p− 1). Then for all

integers n ≥ 0 and α ≥ 0, we have

(3.21)

∞
∑

n=0

E O

(

8 · p2αn+
13 · p2α − 1

3

)

q
n ≡ 2f1f

3
4 (mod 4),

(3.22) E O

(

8 · p2α+1(pn+ j) +
13 · p2α+2 − 1

3

)

≡ 0 (mod 4).

Proof. Extracting the terms involving q2n from (3.4) and using (2.11), we obtain

(3.23)
∞
∑

n=0

E O(4n)qn ≡
f4

f2
1

(mod 4).

Employing (2.2) in (3.23) and extracting the terms involving q2n+1, we obtain

(3.24)

∞
∑

n=0

E O(8n+ 4)qn ≡ 2
f3
2 f

2
8

f5
1 f4

(mod 4).

Using (2.10) in (3.24), we obtain

(3.25)

∞
∑

n=0

E O(8n+ 4)qn ≡ 2f1f
3
4 (mod 4).

Congruence (3.25) is the α = 0 case of (3.21). Suppose that congruence (3.21) is true for
all α ≥ 0. Utilizing (2.4) and (2.5) in (3.21), we obtain

∞
∑

n=0

E O

(

8 · p2αn+
13 · p2α − 1

3

)

q
n ≡

2
{

(p−1)/2
∑

k=−(p−1)/2
k 6=(±p−1)/6

(−1)kq(3k
2+k)/2

f
(

−q
(3p2+(6k+1)p)/2

,−q
(3p2−(6k+1)p)/2

)

+(−1)(±p−1)/6
q
(p2−1)/24

fp2
}

×
{

(p−1)
∑

m=0
m6=(p−1)/6

(−1)mq
2m(m+1)

∞
∑

n=0

(−1)n(2pn+ 2m+ 1)q2pn·(pn+2m+1)

(3.26) +p(−1)(p−1)/2
q
(p2−1)/2

f
3
p2

}

(mod 4).

Consider the congruence

(3k2 + k)

2
+ 2m(m+ 1) ≡

13(p2 − 1)

24
(mod p),
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which is equal to

(6k + 1)2 + 3(4m+ 2)2 ≡ 0 (mod p).

For

(

−3

p

)

= −1, the above congruence has only solution m =
p− 1

2
and k =

(

±p− 1

6

)

.

Therefore, extracting the terms involving qpn+13(p2−1)/24 from both sides of (3.26), divid-

ing throughout by q13(p
2−1)/24 and then replacing qp by q, we obtain

(3.27)

∞
∑

n=0

E O

(

8 · p2α+1
n+

13 · p2α+2 − 1

3

)

q
n ≡ 2fpf

3
4p (mod 4).

Extracting the terms involving qpn from (3.27) and replacing qp by q, we obtain

(3.28)
∞
∑

n=0

E O

(

8 · p2(α+1)
n+

13 · p2(α+1) − 1

3

)

q
n ≡ 2f1f

3
4 (mod 4),

which is the α + 1 case of (3.21). Thus, by the principle of mathematical induction, we
arrive at (3.21). Extracting the coefficients of terms involving qpn+j for 1 ≤ j ≤ p − 1,
from both sides of (3.27), we complete the proof of (3.22). 2

Theorem 3.4. Let p ≥ 5 be a prime and 1 ≤ j ≤ p − 1. Then for all integers α, n ≥ 0,
we have

(3.29) E O (8n+ k) ≡ 0 (mod 2), for 1 ≤ k ≤ 7.

(3.30)
∑

n≥0

E O

(

8 · p2αn+
p2α − 1

3

)

q
n ≡ f1 (mod 2),

(3.31) E O

(

8 · p2α+1(pn+ j) +
p2α+2 − 1

3

)

≡ 0 (mod 2).

Proof. From (1.5), we note that

(3.32)
∞
∑

n=0

E O(n)qn =
f3
4

f2
2

.

Employing (2.10) in (3.32), we have

(3.33)

∞
∑

n=0

E O(n)qn ≡ f8 (mod 2).

Extracting the terms involving q8n+k, we obtain the proof of (3.29). Again extracting the
terms involving q8n and then replacing q8 by q, we obtain

(3.34)
∞
∑

n=0

E O(8n)qn ≡ f1 (mod 2).
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Congruence (3.34) is the α = 0 case of (3.30). Suppose that congruence (3.30) is true for
all integer α ≥ 0. Employing (2.5) in (3.30), we obtain

∑

n≥0

E O

(

8 · p2αn+
p2α − 1

3

)

q
n ≡

{

(p−1)/2
∑

k=−(p−1)/2
k 6=(±p−1)/6

(−1)kq(3k
2+k)/2

f
(

−q
(3p2+(6k+1)p)/2

,−q
(3p2−(6k+1)p)/2

)

(3.35) +(−1)(±p−1)/6
q
(p2−1)/24

fp2
}

(mod 2).

