Browse > Article
http://dx.doi.org/10.4134/BKMS.b210864

MODIFIED CYCLOTOMIC POLYNOMIALS  

Ae-Kyoung, Cha (Department of Mathematics Education Korea National University of Education)
Miyeon, Kwon (Department of Mathematics University of Wisconsin-Platteville)
Ki-Suk, Lee (Department of Mathematics Education Korea National University of Education)
Seong-Mo, Yang (Department of Mathematics Education Korea National University of Education)
Publication Information
Bulletin of the Korean Mathematical Society / v.59, no.6, 2022 , pp. 1511-1522 More about this Journal
Abstract
Let H be a subgroup of $\mathbb{Z}^*_n$ (the multiplicative group of integers modulo n) and h1, h2, …, hl distinct representatives of the cosets of H in $\mathbb{Z}^*_n$. We now define a polynomial Jn,H(x) to be $$J_{n,H}(x)=\prod^l_{j=1} \left( x-\sum_{h{\in}H} {\zeta}^{h_jh}_n\right)$$, where ${\zeta}_n=e^{\frac{2{\pi}i}{n}}$ is the nth primitive root of unity. Polynomials of such form generalize the nth cyclotomic polynomial $\Phi_n(x)={\prod}_{k{\in}\mathbb{Z}^*_n}(x-{\zeta}^k_n)$ as Jn,{1}(x) = Φn(x). While the nth cyclotomic polynomial Φn(x) is irreducible over ℚ, Jn,H(x) is not necessarily irreducible. In this paper, we determine the subgroups H for which Jn,H(x) is irreducible over ℚ.
Keywords
Cyclotomic polynomials; irreducible polynomials; Gauss sum;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J. R. Bastida, Field extensions and Galois theory, Encyclopedia of Mathematics and its Applications, 22, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1984. https://doi.org/10.1017/CBO9781107340749   DOI
2 H. G. Diamond, F. Gerth, III, and J. D. Vaaler, Gauss sums and Fourier analysis on multiplicative subgroups of Zq, Trans. Amer. Math. Soc. 277 (1983), no. 2, 711-726. https://doi.org/10.2307/1999232   DOI
3 R. J. Evans, Generalized cyclotomic periods, Proc. Amer. Math. Soc. 81 (1981), no. 2, 207-212. https://doi.org/10.2307/204419   DOI
4 J. B. Fraleigh, A First Course in Abstract Algebra, Addison-Wesley Publishing Co., Reading, MA, 1967.
5 H. Hasse, Number Theory, Springer-Verlag, Berlin, 1980.
6 I. M. Isaacs, Algebra, Brooks/Cole Publishing Co., Pacific Grove, CA, 1994.
7 M. Kwon, J.-E. Lee, and K.-S. Lee, Galois irreducible polynomials, Commun. Korean Math. Soc. 32 (2017), no. 1, 1-6. https://doi.org/10.4134/CKMS.c160003   DOI
8 T. Nagell, Introduction to Number Theory, John Wiley & Sons, Inc., New York, 1951.
9 G. Shin, J. Y. Bae, and K.-S. Lee, Irreducibility of Galois polynomials, Honam Math. J. 40 (2018), no. 2, 281-291.   DOI