Extracting the term involving qpn+(p2−1)/24 from both sides of (3.35), dividing throughout

by q(p
2−1)/24 and then replacing qp by q, we obtain

(3.36)
∑

n≥0

E O

(

8 · p2α+1
n+

p2α+2 − 1

3

)

q
n ≡ fp (mod 2).

Extracting the terms involving qpn from (3.36) and replacing qp by q, we obtain

(3.37)
∑

n≥0

E O

(

8 · p2(α+1)
n+

p2(α+1) − 1

3

)

q
n ≡ f1 (mod 2),

which is the α + 1 case of (3.30). Thus, by the principle of mathematical induction, we
arrive at (3.30). Extracting the coefficients of terms involving qpn+j for 1 ≤ j ≤ p − 1,
from both sides of (3.36), we complete the proof of (3.31). 2

Theorem 3.5. For any non-negative integers n and k, where ℓ = k(k + 1) and k ≡ 2
(mod 5), we have

(3.38) E O(10n+ 6 + 2ℓ) ≡ 0 (mod 5).

Proof. Extracting q2n from (3.3) and then employing (2.12), we obtain

(3.39)

∞
∑

n=0

E O(2n)qn ≡
f3
2 f

3
1

f5
(mod 5).

Employing (2.1) and (2.8) in (3.39), we obtain

(3.40)

∞
∑

n=0

E O(2n)qn ≡
q3η3f3

25

f5

∞
∑

k=0

(−1)k(2k + 1)qk(k+1) (mod 5).

Extracting the terms involving the powers of q5n+ℓ+3 from both sides of (3.40) and then
using (2.9), we prove (3.38). 2
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4. Congruences for E Oe(n)

Theorem 4.1. Let p ≥ 5 be a prime and 1 ≤ j ≤ (p− 1). Then for all integers n ≥ 0 and
α ≥ 0, we have

(4.1)
∞
∑

n=0

E Oe

(

4 · p2αn+
p2α − 1

6

)

q
n ≡ f1 (mod 2),

(4.2) E Oe

(

4 · p2α+1(pn+ j) +
p2α+2 − 1

6

)

≡ 0 (mod 2).

Proof. From (1.6), we note that

(4.3)

∞
∑

n=0

E Oe(n)q
n =

f2
4

f2
2

.

Employing (2.10) in (4.3), we obtain

(4.4)
∞
∑

n=0

E Oe(n)q
n ≡ f4 (mod 2).

Extracting the terms involving q4n from (4.4) and replacing q4 by q, we obtain

(4.5)
∞
∑

n=0

E Oe(4n)q
n ≡ f1 (mod 2).

The remaining part of the proof is similar to proofs of the identities (3.30) and (3.31). 2

Theorem 4.2. Let p ≥ 5 be a prime with

(

−3

p

)

= −1 and 1 ≤ j ≤ (p− 1). Then for all

integers n ≥ 0 and α ≥ 0, we have

(4.6)
∞
∑

n=0

E Oe

(

4 · p2αn+
13 · p2α − 1

6

)

q
n ≡ 2f3

4 f1 (mod 4),

(4.7) E Oe

(

4 · p2α+1(pn+ j) +
13 · p2α+2 − 1

6

)

≡ 0 (mod 4).

Proof. From (1.6), we note that

(4.8)
∞
∑

n=0

E Oe(n)q
n =

f2
4

f2
2

.

Extracting the terms involving q2n from (4.8) and replacing q2 by q, we obtain

(4.9)
∞
∑

n=0

E Oe(2n)q
n =

f2
2

f2
1

.
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Multiplying the numerator and denominator by f2
1 , we obtain

(4.10)

∞
∑

n=0

E Oe(2n)q
n =

f2
2 f

2
1

f4
1

.

Using (2.11) in (4.10), we obtain

(4.11)
∞
∑

n=0

E Oe(2n)q
n ≡ f

2
1 (mod 4).

Using (2.3) in (4.11), we obtain

(4.12)

∞
∑

n=0

E Oe(2n)q
n ≡

f2f
5
8

f2
4 f

2
16

− 2q
f2f

2
16

f8
(mod 4).

Extracting the terms involving q2n+1 from (4.12) and replacing q2 by q, we obtain

(4.13)
∞
∑

n=0

E Oe(4n+ 2)qn ≡ 2
f1f

2
8

f4
(mod 4).

Using (2.11) in (4.13), we obtain

(4.14)

∞
∑

n=0

E Oe(4n+ 2)qn ≡ 2f1f
3
4 (mod 4).

The remaining part of the proof is similar to proofs of the identities (3.21) and (3.22). 2
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